
INTRODUCTION TO

RENDERING TECHNIQUES
Yanir Kleiman 22 Mar. 2012

What is 3D Graphics?

 Why 3D?

 Draw one frame at a time

 X 24 frames per second

 150,000 frames for a feature film

 Realistic rendering is hard

 Camera movement is hard

 Interactive animation is hard

 Model only once

 Color / texture only once

 Realism / hyper realism

 A lot of reuse

 Computer time instead of artists time

 Can be interactive (games)

What is 3D Graphics?

 Artists workflow – in a nutshell
Create Model

Texture (Color) Rig (Bones)

Lighting Animation

Rendering

3D Model

Bones
Controls

Keyframes

Texture Files

Lights
Camera

Post Processing

What is Rendering?

3D Model Bones
Controls

Keyframes

Texture Files

Lights

Camera

???

Image

What is Rendering?

3D Model Bones
Controls Keyframes

Texture Files

Lights

Camera

???

Image

+ + = Geometry

Geometry

 Consider:
 Perspective

 Occlusion

 Color / Texture

 Lighting

 Shadows

 Reflections / Refractions

 Indirect illumination

 Sampling / Antialiasing

What is Rendering?

Texture Files
Lights

Camera ???

Image

Geometry

Two Approaches

 Start from geometry

 For each polygon / triangle:

 Is it visible?

 Where is it?

 What color is it?

 Start from pixels

 For each pixel in the final image:

 Which object is visible at this pixel?

 What color is it?

Rasterization

Ray Tracing

RASTERIZATION
Introduction to Rendering Techniques 22 Mar. 2012

Rasterization

 Basic idea: Calculate projection of each
triangle onto the 2D image space

 Extensively used and researched

 Optimized by GPU

 Strongly parallelized

 OpenGL

 DirectX

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Transform each triangle from
object space to world space

 Local space -> Global space

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Computation is based on angles
between light source, object and
camera (details later)

 Backface culling

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Step 1: Transform triangles from
world space to camera space
(orthogonal transformation)

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Step 1: Transform triangles from
world space to camera space
(orthogonal transformation)

 Camera is at (0, 0, 0)

 X axis is right vector

 Y axis is up vector

 Z axis is “back vector”
(away from camera)

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Step 2: Perspective Projection

 Depends on focal length (D)

 Calculate Z-Buffer

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Remove triangles that fall outside
the clipping plane

 Determine boundaries of triangles
partially within the clipping plane

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Drawing the triangles in 2D

 Scanning horizontal scan lines for
each triangle

Rasterization – Graphics Pipeline

Image

Model Transformation

Lighting

Projection

Clipping

Scan Conversion

 Check z-buffer for intersections

 Use precalculated vertex lighting

 Interpolate lighting at each pixel
(smooth shading)

 Texture: Every vertex has a texture
coordinate (u, v)

 Interpolate texture coordinates to
find pixel color

 Triangles are independent except for z-buffer

 Every step is calculated by a different part in the GPU

Rasterization – Parallel Processing

Transformation

Lighting

Projection

Clipping

Scan Conversion

Transformation

Lighting

Projection

Clipping

Scan Conversion

Transformation

Lighting

Projection

Clipping

Scan Conversion

Transformation

Lighting

Projection

Clipping

Transformation

Lighting

Projection

Transformation

Transformation Lighting

… … … … …

 Modern GPUs can draw 600M polygons per second

 Suitable for real time applications (gaming, medical)

 But what about…

 Shadows?

 Reflections?

 Refractions?

 Antialiasing?

 Indirect illumination?

Rasterization – Parallel Processing

 Aliasing examples

Rasterization – Antialiasing

 Aliasing examples

Rasterization – Antialiasing

Aliasing Anti-aliased

 Antialiasing: Trying to reduce aliasing effects

 Simple solution: Multisampling

 Only the last step changes!

 During scan conversion,
sample subpixels and average

 This is equivalent to rendering a larger image

 Observation: Rendering twice larger resolution costs
less then rendering twice – since scanline is efficient
and the rest doesn’t change!

Rasterization – Antialiasing

 Render an image from the light’s point of view
(the light is the camera)

 Keep “depth” from light of every pixel in the map

Rasterization – Shadow Maps

 During image render:
Calculate position and depth on the
shadow map for each pixel in the
final image (not vertex!)

 If pixel depth > shadow map depth
the pixel will not receive light from
this source

Shadow map

 This solution is not optimal

 Shadow map resolution is not correlated to render
resolution – one shadow map pixel can span a lot of
rendered pixels!

 Shadow aliasing

 Only allows sharp shadows

 Semi-transparent objects

Rasterization – Shadow Maps

Various hacks and
complex solutions

Blurred hard
shadows
(shadow map)

True soft
shadows
(ray tracing)

 Not a true reflection – a “cheat”

 Precalculate reflection map from a point in the center
(can be replaced by an existing image)

 The reflection map is mapped to a
sphere or cube surrounding the scene

 Each direction (vector) is mapped to
a specific color according to where it
hits the sphere / cube

 During render, find the reflection color
according to the reflection vector
of each pixel (not vertex!)

Rasterization – Reflection Maps

R

V
R

V

N

 Can produce fake reflections (no geometry needed)

 Works well for:

 Environment reflection (landscape, outdoors, big halls)

 Distorted reflections

 Weak reflections (wood, plastic)

 Static scenes

 Not so good for:

 Reflections of near objects

 Moving scenes

 Mirror like objects

 Optical effects

Rasterization – Reflection Maps

 Examples: Reflection maps

Rasterization – Reflection Maps

Used to create the map

 Examples: Ray traced reflections

Rasterization – Reflection Maps

 Examples:

Rasterization – Reflection Maps

Reflection Map Ray Traced Reflection

 There is no real solution

 Refraction maps: same as reflection
maps but the angle is computed using
refractive index

 Only simulates the first direction
change, not the second (that would
require ray tracing)

 Refraction is complex so fake refractions
are hard to notice

 Doesn’t consider near objects, only
static background

Rasterization – Refractions

 Other “fake” solutions:

 Distort the background according to a precomputed map

 “Bake” ray traced refractions into a texture file
(for static scenes)

Rasterization – Refractions

Refraction Map Distort Background

 Indirect / global illumination means taking into account light
bouncing off other objects in the scene

Rasterization – Indirect Illumination

 Surprisingly, there are methods to approximate
global illumination using only rasterization,
without ray tracing

 “High-Quality Global Illumination Rendering

Using Rasterization”, Toshiya Hachisuka,

The University of Tokyo

 Main idea: Use a lot of fast rasterized
“renders” from different
angles to compute indirect
illumination at each point

 Rasterization is super quick
on GPU

Rasterization – Indirect Illumination

 Results:

Rasterization – Indirect Illumination

Photon mapping
(ray tracing)

Rasterizer (GPU)

Results of equal render time

TRANSFORMATIONS
Introduction to Rendering Techniques 22 Mar. 2012

 We saw 2 types of transformations

 Viewing transformation: Can move, rotate and scale the
object but does not skew or distort objects

 Perspective projection: This special transformation
projects the 3D space onto the image plane

 How do we represent such transformations?

 Homogeneous coordinates: Adding a 4th dimension to the
3D space

Transformations

1????

????

????

????

'

'

'

'

z

y

x

w

z

y

x

 Types of transformations

Viewing Transformations

11000

000

000

000

'

'

'

'

z

y

x

c

b

a

w

z

y

x

Scale

11000

100

010

001

'

'

'

'

0

0

0

z

y

x

z

y

x

w

z

y

x

Translate (move)

11000

0cossin0

0sincos0

0001

'

'

'

'

z

y

x

w

z

y

x

Rotations

11000

0cos0sin

0010

0sin0cos

'

'

'

'

z

y

x

w

z

y

x

11000

0100

00cossin

00sincos

'

'

'

'

z

y

x

w

z

y

x

 Any combination of these matrices is a viewing
transformation matrix

 Last coordinate is only for moving the pivot,
w’ is always 1 and will not be used

 How to find the transformation to a certain view
(could be camera, light, etc)?

Viewing Transformations

 After the transformation:

 Eye position should be at (0, 0, 0)

 X axis = right vector

 Y axis = up vector

 Z axis = back vector

Viewing Transformations

 It is easy to construct the invert transformation,
from camera coordinates to world

Viewing Transformations

Right
Vector

Up
Vector

Back
Vector

Eye
Position

 Examples:

 Now all we have to do is invert T (always invertible),
and we have our view transformation

Viewing Transformations

(0, 0, 0) -> Eye Position Camera X Axis -> Origin + Right vector

 A projection transform points from higher dimension to a
lower dimension, in this case 3D -> 2D

 The most simple projection is orthographic

 Simply remove the Z axis after
the viewing transformation

Projections

 Perspective projections map points onto the view plane
toward the center of projection (the viewer)

 Since the viewer is at (0, 0, 0) the math is very simple

 D is called the focal length

 x’ = x*(D/z)

 y‘ = y*(D/z)

Perspective Projections

 Matrix form of the perspective projection using
homogeneous coordinates

 Singular matrix – projection is many to one

 D = infinity gives an orthographic projection

 Points on the viewing plane z = D do not move

 Points at z = 0 are not allowed – usually by using a clipping
plane at z = ε

Perspective Projections

d 0 0 0

0 d 0 0

0 0 d 0

0 0 1 0

x

y

z

1

 dx dy dz z [] d

z
x
d

z
y d

Divide by 4th coordinate

(the “w” coordinate)

LIGHTING
Introduction to Rendering Techniques 22 Mar. 2012

RAY TRACING
Introduction to Rendering Techniques 22 Mar. 2012

Ray Tracing

 Basic idea: Shoot a “visibility ray” from center of
projection (camera) through each pixel in the
image and find out where it hits

 This is actually backward tracing
– instead of tracing rays from
the light source, we trace the
rays from the viewer back to
the light source

Ray Tracing

 Backward tracing is called Ray Casting

 Simple to implement

 For each ray find intersections
with every polygon – slow…

 Easy to implement realistic
lighting, shadows, reflections
and refractions, and indirect
illumination

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

 Find first (closest) surface that intersects the ray

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

 Find first (closest) surface that intersects the ray

 Compute color based on surface radiance

Ray Tracing

 For each sample (pixel or subpixel):

 Construct a ray from eye position through viewing
plane

 Find first (closest) surface that intersects the ray

 Compute color based on surface radiance

 Computing radiance requires casting rays toward
the light source, reflected and refracted objects
and recursive illumination rays from reflected and
refracted objects

Ray Tracing – Casting Rays

 Construct a ray through viewing plane:

Ray Tracing – Casting Rays

 Construct a ray through viewing plane:

 2D Example:

For every i between (–width/2) and (width/2)

Ray Tracing - Intersections

 Finding intersections

 Intersecting spheres

 Intersecting triangles (polygons)

 Intersecting other primitives

 Finding the closest intersection in a group
of objects / all scene

Ray Tracing - Intersections

 Finding intersections with a sphere:
Algebraic method

Solve for t

Ray Tracing - Intersections

 Finding intersections with a sphere:
Geometric method

Solve for t

Ray Tracing - Intersections

 Finding intersections with a sphere:
Calculating normal

 We will need the normal to compute lighting,
reflection and refractions

Ray Tracing - Intersections

 Finding intersections with a triangle:

 Step 1: find intersection with the plane

 Step 2: check if point on plane is inside triangle

 Many ways to solve…

Ray Tracing - Intersections

 Step 1: find intersection with the plane:
Algebraic method

Not necessary

parallel to ray…

Ray Tracing - Intersections

 Step 2: Check if point is inside triangle
Algebraic method

If all 3 succeed the point

is inside the triangle

Ray Tracing - Intersections

 Step 2: Check if point is inside triangle
Paramteric method

Using dot products
(P-T1) •(T2-T1) and (P-T1) •(T3-T1)

Ray Tracing - Intersections

 Ray tracing can support other primitives

 Cone, Cylinder, Ellipsoid: similar to sphere

 Convex Polygon:
Point in Polygon is a basic problem in computational
geometry and has algebraic solutions

 Concave Polygon:
Same plane intersection
More complex point-in-polygon test

 Alternatively, divide the polygon to triangles and check
each triangle

Ray Tracing - Intersections

 Find closest intersection:

 Simple solution is go over each polygon in the
scene and test for intersections

 We will see optimizations for this later… (maybe)

 We have an intersection – what now?

 Computing lighting can be similar to the process
when rasterizing (using normals)

 This is not for a vertex but for the intersection point

 For better accuracy: ray trace lighting

 At each intersection point cast
a ray towards every light source

 Provides lighting, shadows,
reflections, refractions and
indirect illumination

 Easy to compute soft shadows,
area lights

Ray Tracing – Computing Color

Ray Tracing – Shadows

 Shadow term tell which light source are blocked

 SL = 0 if ray is blocked,
SL = 1 otherwise

 Direct illumination is only
calculated for unblocked
lights

 Illumination formula:

Shadow term

Ray Tracing – Soft Shadows

 Why are real life shadows soft?

 Because light source is not truly a point light

penumbra

penumbra

umbra

Finite Light source Point Light source

Ray Tracing – Soft Shadows

 Simulate the area of a light source by casting
several (random) rays from the surface to a small
distance around the light source

Point light source: The surface is completely lighted by

the light source.

Surface Surface

Finite light source: 3/5 of the rays reach the light

source. The surface is partially lighted.

Ray Tracing – Reflection / Refraction

 Recursive ray tracing: Casting rays for reflections
and refractions

 For every point there are
exact directions to sample
reflection and refraction
(calculated from normal)

 Illumination formula:

Ray Tracing – Reflection / Refraction

 Cast a reflection ray

 Compute color at the hit
point (using ray tracing again!)

 Multiply by reflection term
of the material

 To avoid aliasing sample
several rays in the required
direction and average

Ray Tracing – Reflection / Refraction

 … And the same for refractions

 Last coefficient is transparency

 KT = 1 for translucent objects
KT = 0 for opaque objects

 Consider refractive index
of object

 Again use several rays to
avoid aliasing

Ray Tracing – Reflection / Refraction

 Ray tree represents recursive illumination computation

Ray Tracing – Reflection / Refraction

 Number of rays grows exponentially for each level!

 Common practice: limit maximum depth

 After 2-3 bouncing reflections,
the cost is high and there
is little benefit

Ray Tracing – Antialiasing

Ray Tracing – Antialiasing

 Aliasing in ray tracing can be severe, since only one
ray is casted per pixel

 The computation is based on the size of the pixels,
not on the size of the actual polygons which can be
relatively small

 Supersampling: Instead of casting one ray per pixel,
cast several per pixel

 Since this is done at the first step, it is as inefficient
as possible (running the whole process again)

Ray Tracing – Indirect Illumination

 What we’ve seen so far is only an approximation of
real lighting: The rays are only casted directly
towards the light

 Use reflections, but not indirect lighting

 Global illumination: A method to approximate
indirect lighting from every direction

Ray Tracing – Indirect Illumination

 Example:

 Top image uses direct lighting only

 Bottom image uses indirect
illumination

 Notice the ground is “reflected”
naturally on the character

 Not because of reflective material
but because of lighting contribution

Ray Tracing – Indirect Illumination

 Monte-Carlo path tracing

 Step 1: Cast regular rays through each pixel in
viewing plane

 Step 2: Cast random rays from visible point

 Step 3: Recurse

 Very expensive!

Ray Tracing – Indirect Illumination

 Monte-Carlo path tracing

1 random ray per pixel
no recursion

16 random rays per pixel
3 levels of recursion

Ray Tracing – Indirect Illumination

 Monte-Carlo path tracing

 Need a lot of rays and
recursions to look good

 Random rays cause
flickering problems

 Computation time
measured in hours!

 Common practice:
Bake global illumination map
of one frame and use it for all
frames

64 random rays per pixel
3 levels of recursion

Ray Tracing - Ambient Occlusion

 Ambient Occlusion is a simpler form of global illumination

 Cast random rays from visible point and calculate distance
to the nearest object

 The more rays hit near
objects, the point is
occluded and therefore
darker

 A cheat - “make nice”
button

 Everything looks better
with ambient occlusion!

Ray Tracing - Ambient Occlusion

 Good for contact shadows

 Examples:

Summary

 Fast renderer

 Optimized for GPUs

 Antialiasing is easy and fast

 Scales well for larger images

 Parallel computing possible on GPU

 Shadows are hard to compute
and inaccurate

 Relections and refractions are a hack

 Indirect illumination complex but
possible (rarely used in practice)

Rasterization Ray Tracing
 Slow renderer - only today we see

some real time ray tracing possible

 Not optimized for GPUs

 Antialiasing is expensive

 Doesn’t scale so well

 Parallel computing is easy

 Shadows are easy including sofy
shadows

 Relections and refractions are easy

 Indirect illumination complex but
possible (rarely used in practice)

What Artists Do

 In practice: Both are used side by side

 Games:
Real time, mostly rasterized except for special effects

 Movies / Animation:

 Not real time, but time = money
Usually a mix of rasterization and ray traced
reflections / refractions.

 Global illumination is sometimes used but usually
faked using direct lights

What Artists Do

 Common practice: Use render layers and composite
later using a video editing program (like After Effects)

 Render layers:

 Color (radiance)

 Reflections

 Refractions

 Depth map

 Ambient Occlusion

 Makes it easy to make fast changes later without
rendering again

THAT’S ALL, FOLKS!
Introduction to Rendering Techniques 22 Mar. 2012

