INTRODUCTION TO
RENDERING TECHNIQUE

22 Mar. 2012

p>]

p>]

What 1s3D Graphics?

Draw one framat a time

X?24 frames per second
150,000frames for a feature film
Realistic rendering is hard
Camera movement is hard
Interactive animation is hard

Model only once

Color / textureonly once

Realism / hyper realism

A lot of reuse

Computer time instead of artists time
Can be interactive (games)

What is3D Graphics?

A Artists workflowc in a nutshell

Create Model 3D MOdD
Rig (Bones) Bones
Controls

Animation @

Keyframes

Texture (Color)

Cl'exture Files

Lighting

Rendering

Post Processing

What i1s Rendering?

Cl'exture Files

G

Bones
Controls

Image

Keyframes

What i1s Rendering?

Bones .

@eometD
Cl'exture Files @
v

Image

What Is Rendering?

Cl'exture Fi@

Geometry

~

i Consider:

Perspective
Occlusion
Color / Texture
Lighting
Shadows
Reflections / Refractions
Indirect illumination
Sampling /Antialiasing

Image

D> D> D> D> D> D D ()

Two Approaches

_
A Start fromgeometry

For each polygon / triangle:
A ls it visible? Rasterization

A Where Is it?
A What color is 1t?

A Start frompixels

For each pixel in the final image:
A Whichobject is visible at this pixel
A What color is it?

Ray Tracing

RASTERIZATION

22 Mar. 2012

Rasterization

Basic idea: Calculate projection of each
triangle onto the2D image space

Extensively used and researched
Optimized by GPU
Strongly parallelized
OpenGL

DirectX

Rasterizatiorg Graphics Pipeline
S =

Model Transformation
Lighting

Projection

Clipping

Scan Conversion

Image

Rasterizatiorg Graphics Pipeline

Model Transformation :
4 Transform each triangle from

object spacedo world space

Lighting
4 Local space> Global space

Projection

Clipping

Scan Conversion

Image

Rasterizatiorg Graphics Pipeline
S =

Model Transformation : :
4 Computation is basedn angles

between light source, object and

Lighting camera (details later)

Projection
Viewer

Clipping

Scan Conversion

Image i Backfacesulling

Rasterizatiorg Graphics Pipeline

Model Transformation :
i Stepl: Transform triangles from

world spaceto camera space

Lighting (orthogonal transformation)
Projection W
z right
— A View
Clipping plane

Camera

: y
Scan Conversion
X World

Image

Rasterizatiorg Graphics Pipeline
S =

Model Transformation :
i Stepl: Transform triangles from

world spaceto camera space
(orthogonal transformation)

4 Camera is at(; 0, 0)
A X axis is right vector
A Y axis is up vector
i % | EAA A3 a6l O] | O
Scan Conversion (away from camera)

Lighting

Projection

Clipping

Image

Rasterizatiorg Graphics Pipeline

Model Transformation : : :
i Step2: Perspective Projection

Lighting i Depends on focal length (D)

(Xsylz) -Z y

Projection

D

‘>

— (0,0,0)

Clipping / |
(xD/z, yD/z) View

Plane

N

Scan Conversion

i Calculate Buffer
Image

Rasterizatiorg Graphics Pipeline
S =

Model Transformation : :
4 Remove triangles that fall outside

the clipping plane

i Determine boundaries of triangles
partially within the clipping plane

Lighting

Projection

Clipping

Scan Conversion

Image

Rasterizatiorg Graphics Pipeline

Model Transformation : : :
4 Drawing the triangles i18D

A Scanning horizontal scan lines for

Lighting _
each triangle

Projection

Clipping

o|Oofo4o|O|O|O|O
olo|o

--.

o o
ox‘pa{ooooo
olo|o|o|lo|lo|o|o]|o

Scan Conversion c of o &

Image

Rasterizatiorg Graphics Pipeline
S =

Model Transformation i i
Check Dduffer for intersections

Useprecalculatedvertex lighting

Interpolate lighting at each pixel
(smooth shading)

P!

P!

Lighting

P!

Projection

i Texture: Every vertex has a texture
coordinate (u, v)

ceaconversion 4 Interpolate texture coordinates to
find pixel color

Clipping

Image

Rasterizatiorg Parallel Processing

4 Triangles are independent except febuaffer
i Every step is calculated by a different part in the GPU

Transformation
Transformation
Transformation
Transformation
Transformation
Transformation

Transformation

X

Lighting
Lighting
Lighting
Lighting

Lighting

Lighting
X

Projection
Projection
Projection
Projection

Projection

X

Clipping
Clipping
Clipping

Clipping
X

Scan Conversio
Scan Conversio

Scan Conversio

X

Rasterizatiorg Parallel Processing
_

i Modern GPUs can dra@D0M polygonsper second

4 Suitable for real time applications (gaming, medical)
io.odzd g KIEG o 2dzil X

Shadows?

Reflections?

Refractions?

Antialiasin@

Indirect illumination?

lasing

lorg Antia

1IZzal

Raster

Ing examples

Allas

A

Rasterizatiorg Antialiasing
_

4 Aliasing examples

Aliasing Anti-aliased

Rasterizatiortg Antialiasing

Antialiasing Trying to reduce aliasing effects
Simple solution: Multisampling |
Only the last step changes! - -

During scan conversion, . =
samplesubpixelsand average B e o -

This Is equivalent to rendering a larger image

Observation: Rendering twice larger resolution costs
less then rendering twice sincescanlings efficient
YR 0KS NBad R2SayQi OKIFy3S

Rasterizatiorg Shadow Maps
_

AWSYRSNI FY AYIF3S TNEP sr‘ijgoféwémapfA
(the light is the camera)
A YSSLI aRSLIITKE FNRY fAIKG 27

light frustum

4 During image render:
Calculate position and depth on the
shadow mapfor eachpixelin the
final Image(not vertex!)

A If pixel depth >shadow map depth

shadow map

frustum

view

the pixel will not receive light from
this source

Rasterizatiorg Shadow Maps
_

4 This solution is not optimal

4 Shadow map resolution is not correlated to render
resolution¢ one shadow map pixel can span a lot of
rendered pixels!

Shadow aliasing
Only allows sharp shadows
Semitransparent objects

p

Various hacks and
complex solutions

p

p2]

True soft
shadows
(ray tracing)

Blurred hard_>
shadows
(shadow map)

Rasterizatiorg Reflection Maps

Not a true reflectiorc G OK S| { €

Precalculatereflection map from a point in the center
(can be replaced by an existing image)

The reflection map is mapped to a e
sphere or cube surrounding the scene/.
gen by

Each direction (vector) is mapped to _
a specific color according to where it | rey g <
hits the sphere / cube

During render, find the reflection color
according to theeflection vector Camera
of each pixel (not vertex!)

Rasterizatiorg Reflection Maps

Can produce fake reflections (no geometry needed)

Works well for:
Environment reflection (landscape, outdoors, big halls)
Distorted reflections
Weak reflections (wood, plastic)
Static scenes

Not so good for:
Reflections of near objects
Moving scenes
Mirror like objects
Optical effects

Rasterizatiorg Reflection Maps

i Examples: Reflection maps
Used to create the map

b -

Rasterizatiort Reflection Maps

_
i Examples: Ray traced reflections

Rasterizatiorg Reflection Maps
_

i Examples:

Reflection Map Ray Traced Reflection

Rasterizatiorg Refractions

There 1s no real solution i -

Refraction maps: same as reflection ———
maps but the angle is computed using
refractive index

Only simulates the first direction | “

change, not the second (that would

require ray tracing) -

Refraction is complex so fake refractions
are hard to notice v]

528ay Qi O2yaAARSNI Y i
static background Lo

Rasterizatiort Refractions

_
FhOKSNI aFIl 1Sé azftdziazyay
i Distort the background according tgpaecomputedmap
Aa. F1S¢é NIXré GNF OSR NBFNI OUA?2
(for static scenes)

Refraction Map Distort Background

Rasterizatiorg Indirect lHlumination
]

4 Indirect / global illumination means taking into account light
bouncing off other objects in the scene

Rasterizatiorg Indirect lllumination

Surprisingly, there are methods to approxim

R RARES . . OF AN\ N
global illumination using onirasterization / N
without ray tracing = >>>
0 H i-@Quhlity Global lllumination Rendering&& .
Using Rasterizatiod Toshiyddachisuka i AR —..
TheUniversitpf Tokyo
Main idea: Use a lot of famsterlzed [\ W

GNSYRSNARE TN~
angles to compute indirect
illumination at each point >

Rasterizations super quick
on GPU

Rasterizatiorg Indirect lllumination
EEEE

i Results:

Results of equal render time

Photon mapping Rasterize(GPU)
(ray tracing)

TRANSFORMATIONS

22 Mar. 2012

Transformations

We saw? types of transformations

Viewing transformation Can move, rotate and scale the
object but does not skew or distort objects

Perspective projectionThis special transformation
projects the3D space onto the image plane

How do we represent such transformations?

Homogeneous coordinates: Adding*adimension to the
3D space

exXg € 7?7 ? ?0eXg
Syl & o o U
e’u=e -~ ° ‘ue’u
ezu € 7?7 ? ?uezu
é U é 0é. U
vy & 7 7 “pely

Viewing Transformations

: Rotations
Types of transformations

exX'g ecosg -sing 0 Ogexg
Scale é. U €. ue, u
N ‘ \ &Y _eng cosg 0 Oueyu
eXg ea 0 O Ogexg ézu é 0 0O 1 Ouézu
e, u é€ ué, u é u é ue, u
éyl]:go b0 Oreyy evg e 0 0 0 Igelyg
223 €0 0c O£ZH eX'g ecosg O sing Ogexg
AV A 0 0 1°&81¢ e u é ué, u
evg &0 welu due 0 1 0 Oy
ezZu e sing 0 cosg Ouezu
é u € ué, u
Translate (move) Wl €0 o o 1%
eXg él 0 0O X,28Xg)]]
e, U @0 1 0 ué, u exg €l 0 0 Ogexg
OEY: YoreYy 6, U & no o U
A A NP Y5 QO cosg -sing 0:zy<
ézu é 0 1 zuézu e u=¢ ueu
e u é ué, u ézu € sing cosg Ouezu
avg & 0 0 1galy e u é ue, u
evg & 0 0 1gely

Viewing Transformations

Any combination of these matrices is a viewing
transformation matrix

Last coordinate is only for moving the pivot,
g Q A aldndwillnét Be used

How to find the transformation to a certain view
(could be camera, light, etc)? p back

z right
A View
plane

Camera

y @
i | X World

Viewing Transformations
_

i After the transformation:

i Eye position should be &b,(0, 0)
A X axis = right vector

A Y axis = up vector

i Z axis = back vector back
up

7 right
A View _

plane

Camera

y @
e | X World

Viewing Transformations
S =

4 Itis easy to construct the invert transformation,
from camera coordinates to world

Right Up Back Eye
Vector Vector Vector Position

x'| [RU. B E
v'| |R, U B, E
Z
w

U. B. E.
U B, E

v w w

-

S e =

R:
' _'R'H'"

Viewing Transformations
S =

i Examples:

(O, 0, 0) -> Eye Position Camera X Axis Origin + Right vector

% Now all we have to do is invert T (always invertible),
and we have our view transformation

