INTRODUCTION TO RENDERING TECHNIQUES

22 Mar. 2012 Yanir Kleiman

What is 3D Graphics?

\square Why 3D?

- Draw one frame at a time
- X 24 frames per second
- 150,000 frames for a feature film
\square Realistic rendering is hard
- Camera movement is hard
\square Interactive animation is hard

\square Model only once
- Color / texture only once
\square Realism / hyper realism
\square A lot of reuse
\square Computer time instead of artists time
\square Can be interactive (games)

What is 3D Graphics?

\square Artists workflow - in a nutshell

What is Rendering?

What is Rendering?

What is Rendering?

\square Consider:

- Perspective
- Occlusion
\square Color / Texture
- Lighting
- Shadows
- Reflections / Refractions
- Indirect illumination
\square Sampling / Antialiasing

Two Approaches

\square Start from geometry
\square For each polygon / triangle:

- Is it visible?
\square Where is it?
- What color is it?
\square Start from pixels
\square For each pixel in the final image:
- Which object is visible at this pixel?
\square What color is it?

RASTERIZATION

22 Mar. 2012 Introduction to Rendering Techniques

Rasterization

\square Basic idea: Calculate projection of each triangle onto the 2D image space
\square Extensively used and researched
\square Optimized by GPU
\square Strongly parallelized
\square OpenGL
\square DirectX

Rasterization - Graphics Pipeline

Rasterization - Graphics Pipeline

Rasterization - Graphics Pipeline

\square Computation is based on angles between light source, object and camera (details later)

\square Backface culling

Rasterization - Graphics Pipeline

Rasterization - Graphics Pipeline

\square Step 1: Transform triangles from world space to camera space (orthogonal transformation)
\square Camera is at ($0,0,0$)
$\square \mathrm{X}$ axis is right vector
$\square \mathrm{Y}$ axis is up vector
$\square \mathrm{Z}$ axis is "back vector" (away from camera)

Rasterization - Graphics Pipeline

Rasterization - Graphics Pipeline

\square Remove triangles that fall outside the clipping plane
\square Determine boundaries of triangles partially within the clipping plane

Rasterization - Graphics Pipeline

Rasterization - Graphics Pipeline

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

Image
\square Check z-buffer for intersections
\square Use precalculated vertex lighting
\square Interpolate lighting at each pixel (smooth shading)
\square Texture: Every vertex has a texture coordinate (u, v)
\square Interpolate texture coordinates to find pixel color

Rasterization - Parallel Processing

\square Triangles are independent except for z-buffer
\square Every step is calculated by a different part in the GPU

Rasterization - Parallel Processing

\square Modern GPUs can draw 600M polygons per second
\square Suitable for real time applications (gaming, medical)

- But what about...
\square Shadows?
- Reflections?
- Refractions?
\square Antialiasing?
- Indirect illumination?

Rasterization - Antialiasing

\square Aliasing examples

Rasterization - Antialiasing

\square Aliasing examples

Rasterization - Antialiasing

\square Antialiasing: Trying to reduce aliasing effects
\square Simple solution: Multisampling
\square Only the last step changes!
\square During scan conversion, sample subpixels and average

\square This is equivalent to rendering a larger image
\square Observation: Rendering twice larger resolution costs less then rendering twice - since scanline is efficient and the rest doesn't change!

Rasterization - Shadow Maps

\square Render an image from the light's point of view
(the light is the camera)

Shadow map
\square Keep "depth" from light of every pixel in the map
\square During image render:
Calculate position and depth on the shadow map for each pixel in the final image (not vertex!)
\square If pixel depth > shadow map depth the pixel will not receive light from this source

Rasterization - Shadow Maps

\square This solution is not optimal
\square Shadow map resolution is not correlated to render resolution - one shadow map pixel can span a lot of rendered pixels!
\square Shadow aliasing
\square Only allows sharp shadows
\square Semi-transparent objects

Various hacks and complex solutions

True soft shadows (ray tracing)

Rasterization - Reflection Maps

\square Not a true reflection - a "cheat"
\square Precalculate reflection map from a point in the center (can be replaced by an existing image)
\square The reflection map is mapped to a sphere or cube surrounding the scene
\square Each direction (vector) is mapped to a specific color according to where it hits the sphere / cube
\square During render, find the reflection color according to the reflection vector of each pixel (not vertex!)

Rasterization - Reflection Maps

\square Can produce fake reflections (no geometry needed)
\square Works well for:

- Environment reflection (landscape, outdoors, big halls)
- Distorted reflections
\square Weak reflections (wood, plastic)
\square Static scenes
\square Not so good for:
- Reflections of near objects
- Moving scenes
\square Mirror like objects
\square Optical effects

Rasterization - Reflection Maps

\square Examples: Reflection maps

Used to create the map

Rasterization - Reflection Maps

\square Examples: Ray traced reflections

Rasterization - Reflection Maps

\square Examples:

Reflection Map

Ray Traced Reflection

Rasterization - Refractions

\square There is no real solution
\square Refraction maps: same as reflection maps but the angle is computed using refractive index
\square Only simulates the first direction change, not the second (that would require ray tracing)
\square Refraction is complex so fake refractions are hard to notice
\square Doesn't consider near objects, only static background

Rasterization - Refractions

\square Other "fake" solutions:
\square Distort the background according to a precomputed map
\square "Bake" ray traced refractions into a texture file (for static scenes)

Refraction Map

Distort Background

Rasterization - Indirect Illumination

\square Indirect / global illumination means taking into account light bouncing off other objects in the scene

Rasterization - Indirect Illumination

\square Surprisingly, there are methods to approximate global illumination using only rasterization, without ray tracing
\square "High-Quality Global Illumination Rendering Using Rasterization", Toshiya Hachisuka, The University of Tokyo
\square Main idea: Use a lot of fast rasterized "renders" from different angles to compute indirect illumination at each point
\square Rasterization is super quick on GPU

(a)

(b)

Rasterization - Indirect Illumination

\square Results:

Results of equal render time

Photon mapping (ray tracing)

Rasterizer (GPU)

TRANSFORMATIONS

22 Mar. 2012 Introduction to Rendering Techniques

Transformations

\square We saw 2 types of transformations
\square Viewing transformation: Can move, rotate and scale the object but does not skew or distort objects
\square Perspective projection: This special transformation projects the 3D space onto the image plane
\square How do we represent such transformations?
\square Homogeneous coordinates: Adding a $4^{\text {th }}$ dimension to the 3D space

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Viewing Transformations

\square Types of transformations
Scale

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Translate (move)

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & x_{0} \\
0 & 1 & 0 & y_{0} \\
0 & 0 & 1 & z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotations

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]}
\end{aligned}
$$

Viewing Transformations

\square Any combination of these matrices is a viewing transformation matrix
\square Last coordinate is only for moving the pivot, w^{\prime} is always 1 and will not be used
\square How to find the transformation to a certain view (could be camera, light, etc)?

Viewing Transformations

\square After the transformation:
\square Eye position should be at (0, 0, 0)
$\square \mathrm{X}$ axis $=$ right vector
$\square \mathrm{Y}$ axis = up vector
$\square \mathrm{Z}$ axis = back vector

World

Viewing Transformations

\square It is easy to construct the invert transformation, from camera coordinates to world

$$
\begin{gathered}
\left.\begin{array}{c}
\text { Right } \\
\text { Vector } \\
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
R_{x} & U_{x} & B_{x} & E_{x} \\
R_{y} & U_{x} & B_{y} & E_{y} \\
R_{z} & U_{z} & B_{z} & E_{z} \\
R_{w} & U_{w} & B_{w} & E_{w}
\end{array}\right]\left[\begin{array}{c}
x \\
\text { Vector }
\end{array}\right]\left[\begin{array}{c}
\text { Position } \\
y \\
z \\
w
\end{array}\right]
\end{gathered}
$$

Viewing Transformations

\square Examples:

$$
\begin{array}{cc}
(0,0,0) \text {-> Eye Position } & \text { Camera X Axis -> Origin + Right vector } \\
{\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z} \\
E_{w}
\end{array}\right]=\left[\begin{array}{llll}
R_{x} & U_{x} & B_{x} & E_{x} \\
R_{y} & U_{x} & B_{y} & E_{y} \\
R_{z} & U_{z} & B_{z} & E_{z} \\
R_{w} & U_{w} & B_{w} & E_{w}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} & {\left[\begin{array}{c}
R_{x}+E_{x} \\
R_{y}+E_{y} \\
R_{z}+E_{z} \\
R_{w}+E_{w}
\end{array}\right]=\left[\begin{array}{llll}
R_{x} & U_{x} & B_{x} & E_{x} \\
R_{y} & U_{x} & B_{y} & E_{y} \\
R_{z} & U_{z} & B_{z} & E_{z} \\
R_{w} & U_{w} & B_{w} & E_{w}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]}
\end{array}
$$

\square Now all we have to do is invert T (always invertible), and we have our view transformation

Projections

\square A projection transform points from higher dimension to a lower dimension, in this case 3D -> 2D
\square The most simple projection is orthographic
\square Simply remove the Z axis after the viewing transformation

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
x_{v} \\
y_{v} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{v} \\
y_{v} \\
z_{v} \\
1
\end{array}\right]
$$

Perspective Projections

\square Perspective projections map points onto the view plane toward the center of projection (the viewer)
\square Since the viewer is at $(0,0,0)$ the math is very simple
$\square D$ is called the focal length
$\square \mathrm{x}^{\prime}=\mathrm{x}^{*}(\mathrm{D} / \mathrm{z})$
$\square y^{\prime}=y^{*}(D / z)$

Perspective Projections

\square Matrix form of the perspective projection using homogeneous coordinates

$$
\left.\left[\begin{array}{llll|l}
d & 0 & 0 & 0 & x \\
0 & d & 0 & 0 & y \\
0 & 0 & d & 0 & z \\
0 & 0 & 1 & 0 & z
\end{array}\right]=\begin{array}{ccc}
d x & d y & d z
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
\frac{d}{z} x & \frac{d}{z} y & \mathrm{~d}
\end{array}\right]
$$

\square Singular matrix - projection is many to one
$\square \mathrm{D}=$ infinity gives an orthographic projection
\square Points on the viewing plane $z=D$ do not move
\square Points at $\mathrm{z}=0$ are not allowed - usually by using a clipping plane at $\mathrm{z}=\varepsilon$

LIGHTING

22 Mar. 2012 Introduction to Rendering Techniques

RAY TRACING

22 Mar. 2012 Introduction to Rendering Techniques

Ray Tracing

\square Basic idea: Shoot a "visibility ray" from center of projection (camera) through each pixel in the image and find out where it hits
\square This is actually backward tracing - instead of tracing rays from the light source, we trace the rays from the viewer back to the light source

Ray Tracing

\square Backward tracing is called Ray Casting
\square Simple to implement
\square For each ray find intersections with every polygon - slow...
\square Easy to implement realistic lighting, shadows, reflections and refractions, and indirect illumination

Ray Tracing

\square For each sample (pixel or subpixel):
\square Construct a ray from eye position through viewing plane

Ray Tracing

\square For each sample (pixel or subpixel):
\square Construct a ray from eye position through viewing plane
\square Find first (closest) surface that intersects the ray

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Ray Tracing

\square For each sample (pixel or subpixel):
\square Construct a ray from eye position through viewing plane
\square Find first (closest) surface that intersects the ray
\square Compute color based on surface radiance

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Ray Tracing

\square For each sample (pixel or subpixel):
\square Construct a ray from eye position through viewing plane
\square Find first (closest) surface that intersects the ray
\square Compute color based on surface radiance
\square Computing radiance requires casting rays toward the light source, reflected and refracted objects and recursive illumination rays from reflected and refracted objects

Ray Tracing - Casting Rays

\square Construct a ray through viewing plane:

Ray Tracing - Casting Rays

\square Construct a ray through viewing plane:
\square 2D Example:
$\Theta=$ frustum half-angle
$d=$ distance to view plane
$P_{1}=P_{0}+d *$ towards $-d * \tan (\Theta){ }^{*}$ right
$P_{2}=P_{0}+d^{*}$ towards $\left.+d^{*} \tan (\Theta)\right)^{*}$ right
$P=P_{1}+(i /$ width -0.5$) * 2 * d * \tan (\Theta) *$ right
$V=\left(P-P_{0}\right) /\left\|P-P_{0}\right\|$
For every i between (-width/2) and (width/2)

Ray: $P=P_{0}+t V$

Ray Tracing - Intersections

\square Finding intersections
\square Intersecting spheres
\square Intersecting triangles (polygons)
\square Intersecting other primitives
\square Finding the closest intersection in a group of objects / all scene

Ray Tracing - Intersections

\square Finding intersections with a sphere:
Algebraic method
Ray: $\mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$
Substituting for P, we get:

$$
\left|P_{0}+t V-O\right|^{2}-r^{2}=0
$$

Solve quadratic equation:

$$
a t^{2}+b t+c=0
$$

where:

$$
a=1
$$

$$
b=2 \mathrm{~V} \cdot\left(\mathrm{P}_{0}-\mathrm{O}\right) \quad \text { Solve for } t
$$

$$
\mathrm{c}=\left|\mathrm{P}_{0}-\mathrm{O}\right|^{2}-\mathrm{r}^{2}=0 \longrightarrow \mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}
$$

Ray Tracing - Intersections

\square Finding intersections with a sphere:
Geometric method

Ray: $\mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}$
Sphere: $|\mathrm{P}-\mathrm{O}|^{2}-\mathrm{r}^{2}=0$

$$
\begin{aligned}
& L=O-P_{0} \\
& t_{c a}=L \cdot V \\
& \text { if }\left(t_{c a}<0\right) \text { return } 0 \\
& d^{2}=L \cdot L-t_{c a}^{2} \\
& \text { if }\left(d^{2}>r^{2}\right) \text { return } 0
\end{aligned}
$$

$t_{h c}=\operatorname{sqrt}\left(r^{2}-d^{2}\right) \quad$ Solve for t
$t=t_{c a}-t_{h c}$ and $t_{c a}+t_{h c} \longrightarrow P=P_{0}+t V$

Ray Tracing - Intersections

\square Finding intersections with a sphere:
Calculating normal
\square We will need the normal to compute lighting, reflection and refractions

$$
N=(P-O) /\|P-O\|
$$

Ray Tracing - Intersections

\square Finding intersections with a triangle:
\square Step 1: find intersection with the plane
\square Step 2: check if point on plane is inside triangle
\square Many ways to solve...

Ray Tracing - Intersections

\square Step 1: find intersection with the plane: Algebraic method

```
Ray: \(P=P_{0}+t V\)
Plane: \(N\left(P-P_{0}\right)=0 \rightarrow P \cdot N+c=0\)
```

Substituting for P, we get:

$$
\left(\mathrm{P}_{0}+\mathrm{tV}\right) \cdot \mathrm{N}+c=0
$$

Solution:

$$
\begin{aligned}
& \mathrm{t}=-\left(\mathrm{P}_{0} \cdot \mathrm{~N}+\mathrm{c}\right) /(\mathrm{V} \cdot \mathrm{~N}) \\
& \text { And the intersection at: } \\
& \mathrm{P}=\mathrm{P}_{0}+\mathrm{tV}
\end{aligned}
$$

Ray Tracing - Intersections

\square Step 2: Check if point is inside triangle Algebraic method

For each side of triangle

$$
\begin{aligned}
& V_{1}=T_{1}-P_{0} \\
& V_{2}=T_{2}-P_{0} \\
& N_{1}=V_{2} \times V_{1}
\end{aligned}
$$

$$
\text { Normalize } \mathrm{N}_{1}
$$

$$
\text { if }\left(P-P_{0}\right) \cdot N_{1}<0
$$ return FALSE;

end

If all 3 succeed the point

Ray Tracing - Intersections

\square Step 2: Check if point is inside triangle Paramteric method

Compute α, β :

$$
P=\alpha\left(T_{2}-T_{1}\right)+\beta\left(T_{3}-T_{1}\right)
$$

Using dot products $\left(P-T_{1}\right) \bullet\left(T_{2}-T_{1}\right)$ and $\left(P-T_{1}\right) \bullet\left(T_{3}-T_{1}\right)$

Check if point inside triangle.

$$
\begin{aligned}
& 0 \leq \alpha \leq 1 \text { and } 0 \leq \beta \leq 1 \\
& \alpha+\beta \leq 1
\end{aligned}
$$

Ray Tracing - Intersections

\square Ray tracing can support other primitives
\square Cone, Cylinder, Ellipsoid: similar to sphere
\square Convex Polygon:
Point in Polygon is a basic problem in computational geometry and has algebraic solutions

- Concave Polygon:

Same plane intersection
More complex point-in-polygon test
\square Alternatively, divide the polygon to triangles and check each triangle

Ray Tracing - Intersections

\square Find closest intersection:
\square Simple solution is go over each polygon in the scene and test for intersections
\square We will see optimizations for this later... (maybe)
\square We have an intersection - what now?

Ray Tracing - Computing Color

\square Computing lighting can be similar to the process when rasterizing (using normals)
\square This is not for a vertex but for the intersection point
\square For better accuracy: ray trace lighting
\square At each intersection point cast a ray towards every light source
\square Provides lighting, shadows, reflections, refractions and indirect illumination
\square Easy to compute soft shadows, area lights

Ray Tracing - Shadows

\square Shadow term tell which light source are blocked
$\square S_{L}=0$ if ray is blocked, $\mathrm{S}_{\mathrm{L}}=1$ otherwise
\square Direct illumination is only calculated for unblocked lights
\square Illumination formula:

$$
I=I_{E}+K_{A} I_{A}+\sum_{L}\left(K_{D}(N \bullet L)+K_{S}(V \bullet R)^{n}\right) S_{L} I_{L}
$$

Ray Tracing - Soft Shadows

\square Why are real life shadows soft?
\square Because light source is not truly a point light

Ray Tracing - Soft Shadows

\square Simulate the area of a light source by casting several (random) rays from the surface to a small distance around the light source

Point light source: The surface is completely lighted by the light source.

Finite light source: $3 / 5$ of the rays reach the light source. The surface is partially lighted.

Ray Tracing - Reflection / Refraction

\square Recursive ray tracing: Casting rays for reflections and refractions
\square For every point there are exact directions to sample reflection and refraction (calculated from normal)
\square Illumination formula:

$$
I=I_{E}+K_{A} I_{A}+\sum_{L}\left(K_{D}(N \bullet L)+K_{S}(V \bullet R)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Ray Tracing - Reflection / Refraction

\square Cast a reflection ray
\square Compute color at the hit point (using ray tracing again!)
\square Multiply by reflection term of the material
\square To avoid aliasing sample several rays in the required direction and average

$$
I=I_{E}+K_{A} I_{A}+\sum_{L}\left(K_{D}(N \bullet L)+K_{S}(V \bullet R)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Ray Tracing - Reflection / Refraction

\square... And the same for refractions
\square Last coefficient is transparency
$\square K_{T}=1$ for translucent objects $\mathrm{K}_{\mathrm{T}}=0$ for opaque objects
\square Consider refractive index of object
\square Again use several rays to avoid aliasing

$$
I=I_{E}+K_{A} I_{A}+\sum_{L}\left(K_{D}(N \bullet L)+K_{S}(V \bullet R)^{n}\right) S_{L} I_{L}+K_{S} I_{R}+K_{T} I_{T}
$$

Ray Tracing - Reflection / Refraction

\square Ray tree represents recursive illumination computation

Ray traced through scene

Ray tree

Ray Tracing - Reflection / Refraction

\square Number of rays grows exponentially for each level!
\square Common practice: limit maximum depth
\square After 2-3 bouncing reflections, the cost is high and there is little benefit

Ray Tracing - Antialiasing

Ray Tracing - Antialiasing

\square Aliasing in ray tracing can be severe, since only one ray is casted per pixel
\square The computation is based on the size of the pixels, not on the size of the actual polygons which can be relatively small
\square Supersampling: Instead of casting one ray per pixel, cast several per pixel
\square Since this is done at the first step, it is as inefficient as possible (running the whole process again)

Ray Tracing - Indirect Illumination

\square What we've seen so far is only an approximation of real lighting: The rays are only casted directly towards the light
\square Use reflections, but not indirect lighting
\square Global illumination: A method to approximate indirect lighting from every direction

Ray Tracing - Indirect Illumination

\square Example:
\square Top image uses direct lighting only
\square Bottom image uses indirect illumination
\square Notice the ground is "reflected" naturally on the character
\square Not because of reflective material but because of lighting contribution

Ray Tracing - Indirect Illumination

\square Monte-Carlo path tracing
\square Step 1: Cast regular rays through each pixel in viewing plane
\square Step 2: Cast random rays from visible point
\square Step 3: Recurse
\square Very expensive!

Ray Tracing - Indirect Illumination

\square Monte-Carlo path tracing

1 random ray per pixel no recursion

16 random rays per pixel 3 levels of recursion

Ray Tracing - Indirect Illumination

\square Monte-Carlo path tracing
\square Need a lot of rays and recursions to look good
\square Random rays cause flickering problems
\square Computation time measured in hours!
\square Common practice:
Bake global illumination map of one frame and use it for all frames

64 random rays per pixel 3 levels of recursion

Ray Tracing - Ambient Occlusion

\square Ambient Occlusion is a simpler form of global illumination
\square Cast random rays from visible point and calculate distance to the nearest object
\square The more rays hit near objects, the point is occluded and therefore darker
\square A cheat - "make nice" button
\square Everything looks better with ambient occlusion!

Ray Tracing - Ambient Occlusion

\square Good for contact shadows
\square Examples:

Summary

Rasterization

\square Fast renderer
\square Optimized for GPUs
\square Antialiasing is easy and fast
\square Scales well for larger images
\square Parallel computing possible on GPU
\square Shadows are hard to compute and inaccurate
\square Relections and refractions are a hack
\square Indirect illumination complex but possible (rarely used in practice)

Ray Tracing

\square Slow renderer - only today we see some real time ray tracing possible
\square Not optimized for GPUs
\square Antialiasing is expensive
\square Doesn't scale so well
\square Parallel computing is easy
\square Shadows are easy including sofy shadows
\square Relections and refractions are easy
\square Indirect illumination complex but possible (rarely used in practice)

What Artists Do

\square In practice: Both are used side by side
\square Games:
Real time, mostly rasterized except for special effects
\square Movies / Animation:
\square Not real time, but time = money
Usually a mix of rasterization and ray traced reflections / refractions.
\square Global illumination is sometimes used but usually faked using direct lights

What Artists Do

\square Common practice: Use render layers and composite later using a video editing program (like After Effects)
\square Render layers:
\square Color (radiance)
\square Reflections
\square Refractions
\square Depth map
\square Ambient Occlusion
\square Makes it easy to make fast changes later without rendering again

THAT'S ALL, FOLKS!

22 Mar. 2012 Introduction to Rendering Techniques

