Interactive Image Cutout
- Separate an object from its background
- Compose the object on another image

Interactive Graph Cut
- (Boykov & Jolly. ICCV’01)
- Optimized by s-t min-cut algorithm

Interactive Graph Cut
- (Boykov & Jolly. ICCV’01)

Interactive Graph Cut
- (Boykov et al. ICCV’01)

Hard Constraints
- \(X : \) Segmentation.
 \(x_i \in \{\text{"obj", \"bkg"}\} \)
- Hard Constraint:
 \[\forall i \in O \quad x_i = \text{"obj"} \]
 \[\forall i \in B \quad x_i = \text{"bkg"} \]
Soft Constraints

- Minimize the Energy:

\[E(X) = \sum_{i \in B} E_1(x_i) + \lambda \sum_{(i,j) \in E} E_2(x_i, x_j) \]

- \(E_1 \): Region: Color difference to user marks
- \(E_2 \): Boundary: Color similarity between pixels

Image as a Weighted Graph

Image as a Weighted Graph

- **Graph**:
 - Source & sink, n-links & t-links
- **Cut-Segmentation**:
 - Separate ‘source’ & ‘sink’
 - Energy of cut: sum weights of edges
- **Min-Cut Max-Flow**:
 - Global minimal energy in polynomial time

Weights

- n-links:
 - \(i \in B \Rightarrow \{i, T\} : \infty \)
 - \(\{i, S\} : 0 \)

- t-links:
 - \(i \in U \Rightarrow E_j(x_i) = h_i(I_j) \)

- Energy of cut:
 - \(E(x_i, x_j) = \exp(-\theta - I_{ji}^2) \)

Lazy Snapping

- Lazy Snapping for Lazy Users
- 2 Steps UI:
 1. Coarse Step:
 - Obj/Bkg Marking
 - Graph Cut
 2. Fine Step:
 - Border Brush
 - Pixel Editing
 => Graph-Cut on border

Li et al.

SIGGRAPH’04
Weights

- E_1: Color difference to user marks
 - Intensities -> Colors
 - Histogram -> “K-means” clustering
 - $E_1(x_i = \text{obj}) \propto \text{RGB dist to closest cluster centroid}$

- E_2: Color similarity between pixels
 - For neighboring pixels of different x_i
 - $E_2(x_i, x_j) = \frac{1}{1 + \|C_i - C_j\|}$

Per-Pix Graph Cut

Pre-Segmentation

Graph Cut on Regions

Graph Cut on Regions

Graph Cut on Regions

Graph Cut on Regions

Graph Cut on Regions
Graph Cut Algorithm

<table>
<thead>
<tr>
<th>Per-pixel method</th>
<th>Region based method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>Small regions</td>
</tr>
<tr>
<td>Neighbors</td>
<td>Region connection</td>
</tr>
<tr>
<td>Pixel color</td>
<td>Region mean color</td>
</tr>
<tr>
<td>Color difference</td>
<td>Region color difference</td>
</tr>
</tbody>
</table>

Region-based Graph Cut

- **Advantages**
 - More than 10 times fewer nodes
 - Instant feedback of cutout result
- **Pre-processing overhead**
 - 2~3 seconds background processing

Divide and Conquer

- **First Step:** Object Marking
- **Second Steps:** Boundary Editing

 - Quickly identify the object
 - Control the detail boundary

Polygon Fitting

- First vertex – border pixel with highest curvature
- Next vertices: furthest boundary pixel
- Stop when distance < thresh

Border Editing

- Brush - Replace polygon segment
- Vertex Editing: Move/Add/Delete

 \[\Rightarrow \text{Graph Cut on border pixels} \]

Band of Uncertainty

Optimization in the Band

Pixel Based Graph Cut Segmentation
Low Contrast Example

Boundary Editing

- For Low Contrast case:
 - Add a term to reflect distance from polygon

- Hard Vertex constraint
 - Adjust graph so cut passes through vertex

Video Demo (Left boy)
Video Demo (Right Boy)

Summary: Two Steps

First Step: Object Marking

Second Steps: Boundary Editing

GrabCut

Interactive Foreground Extraction using Iterated Graph Cuts

Photomontage

Iterated Graph Cut

Gaussian Mixture Models (GMMs)

- GMM instead of Histogram (Color model)
- Assume distribution is a mixture of Gaussians

\[G_{\mu, \Sigma}(x) = \sum_{k=1}^{K} w_k G_{\mu_k, \Sigma_k}(x) \]

- EM algorithm - find best \(w_k, \mu_k, \Sigma_k \) for the given set of samples
- GrabCut - Different approach
Iterated Graph Cuts

- E_i - GMMs (E_j - No change)
- **Algorithm:**
 1. Initialize B_i, $U = \overline{B_i}$, $F = \phi$
 2. Repeat (until constant energy)
 a. Assign best G_k to $2k$ clusters
 b. For each cluster calculate w_i, μ_i, Σ_i to 2 GMMs
 c. Find Min Cut $\Rightarrow U$ decreases
 3. Apply border matting
 4. Enable user editing & repeat

Incomplete Labeling

- User specifies border $\Rightarrow B_i, U = \overline{B_i}$, $F = \phi$
- F populates through iterations
- Some F pixels can be retracted. B cannot

Editing (In case of error):

- User adds F, B (brush)
- Re-compute
- Graph Cut can be reused.

Moderately straightforward examples

Gaussian Separation

- Gaussian Mixture Model (typically $K=5$)

Difficult Examples

- Camouflage & Low Contrast
- Fine structure
- No telepathy
Evaluation - Labelled Database

Comparison

Boykov and Jolly (2001) vs GrabCut

Error Rate: 0.72%

Error Rate: 0.72%

Border Matting

Extract \(\alpha \)-values along border

Hard Segmentation → Band of Uncertainty → Soft Segmentation

Bayes Matting - Chuang et. al. (2001)

- Create \(U \) band ± \(w \)
- Local rectangle
- Estimate \(G_F, G_B \)
- \(U: \mu_x = a \mu_x \times (1-\alpha) \mu_x \)
- \(G(x) = G(\mu_x, \Sigma_x) \)
- Find \(\alpha \) that maximizes \(G_U \) with respect to pixels in \(U \)

Border Matting - GrabCut

Fit a smooth alpha-profile with parameters \(\Delta, \sigma \)

Dynamic Programming

Result using DP Border Matting

Max: \(G(\mu_x, \Sigma_x) \)

Min: \(\sum (\Delta - \Delta_i)^2 + (\sigma - \sigma_i)^2 \)
Summary

- \(G_z(\alpha) \) should match \(U \) pixels
- \(\alpha \) should change like a soft step function
- Step function should change smoothly along contour

Matting Results

Lazy Snapping vs. Grab Cut

<table>
<thead>
<tr>
<th>Feature</th>
<th>Lazy Snapping</th>
<th>Grab Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interface</td>
<td>Marking brush - FG + BG</td>
<td>Rectangular lasso - BG only</td>
</tr>
<tr>
<td></td>
<td>Overiding brush</td>
<td>Masking brush - (optional)</td>
</tr>
<tr>
<td></td>
<td>Vertex editing</td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td>Region-based Graph Cut</td>
<td>Iterative Graph Cut</td>
</tr>
<tr>
<td></td>
<td>Border pixel</td>
<td>Graph Cut</td>
</tr>
<tr>
<td>Performance</td>
<td>Fully Interactive</td>
<td>Fast</td>
</tr>
<tr>
<td></td>
<td>Includes Pre-Processing</td>
<td></td>
</tr>
<tr>
<td>Border Edge</td>
<td>Border Editing</td>
<td>Border Matting</td>
</tr>
</tbody>
</table>

Thank You