3D Photography
Obtaining 3D shape (and sometimes color) of real-world objects

Based on slides from Szymon Rusinkiewicz and Roberto Scopigno

Applications
• Determine whether manufactured parts are within tolerances
• Plan surgery on computer model, visualize in real time
• Quality control during building

Graphics Research
• Availability of complex datasets drives research
(you wouldn't believe how the poor bunny has been treated...)

Sculpture Scanning
• The Pietà Project
 IBM Research
• The Digital Michelangelo Project
 Stanford University
• The Great Buddha Project
 University of Tokyo

Why Scan Sculptures?
• Interesting geometry
• Introduce scanning to new disciplines
 Art: studying working techniques
 Art history
 Cultural heritage preservation
 Archeology
• High-visibility projects

Why Scan Sculptures?
• Challenging
 High detail, large areas
 Large data sets
 Field conditions
 Pushing hardware, software technology
• But not too challenging
 Simple topology
 Possible to scan most of surface
Issues Addressed

- Resolution
- Coverage
 - Theoretical: limits of scanning technologies
 - Practical: physical access, time
- Type of data
 - High-res 3D data vs. coarse 3D + normal maps
 - Influenced by eventual application
- Intellectual Property

The Digital Michelangelo Project

Goals

- Scan 10 sculptures by Michelangelo
- High-resolution ("quarter-millimeter") geometry
- Side projects: architectural scanning (Accademia and Medici chapel), scanning fragments of Forma Urbis Romae

Why Capture Chisel Marks?

Scanner Design

4 motorized axes

laser, range camera, white light, and color camera
Scanning a Large Object

- Calibrated motions
 - pitch (yellow)
 - pan (blue)
 - horizontal translation (orange)

- Uncalibrated motions
 - vertical translation
 - rolling the gantry
 - remounting the scan head

Statistics About the Scan of David

- 480 individually aimed scans
- 0.3 mm sample spacing
- 2 billion polygons
- 7,000 color images
- 32 gigabytes
- 30 nights of scanning
- 22 people

Head of Michelangelo’s David

- Photograph
- 1.0 mm computer model

Side project: The Forma Urbis Romae

- Forma Urbis Romae Fragment
 - side face
IBM’s Pietà Project

- Michelangelo’s “Florentine Pietà”
- Late work (1550s)
- Partially destroyed by Michelangelo, recreated by his student
- Currently in the Museo dell’Opera del Duomo in Florence

Results

The Great Buddha Project

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage

3D Scanning

- The acquisition of a single range map is only an intermediate single step of the overall acquisition session

The 3D scanning pipeline

- 3D Scanning:
 - Acquisition planning
 - Acquisition of multiple range maps
 - Range maps Editing
 - Registration of range maps
 - Merge of range maps
 - Mesh: Editing
 - Geometry simplification
 - Capturing appearance
 - Archival and data conversion
Acquisition Planning

Definition of the optimal acquisition patchwork:
- Given: scanner & object characteristics
- Obtain an optimal & complete coverage (all object surface covered):
 - Minimal number of scans
 - Sufficient inter-scan overlap (registration)
 - Where each scan should be:
 - shot from a view direction nearly orthogonal to the surface
 - physically feasible (consider potential collisions with the object/environment, self-occlusions)
- NP-hard problem → find good heuristics & approximate solutions

Registration and Merging

First: Register all range maps
Second: Merge in a single triangulated surface with no redundancy

Registration

- Independent scans are defined in coordinate spaces which depend on the spatial locations of the scanning unit and the object at acquisition time. They have to be registered (roto-translation) to lie in the same space
- Standard approach:
 - initial manual placement
 - Iterative Closest Point (ICP) [Besl92,CheMed92]

Manuel Pairwise Registration

Mode 1) The user manually places a range map over another (interactive manipulation)
Mode 2) Selection of multiple pairs of matching points

Pairwise Registration

- An approximation to the distance between range scans is:
 \[E = S \sum || q_i - p_i ||^2 \]
- where the \(q_i \) are samples from scan \(Q \) and the \(p_i \) are the corresponding points of scan \(P \).
Iterative Closet Point (ICP) [Besl+92]

- If the correspondences are known a priori, then there is a closed form solution for T. However, the correspondences are not known in advance.
- Iterative closest point (ICP) [Besl+92]
 - Start from an approximate registration
 - Repeat
 - Identify corresponding points (minimal distance)
 - Compute and apply the optimal rigid motion T
 - Until registration error E is small

Registration, many more issues

Pairwise Sequential vs. Global [Pulli99]
Using Color in registration [Bernardini00]

So far...

- Mainly engineering problems, planning, scanning and registration.
- Now, once registered, all scans have to be fused in a single, continuous, hole-free mesh
- In other words – surface reconstruction...
- Or, surface consolidation

Consolidation

Desirable properties for surface reconstruction:
- No restriction on topological type
- Representation of range uncertainty
- Utilization of all range data (integrate over overlapped regions)
- Incremental and order independent updating
- Time and space efficiency
- Robustness (to noise)
- Ability to fill holes in the reconstruction

Filling Holes [Sharf+04]
Methods that construct **triangle meshes directly**:

Reconstruction from point clouds
- Local Delaunay triangulations [Boissonat84]
- Alpha shapes [Edelsbrunner+92]
- crust algorithm [Amenta+98]
- Delaunay-based sculpturing [Attene+00]
- Ball pivoting [Bernardini+99]
- Localized Delaunay [Dox+00]

Reconstruction from range maps
- Re-triangulation in projection plane [Soucy+92]
- Zippering in 3D [Turk+94]

Methods that construct **implicit functions**:

From range maps
- Signed distances to nearest surface [Hilton+96]
- Signed distances to sensor + space carving [Curless+96]
- Marching Intersections [Rocchini+00]

From point clouds
- Voxel-based signed distance functions [Hoppe+92]
- Point Set Surfaces [Levin, Alexa, Flieshman+01]
- Radial Basis Functions [Carr+01]
- Partition of Unity [Ohtake+03]

Single Laser Range Image

A single scan is a grid: Connect adjacent samples when z-difference is small.

Range images

- Converting a range image into a range surface is easy.
- Use a tessellation threshold

Zippering [Turk+94]

- Redundancy removal and zippering

So, what’s the problem?

scan, register, and apply some zippering?
Sampling quality and reconstruction issues

Ideal Sampling

Uneven Sampling or holes?

Methods that construct implicit functions:

From range maps

- Signed distances to nearest surface [Hilton+96]
- Signed distances to sensor + space carving [Curless+96]
- Marching Intersections [Rocchini+00]

From point clouds

- Voxel-based signed distance functions [Moppe+92]
- Point Set Surfaces [Levin, Alexa, Floeshman+ 01]
- Radial Basis Functions [Car+01]
- Partition of Unity [Ohtake+03]
Implicit Surface Representation

Represented as a function \(f(x,y,z) = 0 \)

Volumetric representation

One important implicit function is the distance function

Distance Field

- Define an implicit function \(D(p) = \text{distance to the surface at point } p \)
 - \(> 0 \) outside the surface
 - \(< 0 \) inside the surface
 - \(= 0 \) on the surface

Use interpolation to compute distance at an arbitrary point

Distance Field

Marching Cube

Tangent plane and signed distance estimation

- Compute \(n_i \) that minimizes
 \[
 \sum_{p_j} (p_j - x_i) n_j
 \]

Where

\(p_j \in \text{Nbh}(x_i) \)

Assume that if points are close, then normals are nearly parallel

Results of Three Phases [Hoppe92]

Points

Phase 1

Phase 2
Phase 1: Initial Surface Estimation

• From points to mesh:
 - Inferring topological type
 - Creating geometric approximation

Points (4,102) Initial Mesh (886 vertices)

Phase 2: Mesh optimization

• Input: data points P, initial mesh
• Output: optimized mesh M

Phase 2: Mesh Optimization

• Optimize the energy function:
 Optimization rules use edge collapse and expand
• Sum of square distances (accurate)
• Number of vertices (sparse)
• Regulation term
 make vertices with equidistance

Optimization steps

Repeat
 $(K',V') = \text{GenerateLegalMove}(K, V)$
 $V' = \text{OptVertexPosition}(K', V')$
 if $E(K', V') < E(K, V)$
 $(K, V) = (K', V')$
 endif
Until converges

Phase 3: Piecewise Smooth Surface

Piecewise smooth

• Not everywhere smooth, but piecewise smooth!

piecewise planar \Rightarrow piecewise smooth surface

Smooth surface Piecewise smooth surface
Point Set Surfaces[Alexa+01]

- Smooth surface manifold representation of point sets
- Up-sample
- Down-sample
- Noise reduction
- Interactive rendering

The moving least squares (MLS)[Levin]

Constructive definition of the surface:

- Input point \(r \)
- Compute a local reference plane \(H_r=q,n \)
- Compute a local polynomial over the plane \(G_r \)
- Project point \(r'=G_r(0) \)

Reconstruction by Radial Bases Function

- Scattered data interpolation scheme
- Input: set of points on the surface
- Output: Implicit function that interpolates the points in a nice way
- Nice way:

\[
E(f) = \int \sum_{i=1}^{N} \phi(||x-x_i||) |f(x_i) - f(x)| ds
\]

Form of solution

- The solution is of the form:
 \[
 f(x) = \sum_{i=1}^{N} \phi(||x-x_i||) - \sum_{i=1}^{N} w_i \phi(||x-x_i||)
 \]
- Where \(P \) is a polynomial
- \(\Phi \) is a radially symmetric function
- The trivial solution is \(w_i = 0 \)

Forming a signed-distance function Off surface points

- For every point, add two off-surface points, one inside and one outside the surface in the direction of the normal
- Add a point only if it is closest to its source
- \(N=3n \) points

Forming a signed-distance function

- Off-surface points are projected along surface normals
Radial basis functions

\[f(x) = \sum_{i=1}^{n} w_i \phi(r_i - r) + b \]

- \(\phi(r) = \log r \)
- Minimizes 2nd derivative in 3D
- Minimizes 2nd derivative in 2D
- Minimizes 3rd derivative in 3D

Computing the weights

- Input: \(\{x_i\}, \{f_i\} \)
- Compute \(\{w_i\} \)

\[f(x) = \sum_{i=1}^{n} w_i \phi(r_i - r) \]

Function values

\[(A_{\times n}) W = f \]

Matrix dependent on the locations of the data points

Computing example

\[
\begin{pmatrix}
\phi(r_1-x_1) & \phi(r_1-x_2) & \cdots & \phi(r_1-x_n) & W_1 \\
\phi(r_2-x_1) & \phi(r_2-x_2) & \cdots & \phi(r_2-x_n) & W_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\phi(r_n-x_1) & \phi(r_n-x_2) & \cdots & \phi(r_n-x_n) & W_n
\end{pmatrix}
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_n
\end{pmatrix} =
\begin{pmatrix}
W_1 \\
W_2 \\
\vdots \\
W_n
\end{pmatrix}
\]

- Symmetric positive matrix

Complexity

Straight-forward method:
- Storage \(O(N^2) \)
- Solving the \(W_i \) \(O(N^3) \)
- Evaluating \(f(x) \) \(O(N) \)

Fast method [Carr01]
- Storage \(O(N) \)
- Solving the \(W_i \) \(O(N \log N) \)
- Evaluating \(f(x) \) \(O(1) + O(N \log N) \) setup

Simplification (center reduction)

- Reduce the number of centers (points)
- Greedy algorithm, reduce points as long as the surface is close enough

Why use implicit functions

- Well-defined interior and exterior
- Topology changes easy
- Constructive Solid Geometry
- Shape Interpolation
Multi-level Partition of Unity

Partition of unity

\[\phi(x) = 0 \quad (\text{quadric}) \]

Weighted average of the local functions

\[f(x) = \sum \phi(x) f(x) \]

Support of \(\phi(x) \) is subdivided

Large error region

Sharp Features

Piecwise quadric functions

Stanard quadric

Ray-traced \(f=0 \)

The moving least squares (MLS) [Levin]

Constructive definition of the surface:

• Input point \(r \)
• Compute a local reference plane \(H_r = \langle q, n \rangle \)
• Compute a local polynomial over the plane \(G_r \)
• Project point \(r' = G_r(0) \)

Local reference plane

• Plane equation: \(H_r = \langle q, n \rangle \)
• \(H_r = \min \sum (d(x_i, H_r) ||q - x||) \)
• Non-linear optimization
• \(i \) neighbor points
• \(\theta(x) = \exp(-x^2/h^2) \)
• \(h \) reconstruction parameter, depends on the spacing of points
• Note: \(q \neq r \)

Projecting the point

• \(G_r = \min \sum |G_r(x_i, x, y) - x_i, y| \)
• Linear optimization
• \(r' = G_r(0) \)

Noise Reduction

• Using high values of \(h \)
 • Smoother surfaces
 • Less detail
Up sample

- Create a local Voronoi diagram
- Add points at Voronoi vertex with the largest radius
- Stop when spacing is small enough

Downsample

- S_p Surface
- Remove Point p_i if $|S_p - S_{p_i}| < \varepsilon$
- Speedup: Evaluate $|p_i - \text{Project}(p_i, S_{p_i})|$