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ABSTRACT
Highly expressive declarative languages, such as Datalog, are
now commonly used to model the operational logic of data-
intensive applications. The typical complexity of such Dat-
alog programs, and the large volume of data that they pro-
cess, call for result explanation. Results may be explained
through the tracking and presentation of data provenance,
and here we focus on a detailed form of provenance (how-
provenance), defining it as the set of derivation trees of a
given fact. While informative, the size of such full prove-
nance information is typically too large and complex (even
when compactly represented) to allow displaying it to the
user. To this end, we propose a novel top-k query language
for querying Datalog provenance, supporting selection crite-
ria based on tree patterns and ranking based on the rules and
database facts used in derivation. We propose an efficient
algorithm based on (1) instrumenting the Datalog program
so that, upon evaluation, it generates only relevant prove-
nance, and (2) efficient top-k (relevant) provenance gener-
ation, combined with bottom-up Datalog evaluation. The
algorithm computes in polynomial data complexity a com-
pact representation of the top-k trees which may then be
explicitly constructed in linear time with respect to their
size. We further experimentally study the algorithm per-
formance, showing its scalability even for complex Datalog
programs where full provenance tracking is infeasible.

1. INTRODUCTION
Many real-life applications rely on an underlying database

in their operation. In different domains, such as declarative
networking [40], social networks [49], and information ex-
traction [23], it has recently been proposed to use datalog
for the modeling of such applications.

Consider, for example, AMIE [23], a system for mining
logical rules from Knowledge Bases (KBs), based on ob-
served correlations in the data. After being mined, rules
are then treated as a datalog program (technically, a syntax
of Inductive Logic Programming is used there) which may
be evaluated with respect to a KB of facts (e.g. YAGO
[53]) that, in turn, were directly extracted from sources
such as Wikipedia. This allows addressing incompleteness
of KBs, gradually deriving additional new facts and intro-
ducing them to the KB.

Datalog programs capturing the logic of real-life applica-
tions are typically quite complex, with many, possibly recur-
sive, rules and an underlying large-scale database. In such
complex systems, accompanying derived facts with prove-
nance information, i.e. an explanation of the ways they were

derived, is of great importance. Such provenance informa-
tion may provide valuable insight into the system’s behavior
and output data, useful both for the application developers
and their users. For instance, AMIE rules are highly com-
plex and include many instances of recursion and mutual
recursion. Furthermore, since AMIE rules are automatically
mined, there is an inherent uncertainty with respect to their
validity. Indeed, many rules mined in such a way are not
universally valid, but are nevertheless very useful (and used
in practice), since they contribute to a higher recall of facts.
When viewing a derived fact, it is thus essential to also view
an explanation of the process of its derivation.

A conceptual question in this respect is what constitutes
a “good” explanation. An approach advocated by previous
work is to define provenance by looking at derivations of
facts, and distinguishing between alternative and joint use of
facts in such derivations. In the context of datalog programs,
a notion of explanations that follows this approach is based
on derivation trees [29]. A derivation tree of an intensional
fact t, defined with respect to a datalog program and an
extensional database, completely specifies the rules instan-
tiations and intermediate facts jointly used in the gradual
process of deriving t. Derivation trees are particularly ap-
pealing as explanations, since not only they include the facts
and rules that support a given fact but they also describe
how they support it, providing insight on the structure of
inference. A single fact may have multiple derivation trees
(alternative derivations), and the set of all such trees (each
serving as “alternative explanation”) is the fact provenance.
Defining provenance as the set of possible derivation trees
leads to a challenge: the number of possible derivation trees
for a given program and database may be extremely large
and even infinite in presence of recursion in the program,
and may be prohibitively large even in absence of recursion.

We next outline our approach and main contributions in
addressing this problem, as well as the challenges that arise
in this context.

Novel query language for datalog provenance. We ob-
serve that while full provenance tracking for datalog may be
costly or even infeasible, it is often the case that only parts
of the provenance are of interest for analysis purposes. To
this end we develop a query language called selPQL that al-
lows analysts to specify which derivation trees are of interest
to them. A selPQL includes a derivation tree pattern, used
to specify the structure of derivation trees that are of inter-
est. The labels of nodes in the derivation tree pattern corre-
spond to facts (possibly with wildcards replacing constants),



and edges may be regular or “transitive”, matching edges or
paths in derivation trees, respectively. A simple use of the
patterns is to limit provenance tracking to particular facts
of interest; but the language is rich enough to also allows to
specify complex features of derivations that are of interest.
For instance, in the AMIE example, by viewing derivations
that involve integration of data from different sources (e.g.
ontologies), one may gain insight into the usefulness of the
integration or reliability of obtained facts. From a different
perspective, when one ontology is less trustworthy than the
other, the application owner may wish to see explanations
based only on the more reliable source; etc.

Importantly, and since the number of qualifying derivation
trees may still be very large (and in general even infinite),
we support the retrieval of a ranked list of top-k qualifying
trees for each fact of interest. To this end, we provide simple
means to the analyst to affect the rank of results, by assign-
ing weights to the different facts and rules. These weights
are aggregated to form the weight of a tree (our solution
supports a rich class of aggregation functions).

Novel algorithm for selective provenance tracking. We
then turn to the problem of efficient provenance tracking
for datalog based on a selPQL query. We observe (and ex-
perimentally prove) that materializing full provenance (or
alternatively grounding of the datalog program with respect
to the database), and then querying the provenance, is a
solution that fails to scale. On the other hand, discard-
ing partial derivations “on-the-fly” is also challenging, since
their relevance to the answer set may depend on consequent
derivation steps (as well as on other derivations which may
or may not be ranked higher). Our solution then consists of
two main steps:

1. Static (i.e. independent of the underlying database)
“instrumentation” of the datalog program P with re-
spect to the selPQL query (in fact, its tree pattern
component p). We introduce a precise definition of
the output of this instrumentation (see proposition
4.2), which is a new datalog program Pp that “guide”
provenance tracking based on p. Intuitively, Pp sat-
isfies that for every database D, the derivation trees
induced by P and D are also induced (up to renaming
of relations) by Pp and D, and crucially the trees that
follow the pattern p are exactly those that involve par-
ticularly marked relations. The fact that a program
satisfying this property (for every database) can be
effectively computed is non-trivial, and a major chal-
lenge here is that P may involve recursion. Our novel
solution is based on encoding, using datalog rules, a
“require/guarantee” relation for satisfaction of parts of
the tree pattern. Namely, relation names are designed
for each pair of (relation of P , part of p), and corre-
sponding rules whose body relations together “guar-
antee” satisfaction of pattern parts.

2. Bottom-up evaluation of Pp w.r.t. an underlying database
D while generating a compact representation of the
top-k relevant trees (of P ) for each (relevant) out-
put tuple. Our solution here is again in two steps.
The first involves computing the top-1 tree side-by-side
with bottom-up datalog evaluation. The basic idea
here is somewhat inspired by prior work on comput-
ing the best derivation weight for Context Free Gram-
mars, but requires significant efforts to (1) account for

datalog and (2) generate a compact representation of
the tree itself (whose size may be prohibitively large)
rather than just its weight; see section 7. We fur-
ther design a novel algorithm for computing the top-k
derivation trees, by exploring modifications of the top-
1 tree. Subtleties in doing that efficiently include (1)
the avoidance of generating multiple trees that are the
same up to renaming (i.e. correspond to a single tree
of P ); and (2) avoiding materialization of trees.

Finally, a final step is the materialization of (only) the
top-k trees based on the compact representation.

Complexity analysis and experimental study. We an-
alyze the performance of our evaluation algorithm from a
theoretical perspective, showing that the complexity of com-
puting a compact representation of selected derivation trees
is polynomial in the input database size, with the exponent
depending on the size of the datalog program and the selPQL
query; the enumeration of trees from this compact represen-
tation is then linear in the output size (size of top-k trees).
We have further implemented our solution, and have ex-
perimented with different highly complex and recursive pro-
grams. Our experimental results indicate the effectiveness
of our solution even for complex programs and large-scale
data where full provenance tracking is infeasible.

2. PRELIMINARIES
We provide necessary preliminaries on Datalog and the

provenance of output data computed by Datalog programs.

2.1 Datalog
We assume that the reader is familiar with standard Dat-

alog concepts [1]. Here we review the terminology and we
illustrate it with an example.

Definition 2.1. [1] A Datalog program is a finite set of
Datalog rules. A Datalog rule is an expression of the form:

R1(u1) : −R2(u2)...Rn(un)

where Ri’s are relation names, and u1, ...un are sets of vari-
ables with appropriate arities. R1(u1) is called the rule’s
head, and R2(u2)...Rn(un) is called the rule’s body. Ev-
ery variable occurring in u1 must occur in at least one of
u2, ...un.

We make the distinction between extensional (i.e. occur-
ring in the input database) and intensional (i.e. defined by
rules) facts and relations (and relation instances), using edb
for the former and idb for the latter.

A Datalog program is then a mapping from edb instances
to idb instances, whose semantics may be defined via the no-
tion of the consequence operator. First, the immediate con-
sequence operator induced by a program P maps a database
instance D to an instance D

⋃
{A} if there exists an instan-

tiation of some rule in P (i.e. a consistent replacement of
variables occurring in the rule with constants) such that the
body of the instantiated rule includes only atoms in D and
the head of the instantiated rule is A. Then the consequence
operator is defined as the transitive closure of the immediate
consequence operator, i.e. the fixpoint of the repeated appli-
cation of the immediate consequence operator (this fixpoint
is guaranteed to uniquely exist). Finally, given a database



P Datalog program
r Datalog rule
β Body of a rule
D Database
t Fact

P (D) Intensional Database
R idb relation
T edb relation
τ Derivation tree

trees(P,D, t) Derivation trees of t with respect to P,D
trees(P,D) All derivation trees with respect to P,D

p Pattern
v Pattern node
p0 Root of pattern p

p(P,D) Derivation trees in trees(P,D) matching p
Pp Instrumented program (P w.r.t. p)

Rv, Rv
t

Annotated relation

Table 1: Notations Table

D and a program P we will use P (D) (termed the “pro-
gram result”) to denote the restriction to idb relations of
the database instance obtained by applying to D the conse-
quence operator induced by P .

Example 2.2. AMIE [23] is a system for the automatic
inference of rules, by identifying “patterns” in the KB. Tak-
ing a database perspective, the rules form a Datalog pro-
gram and are evaluated with respect to a database instance
(the incomplete KB) to form an idb instance (the completed
KB). Among many others, the idb instance includes a binary
relation dealsWith (an edb “copy” of this relation appears
as well, with a rule to copy its contents that is omitted for
simplification), including information on international trade
relations. For instance, AMIE has “learned” the following
rule, intuitively specifying that dealsWith is a symmetric
relation (ignore for now the numbers in parentheses).
r1(0.8) dealsWith(a, b):- dealsWith(b, a)

Many other rules with the dealsWith relation occurring in
their head were mined by AMIE, including some additional
rules whose validity is questionable: (imports and exports
are additional binary edb relations)

r2(0.5) dealsWith(a, b):- imports(a, c), exports(b, c)
r3(0.7) dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

The rules r1, r2, r3 form a Datalog program whose evalu-
ation (with respect to the instance presented in Table 2; the
presented table dealsWith is its edb copy) follows the imme-
diate consequence operator until convergence. For instance,
using rule r2 we may assign Cuba, France, wine to a, b, c
respectively, obtaining the new idb fact
dealsWith(Cuba, France). Then using rule r1 we obtain
the idb fact dealsWith(France, Cuba), etc., until no new
fact may be added in such a way.

2.2 Datalog Provenance
It is common to characterize the process of Datalog eval-

uation through the notion of derivation trees. A derivation
tree of a fact t with respect to a Datalog program and a
Database instance D is a tree whose nodes are labeled by
facts. The root is labeled by t, leaves are labeled by edb facts
from D, and internal nodes by idb facts. The tree structure

exports
Country Product
France wine
Cuba tobacco
Cuba coffee beans

imports
Country Product
Cuba wine
Mexico wine
Mexico tobacco
France tobacco

dealsWith
Countrya Countryb
Mexico France

Table 2: Database

Figure 1: Derivation Trees

is dictated by the consequence operator of the Datalog pro-
gram: the labels set of the children of node n corresponds to
an instantiation (via an assignment) of a body of some rule
r, such that the label of n is the corresponding instantiation
of r’s head (we refer to this as an occurrence of r in the tree).
Given a Datalog program P and a Database D, we denote
by trees(P,D, t) the set of all possible derivation trees for
t ∈ P (D), and define trees(P,D) =

⋃
t∈P (D) trees(P,D, t).

A single derivation tree is quite simple to understand and
is even natural to visualize. However there may be infinitely
many (and exponentially many in absence of recursion in P )
possible derivation trees of a given fact, and so it is infeasible
to materialize trees(P,D).

Example 2.3. Three derivation trees for the fact
t = dealsWith(Cuba, France), based on the program given
in Example 2.2 and the example Database given in Table 2,
are presented in Figure 1. Already in the small-scale demon-
strated example there are infinitely many derivation trees for
t (due to the presence of recursion in rules); for the full pro-
gram and database many trees are substantially different in
nature (based on different rules and/or rules instantiated
and combined in different ways).

3. QUERYING DATALOG PROVENANCE
We introduce a query language for derivation trees, based

on two facets: (1) boolean criteria describing derivations of
interest, and (2) a ranking function for derivations.

3.1 Derivation Tree Patterns
Recalling our definition of provenance as a possibly infinite

set of trees, we next introduce the notion of derivation tree
patterns.

Definition 3.1. A derivation tree pattern is a node-labeled
tree. Labels are either wildcards (*), or edb/idb facts, in
which wildcards may appear instead of some constants. Edges



(a) Pattern p1 (b) Pattern p2 (c) Pattern p3

(d) Pattern p4

Figure 2: Tree Pattern Examples

may be marked as regular (/) or transitive (//), and in the
latter case may be matched to a path of any length.

Example 3.2. Consider a scenario where an analyst is
particularly interested in derivations of facts dealsWith(Cuba, ∗)
for some constant replacing the wildcard. All explanations
for such facts may be requested using the pattern in Figure
2a. The pattern in Figure 2b queries the structure of deriva-
tions, and specifies that the analyst is interested in deriva-
tions of such facts that are (directly or indirectly) based on
the fact that Cuba exports tobacco. The pattern in Fig. 2c
is relevant when (omitted) rules perform integration of two
ontologies (YAGO and DBPedia); we use ∗ YAGO() and
∗ DBP() 1 to match the set of all relations from YAGO and
DBPedia respectively; then the pattern specifies interest in
derivations of facts dealsWith(Cuba, ∗) that are based on
integrated data from both sources, in order to determine the
usefulness of the integration in this context.

We next define the semantics of derivation tree patterns,
i.e. the notion of matching a given derivation tree; the se-
mantics is in the spirit of XML query languages with some
technical differences (see below).

Definition 3.3. Given a derivation tree τ and a deriva-
tion tree pattern p, a match of p in τ is a mapping h from
the nodes of p to nodes of τ , and from the regular (transi-
tive) edges of p to edges (resp. paths) of τ such that (1) the
root of p is mapped to the root of τ , (2) a node labeled by
a label l which does not contain wildcards, is mapped to a
node labeled by l, (3) a node labeled by a label l which in-
cludes wildcards is mapped to a node labeled by l′, where l′

may be obtained from l by replacing wildcards by constants,
(4) a node labeled by a wildcard can be mapped to any node
in τ . (5) If n,m are nodes of p and e is the directed (tran-
sitive) edge from m to n, then h(e) is an edge (path) in τ
from h(m) to h(n) and (6) for any two edges e1 and e2 in
p, their corresponding edge/path in τ are disjoint.

Note. In the tree pattern semantics, the root of the tree pat-
tern p is mapped to the root of the derivation tree τ to allow
specifying interest in provenance of particular facts, or facts
belonging to particular relations. A semantics looking for a
match of p in a sub-tree of τ can easily be simulated through
the use of wildcard-labeled root connected by a transitive

1This requires a slight change of the definition of patterns,
which is easy to support, to allow * in relation names

edge to p. The constraint on mapped edges/paths to be
disjoint is quite natural here and also simplifies the presen-
tation of algorithms; however it may also be relaxed, by
considering all possible orderings and specifying them as a
disjunction of patterns.

We next define the semantics of a pattern with respect to
a Datalog instance.

Definition 3.4. Given a (finite or infinite) set S of deriva-
tion trees and a derivation tree pattern p, we define p(S)
(“the result of evaluating p over S”) to be the (finite or in-
finite) subset S′ consisting of the trees in S for which there
exists a match of p.

Given a pattern p, a Datalog program P and an exten-
sional database D, we use p(P,D) as a shorthand for p(trees(P,D)).

Example 3.5. Consider the Datalog program P given in
Example 2.2, the Database instance given in Table 2 and
the tree pattern p2 in Figure 2b. The set p2(P,D) includes
infinitely many derivation trees, including in particular τ2
and τ3 shown in Figure 1.

The boolean operators ¬, ∨ and ∧ can also be applied to
tree patterns, with the expected semantics, i.e. ¬p1 matches
every tree where there is no match of p1, and p1∨p2 (p1∧p2)
matches trees that match p1 or (resp. and) p2. For instance,
the pattern p4 in Figure 2d specifies that we wish to view
derivations that are based solely on YAGO and do not use
DBPedia fact.

3.2 Ranking Derivations
Even when restricting attention to derivation trees that

match the pattern, their number may be too large or even
infinite, as exemplified above. To this end, we propose to
rank different derivations based on the rules and facts used
in them. We propose to model ranking of derivations by
associating weights with the input database facts as well as
the individual rules, and aggregating these weights.

We consider weights that are elements of an ordered monoid,
namely a structure (M,+, 0, <) such that M is a set of ele-
ments, + is a binary operation which we require to be com-
mutative, associative, and monotone non-increasing in each
argument, i.e. x+ y ≤ min(x, y) (with respect to the struc-
ture’s order). 0 is the neutral value with respect to +, and
< is a total order on M .

Definition 3.6. A weight-aware Datalog instance is a
triple (P,D,w) where w, the weight function, maps rules in
P as well as tuples in D to elements of an ordered monoid
(M,+, 0, <). The monoid operation is referred to as the
aggregation function.

Example 3.7. To rank derivation trees by their length
we use the monoid (Z−,+, 0, <), and the weighting func-
tion w1 that maps all rules to weight −1; then the weight
of a derivation is the negative of its length. Another way
to rank the derivation trees is to use confidence values as-
sociated with rules. In AMIE such confidence values re-
flect the rule’s support in underlying data. Here we use or-
dered monoid ([0, 1], ·, 1, <) and assign e.g. to the three rules
in our example, the weights w2(r1) = 0.8, w2(r2) = 0.5,
w2(r3) = 0.7 (this is the weight function we will use in sub-
sequent examples). Similarly, fact weights may reflect their
confidence (in this simplified example we assign the neutral 1



to all facts). Another alternative is to use min as aggregate
function, which leads to ranking derivations based on their
“weakest” rule/fact, etc.

We may then define the weight of a derivation tree as the
result of aggregating the weights of facts and derivation rules
used in the tree.

Definition 3.8. The weight of a derivation tree τ with
respect to a weight-aware Datalog instance, denoted, abusing
notation, as w(τ), is defined as

∑
r w(r)+

∑
t w(t) where the

sums (performed in the weights monoid) range over all rules
and tuples occurrences in τ .

Example 3.9. Using the weight function w2 defined by
the confidence value associated with rules in the above ex-
ample and aggregating via multiplication, the weights of ex-
emplified trees are w2(τ1) = 0.5, w2(τ2) = 0.5 ·0.8 = 0.4 and
w2(τ3) = 0.7 · 0.8 · 0.5 = 0.28.

Last, we may define top-k queries and their results.

Definition 3.10. Given a pattern p, a weight-aware Dat-
alog instance (P,D,w) and a natural number k, we use top−
k(p, P,D,w) to denote the set containing for each fact t in
P (D) the k derivation trees of t that are of highest weight2

out of those in p(P,D). We use TOP-K to denote the prob-
lem of finding top− k(p, P,D,w) given the above input.

Example 3.11. The top-2 results for the fact
dealWith(Cuba, France) with the weighting function w2 de-
fined in Example 3.7 and the pattern given in Figure 2b are
τ2 and τ3 in Figure 1 with weights of 0.4 and 0.28 respec-
tively. Note that τ1 does not match the pattern.

We propose a two step algorithm for solving TOP-K as de-
picted in Figure 3. The first is based on a static analysis of
the program (i.e., and crucially, without considering the un-
derlying database) with respect to the pattern. The output
of this step is an “instrumented” program, with relations
and rules that “guide” provenance tracking so that only rel-
evant provenance, according to the pattern, is tracked. The
second step is then evaluation of the instrumented program
with respect to the underlying Database, along side with
computing top-k qualifying derivation trees for each fact.
The algorithm, detailed in the following sections, will serve
as proof for the following theorem.

Theorem 3.12. For any Program P , pattern p and database
D, we can compute the top-k derivation trees for each fact

matching the root of p in O(k3 · |D|O(|P |w(p)) + |out|) time
where w(p) is the pattern width (i.e. the maximal number of
children of a node in p) and |out| is the output size.

The worst case time complexity is polynomial in the database
size with exponential dependency on the program size (which
is typically much smaller), and double exponential in the
pattern width (which is typically even smaller), and linear
in the output size. We note that the output size (even the
size of a single derivation tree) may be exponential in the
Database size (though in practice top-k trees are typically
small); the linear dependency on the output size is of course
optimal in this respect.

2Ties are decided arbitrarily.
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Figure 3: High-level Framework

4. PROGRAM INSTRUMENTATION
We now present the first step of the algorithm for solv-

ing TOP-K, which is instrumenting the program with respect
to the pattern. We first present an algorithm for a single
pattern instrumentation, and then generalize it to Boolean
combinations of patterns.

4.1 A single pattern
We first define relation names for the output program,

and then its rules.

input : Weighted Program P and a pattern p
output: “Instrumented” Program Pp

1 foreach pattern node v ∈ p do
2 Let v0, . . . , vn be the immediate children of v;
3 foreach rule [R(x0, ..., xm) : −β] in P do
4 if R(x0, ..., xm) locally-matches v through

partial assignment A then
5 Let (y0, ..., ym) := A(x0, ..., xm);
6 if v is a leaf then
7 Add [Rv(y0, ..., ym) : −A(β)] to Pp;

8 end
9 else

10 foreach β′ ∈ ex(A(β), {v0, ..., vn}) do
11 Add [Rv(y0, ..., ym) : −β′] to Pp;
12 end

13 end

14 end
15 if v is a transitive child then
16 foreach β′ ∈ tr − ex(β, v) do

17 Add [Rv
t

(x0, ..., xm) : −β′] to Pp;
18 end

19 end

20 end
21 foreach rule [Rv(y0, ....ym) : −β] added to Pp do

22 Add [Rv
t

(y0, ....ym) : −β] to Pp;

23 end
24 HandleEDB ();

25 end
26 Clean failed rules in Pp ;
27 return the union of rules in P and Pp;

Algorithm 1: Program instrumentation according
to pattern

New relation names. We say that a pattern node v is a
transitive child if it is connected with a transitive edge to its
parent. For every relation name R occurring in the program
and for every pattern node v we introduce a relation name



Rv. If v is a transitive child we further introduce a rela-
tion name Rv

t

. Intuitively, derivations for facts in Rv must

match the sub-pattern rooted by v; derivations for Rv
t

must
include a sub-tree that matches the sub-pattern rooted by
v. These will be enforced by the generated rules, as follows.

New rules. We start with some notations. Let v be a
pattern node, let v0, ..., vn be the immediate children of v.
Given an atom (in the program) atom, we say that it locally
matches v if the label of v is atom, or the label of v may
be obtained from atom through an assignment A mapping
variables of atom to constants or wildcards (if such assign-
ment exists, it is unique), and in this case we augment A so
that a variable x mapped to wildcard, is in fact mapped to
itself (Intuitively, this is the required transformation to the
atom so that a match with the pattern node is guaranteed).
Overloading notation we will then use A(β), where β is a
rule body, i.e. a set of atoms, to denote the set of atoms
obtained by applying A to all atoms in β.

Algorithm 1 then generates a new program, instrumented
by the pattern, as follows. For brevity we do not specify the
weight of the new rules: they are each simply assigned the
weight the rule from which they originated. The algorithm
traverses the pattern in a top-down fashion, and for every
pattern node v it looks for rules in the program whose head
locally matches v (Lines 3-4). For each such rule it gener-
ates a new rule as follows: if v is a leaf (Lines 6-7), then
intuitively this “branch” of the pattern is guaranteed to be
matched and we add rules which are simply the “specializa-
tions” of the original rule, meaning that we apply to their
body the same assignment used in the match.

Otherwise (Lines 9-12), we need derivations of atoms in
the body of the rule to satisfy the sub-trees rooted in the
children of v. To this end we define the set of “expansions”
ex(atoms, {v0, ..., vn}) as follows. Consider all one-to-one
(but not necessarily onto) functions f that map the set
{v0, ..., vn} to the set atoms = {a0, ..., ak}. Each such func-
tion defines a new set of atoms obtained from atoms by re-
placing atom ai = R(x0, ...xm) by Rvj (x0, ..., xm) if f(vj) =

ai and vj is not a transitive child, or by Rv
t
j (x0, ..., xm) if vj

is a transitive child (atoms to which no node is mapped re-
main intact). We then define ex(atoms, {v0, ..., vn}) as the
set of all atoms sets obtained for some choice of function
f . In Line 11 the algorithm generates a rule for each set in
these sets of atoms. Intuitively, each such rule corresponds
to alternative “assignment of tasks” to atoms in the body,
where a “task” is to satisfy a sub-pattern (see Example 4.1).

The algorithm thus far deals with satisfaction of the sub-
tree rooted at v, by designing rules that propagate the satis-
faction of the sub-trees rooted at the children of v to atoms
in the bodies of relevant rules. However if the current pat-
tern node v is transitive (Lines 15-18), then more rules are
needed, to account for the possibility of the derivation sat-
isfying the tree rooted at v only in an indirect fashion. A
possibly indirect satisfaction is either through a direct sat-
isfaction (and thus for every rule for Rv(...) we will have a

copy of the same rule for Rv
t

(...), Lines 21-22), or through
(indirect) satisfaction by an atom in the body. For the lat-
ter, we define tr − ex(atoms, v) as the set of all atoms sets
obtained from atoms by replacing a single atom R(x0, ...xm)

in atoms by Rv
t

(x0, ...xm) (and keeping the other atoms in-
tact), and add the corresponding rules (Line 17).

dealsWith(a, b):- dealsWith(b, a)
dealsWith(a, b):- imports(a, c), exports(b, c)
dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

[r′1]dealsWithv0(Cuba, b):-dealsWithv
t
1(b, Cuba)

dealsWithv0(Cuba, b):- imports(Cuba, a), exportsv
t
1(b, c)

dealsWithv0(Cuba, b):- dealsWithv
t
1(Cuba, f),

dealsWith(f, b)
dealsWithv0(Cuba, b):- dealsWith(Cuba, f),

dealsWithv
t
1(f, b)

dealsWithv
t
1(a, b):- dealsWithv

t
1(b, a)

dealsWithv
t
1(a, b):- imports(a, c), exportsv

t
1(b, c)

dealsWithv
t
1(a, b):- dealsWithv

t
1(a, f), dealsWith(f, b)

dealsWithv
t
1(a, b):- dealsWith(b, f), dealsWithv

t
1(f, b)

[r′2]exportsv
t
1(Cuba, tobacco):- exports(Cuba, tobacco)

Figure 4: The instrumented program

The function HandleEDB adds rules for nodes that locally
match edb facts. If v locally matches an edb fact T (. . .) then
we add rules that copy the relevant tuples from the database

into the new relations T v(. . .) and T v
t

(. . .) (these rules have
weight 0).

The final step of the algorithm is “cleanup” (Line 26),
removing a subset of the newly added rules that are useless
either because some idb relation in their body has no rule
that may derive it, or because the rule is not reachable from
the rules added for the root node of the pattern.

Example 4.1. Consider the program P given in Exam-
ples 2.2, and the tree pattern shown in Figure 2b, where v0
is the root node in p2 and v1 is the leaf. The output program
is shown in Figure 4.We just illustrate the generation process
of some of these rules. Since all rules in P locally match v0
through the assignment A = {a← Cuba, b← ∗}, v0 is not a

leaf and {dealsWithv
t
1(b, Cuba)} is the only β′ obtained for

rule r1 and ex(A(dealsWith(b,a)), v1), we have that in line
11 the algorithm adds the rule r′1. Intuitively derivations for
facts in dealsWithv0(...) must match the sub-pattern rooted

by v0. Then derivations for facts in dealsWithv
t
1(...) must

include a sub-tree that matches the sub-pattern rooted by v1,

and generated rules for dealsWithv
t
1(...) enforce that (since

a dealsWith atom cannot satisfy v1) one of the atoms in the
body of a used rule will be derived in a way eventually satis-
fying v1. Rule r′2 is added by HandleEDB since exports(a, b)
locally matches v1.

The instrumented program satisfies the following funda-

mental property. Given an atom R(...), Rv(...) or Rv
t

(...)
we define its origin to be R(...), i.e. the atom obtained by
deleting the annotation v or vt (if exists). For a derivation
tree τ we define origin(τ) as the tree obtained from τ by re-
placing each atom by its origin and pruning branches added
due to the function HandleEDB (“copying” edb facts).

We now have:

Proposition 4.2. Let Pp be the output of Algorithm 1
for input which is a program P and pattern p with root v0.
For every database D, we have that:

trees(P,D) =
⋃

τ∈trees(Pp,D)

origin(τ) (1)

p(P,D) =
⋃

t=Rv0
(...)

⋃
τ∈trees(Pp,D,t)

origin(τ) (2)

w(origin(τ)) = w(τ) ∀τ ∈ trees(Pp, D) (3)



Proof.

1. Since P ⊆ Pp, every τ ∈ trees(P,D) is also in trees(Pp, D)
and it holds that origin(τ) = τ , thus trees(P,D) ⊆⋃
t∈trees(Pp,D) origin(t).

In addition, recall that every node in a derivation tree
τ ∈ trees(Pp, D) corresponds to a derivation rule in
Pp. From the construction of the new rules in Pp,
the set of rules obtained by removing the annotations
from relation names in Pp is exactly the rules in P
(possibly with repetitions), and the rules added by
HandleEDB. origin(τ) is obtain by removing the an-
notation from τ and pruning branches added due to
the function HandleEDB, thus every node in origin(τ)
correspond to a derivation rule in P and therefore
trees(P,D) ⊇

⋃
τ∈trees(Pp,D) origin(τ), namely

trees(P,D) =
⋃

τ∈trees(Pp,D)

origin(τ)

2. Let p|v be the sub-pattern of p rooted at v. We prove
by induction on the depth of the pattern p|v that for
every pattern node v it holds that

p|v(P,D) =
⋃

t=Rv(...)

⋃
τ∈trees(Pp,D,t)

origin(τ)

Base case: v is a leaf. There are two possible cases:

• v locally matches an edb fact T (...). In this case
for each τ ∈ p|v(P,D), τ is simply an edb atom,
and the function HandleEDB adds rules that copy
the relevant tuple from the database into the new

relation T v(...) (and T v
t

(...)). The derivation tree

τ of T v(...) (and T v
t

(...), in the case where v is
a transitive node) consist of two nods, a root,

T v(...) (or T v
t

(...)), and a leaf, T (...), and origin(τ)
is simply T (...) in this case.

• v locally matches an idb atom R(...) through par-
tial assignment A. In this case, a in line 7 the al-
gorithm adds new rule for each rule in P that its
head locally matches v (i.e. t = R(...) ∈ P (D)⇔
Rv ∈ Pp(D) ). The relations in the body of each
such rule are not annotated and thus the deriva-
tion trees of facts in the body are derivation trees
in trees(P,D). Derivation trees τ of Rv(...) con-
sists of one of the rules added in of the form line
7 and the derivation trees of each fact in the rules
body, Therefore origin(τ)in the tree obtain by
removing the annotation v and it is a derivation
tree in trees(P,D).

For the case where v is transitive, the algorithm

adds two types of derivation rule for Rv
t

, (i) the
rules added in line 17 and (ii) in line 22. Re-
call that (when v is a leaf) τ ∈ p|vt(P,D) ⇔
(1) the root of τ locally matches v (in this case
τ ∈ p|p(P,D)) or (2) there exists a node in τ that
locally matches v. The rules added in line 22 cap-
tures case (1) and this case is similar to the case
where v is not transitive.

The rules added in line 17 captures case (2). Note
that the body of such rules contains exactly one

annotated relation name Sv
t

(...) while the rest are

facts in P (D) and thus their derivation tree are in
trees(P,D). We can thus show by induction that

for the proposition holds for Sv
t

(...). A derivation
τ tree that contains type (i) rules must contains
a derivation of type (ii) (since initially there are

no annotated facts in the database). If Sv
t

(...)
is derived using type (ii) rule, then clearly, by
removing the annotations we obtain a derivation
tree in trees(P,D). Other the proposition holds
by the induction.

Suppose that the proposition holds for all v s.t. the
p|v is from depth < k. Let v a pattern node where p|v
is from depth k, with children v0, . . . , vn.

• If v is not transitive, then a derivation tree τ ∈
p|v(P,D) ⇔ the root of τ locally matches v and
∀pj ∃u s.t. u is a child of the root in τ and for
the subtree rooted by it τj it holds that τj ∈
p|vj (P,D). The last derivation step in any deriva-
tion tree τ ∈ p|v(P,D) must be done by a deriva-
tion rule r the algorithm adds in line 11. The
body of the rule β can consists of both annotated
and not annotated atoms. Derivation trees of
atoms that are not annotated are tree in trees(P,D)
for annotated relation it holds that τj ∈ p|vj (P,D)
and since p|vj are from depth k − 1 by the induc-
tion hypothesis it holds that

τ ∈ p|vj (P,D) =
⋃

t=R
vj (...)

⋃
τ∈trees(Pp,D,t)

origin(τ)

Therefor, the derivation tree obtain by replacing
Rv(...) with R(...) and for each subtree τ ′ rooted
by the children of the root in τ with origin(τ) is
origin(τ) and it holds that origin(τ) ∈ p|v(P,D)

• The case where v is transitive is similar to the
case that v is a transitive leaf.

3. The weight of the new rules added by the algorithm
are assigned the weight the rule from which they origi-
nated, and rules added due to the function HandleEDB

are added with weight 0 (i.e. the natural with respect
to + in the monoid). In addition, the set of edb facts
occurring in τ is exactly the set of edb facts occur-
ring in origin(τ) (due to the construction of the rules
added by HandleEDB). Therefore we have:

w(τ) =
∑
r∈τ

w(r) +
∑
t∈τ

w(t)

=
∑

r∈origin(τ)

w(r) +
∑

t∈origin(τ)

w(t) = w(origin(τ))

We refer to v and vt in Rv(...) and Rv
t

(...) as annota-
tions. Intuitively, the first part of the proposition means
that for every Database, Pp defines the same set of trees as
P if we ignore the annotations (in particular we generate
the same set of facts up to annotations); the second part
guarantees that by following the annotations we get exactly
the derivation trees that interest us for provenance tracking
purposes; and the third part guarantees that the weights are
kept. This property will be utilized in the next step, where



we evaluate the instrumented program while retrieving only
relevant provenance.

Complexity and output size. Given a datalog program P
of size |P | and a pattern p, the algorithm traverses the pat-
tern, and for each node v ∈ p iterates over the program
rules. Let w(p) be the width of p, i.e. the maximal number
of children of a node in p. The maximal number of new rules
the algorithm adds is O(|P |w(p)). The exponential depen-
dency on the pattern width is due to the need to consider all
“expansions”. Note that the exponential dependency is on
the pattern width, which is expected to be small in practice.
Furthermore, we next show that a polynomial dependency
on the program and pattern is impossible to achieve.

Proposition 4.3 (Lower Bound). There is a class of
patterns {p1, ...} and a class of programs {P1, ...}, such that
w(pn) = O(n), |Pn| = O(n) and there is no program IPn
of size polynomial in n that satisfies the three conditions of
Proposition 4.2 with respect to Pn, pn.

Proof. (sketch) Consider the following datalog program
Pn (a1, ...an are constants):
R(x1, x2, ..., xn):- R1(x1), ... Rn(xn)
R1(x):-B(x)
...
Rn(x):-B(x)

and the pattern pn:

Both the pattern width and program size are polynomial
in n (the pattern width w(pn) is n and the program Pn
consists of n + 1 rules). We claim that every instrumented
program P i satisfying the conditions of Proposition 4.2 must
include at least n! rules. To observe that this is the case,
first note that to satisfy the proposition’s condition (1), P i

must include a relation Rv0 , with rules that are “copies” of
the first rule of Pn (we say that a rule r′ is a copy of a rule
r if r may be obtained from r′ by replacing every relation
name in r by its origin. We note that in fact our algorithm
generates the following n! “copies”:
r1: Rv0(x1, x2, ..., xn):- R

v1
1 (x1), ... Rvnn (xn)

...
Rv0(x1, x2, ..., xn):- R

vn
1 (x1), ... R

v1
n (xn)

For each R
vj
i there is a rule of the form R

vj
i (aj) : −B(aj).

We then observe that P i must include these rules (up to
renaming) as well. First, without loss of generality, assume
that P i includes all of the above rules except for the rule
r1. For the database D that contains the facts B(ai) for
1 ≤ i ≤ n, the derivation tree τ 6∈ trees(P i, D), although
origin(τ) ∈ trees(Pn, D), thus violating the proposition’s
condition (2).

Alternatively, if P i “groups” two relation names (w.l.o.g.
say Rv11 and Rv21 ) together (say using relation name Rv121 ),

and then e.g. generates the two rules Rv121 (a1) : −B(a1)
and Rv121 (a2) : −B(a2) (and “groups together” the cor-
responding rules for R) to allow sub-derivations involving
R1 to either use a1 or a2 (the “extreme case” would go
back to the original program, thus allowing any constants
to be used in conjunction with R1. Then, we obtain a
derivation τ2 ∈ trees(P i, D, t), for t = Rv0(...), although
origin(τ2) 6∈ pn(Pn, D), where τ2 follows the same structure
of τ having two occurrences of B(a2) and no occurrence of
B(a1), again violating the equality in the proposition’s con-
dition (2). It is then easy to observe that no other alternative
program can satisfy the conditions.

4.2 Boolean combinations of patterns
Algorithm 1 allows intersection of a single pattern with a

program. We next explain how to use (modifications of) the
algorithm to account for boolean combinations of patterns,
i.e. negation, conjunction, and disjunction.

Negation. The algorithm for intersecting a negation of a
pattern is similar to Algorithm 1 with a slight modification,
as follows.

We use relation names R¬v and R¬v
t

for every relation
nameR in the program and for every pattern node v. Deriva-
tions for R¬v should not match the sub-pattern rooted by

v and derivations for R¬v
t

should not include a descendant
that matches the sub-pattern rooted by v.

We define neg − ex(atoms, {v0, ..., vn}) where atoms is
a set of atoms and the vi’s are pattern nodes as follows:
if |atoms| ≥ n, then neg − ex(...) is the set of all atoms
sets obtained from atoms by replacing, for each vi, every

atom R(x0, ..., xm) in atoms by R¬v
t
i (x0, ..., xm), if vi is a

transitive node and R¬vi(x0, ..., xm) otherwise. If |atoms| <
n then neg − ex(...) is the set that contains only the set
atoms.

The modifications to the algorithm are then as follows.
In the case where R(...) locally-matches v (line 4), if v is
a leaf, we do not add a derivation rule for Rv since we
want ignore derivation that match v. Otherwise (in line
11), we add for each β′ ∈ neg − ex(A(β), {v0, ..., vn}) the
rule R¬v(yn, ..., ym) : −β′. Intuitively, a derivation that
does not match sub-pattern rooted by v, in the case where
the root r(...) locally-matches v, either has less than n chil-
dren in the derivation, where n is number of the children of
v, or the derivation rooted by at least one of R(...)’s children
does not match one of the children of v, which is captured
by the neg − ex(...) set.

In addition, for any rule R(...) : −β in P , when R(...) does
not locally-match v, we add the rule R¬v(...) : −β.

For the case where v is a transitive child (line 15) we mod-
ify the new rules body to be neg − ex(A(β), {v}). Finally,
instead of adding rules for edb atoms that locally-match
v, the function HandleEDB adds the rules T¬v(x0, ..., xm) :

−T (x0, ..., xm) and T¬v
t

(x0, ..., xm) : −T (x0, ..., xm) for each
edb atom T (x0, ..., xm) that does not locally-matches v.

Disjunction and Conjunction. Disjunction of patterns may
be performed by repeatedly intersecting the original pro-
gram with each of the disjuncts (in arbitrary order), accu-
mulating the obtained rules into a single program. As for
conjunction, we again perform repeated intersection with



the conjuncts, but this time use the output of each intersec-
tion step as the input for the next step. A generalization of
Proposition 4.2 can be shown for Boolean combinations of
patterns.

Complexity. The time complexity remains polynomial in
the size of the original program, with exponential depen-
dency on the size of the pattern (the exponent is multi-
plication of the individual size of patterns, in the case of
conjunction).

5. FINDING TOP-K DERIVATION TREES
The second step of the algorithm is the enumeration of

top-k derivation trees that conform to the pattern, based on
the instrumented program and now also the input Database.
We next describe the algorithm for top-k, then we will present
a heuristic optimization.

The algorithm operates in an iterative manner. We start
by explaining the algorithm for finding the top-1 derivation,
which is (an adaptation 3 of) the generalized dijkstra al-
gorithm of Knuth [38]. The generation of the top-1 tree
(out of qualifying trees)is done alongside with bottom-up
standard (provenance-oblivious) evaluation of the Datalog
program with respect to the Database. We then extend the
construction to top-k for k > 1.

5.1 Top-1
Algorithm 2 computes the top-1 derivation in a bottom-up

manner. Each entry in the data structure DTable represents
the top-1 derivation tree of a fact t, and contains the fact
itself, its top-1 derivation weight, and pointers to the en-
tries in the table corresponding to the derivation trees of
the “children” of t in the derivation. Starting with a set of
all edb facts (with empty trees) in DTable (line 1), in each
iteration, the algorithm finds the set of facts that can be
derived via facts in DTable using a single application of a
rule in P (line 3). For each such candidate we compute its
best derivation out of those using facts in DTable and a sin-
gle rule application (this is done by a procedure called Top).
The fact for which the maximal (in terms of weight) such
derivation is found is added to DTable (Line 4). Finally, the
algorithm returns the entries in DTable of facts that match
the root node p0 of the pattern.

input : Weighted Datalog Program P , Database D
output: top-1 derivation tree for facts of the form

Rp
0

(...)

1 Init DTable with (t, 0, null) for all t ∈ D;
2 while DTable changes do
3 Let Cand be the set of all facts derived via facts

in DTable and are not in it;
4 Add [arg maxt∈Cand Top(t,DTable, P )] to

DTable
5 end
6 return the entries of all e ∈ DTable s.t. the fact t

of e is of the form Rp
0

(...);

Algorithm 2: Top-1

3The algorithm of [38] works for weighted context free gram-
mars rather than Datalog, see discussion of related work.

Example 5.1. Consider the output program Pp of Algo-
rithm 1 given in Example 4.1, and the Database D shown
in Table 2. Algorithm 2 first initializes DTable with the edb
atoms from D, each with its weight (in this case all weights
are 1). Then, in lines 2-4, the algorithm finds the set of facts
that can be derived via the facts in DTable. In the first iter-

ation the fact t3 = exportsv
t
1(Cuba, tobacco) can be derived

with weight 1 using the edb fact t1 = exports(Cuba, tobacco)
and the rule denoted r′2 in Example 4.1. Other facts can be
derived in the first iteration but t3 is the fact with maximal
weight. The algorithm thus adds (t3, 1, {∗t1}) to DTable,
where ∗t1 is a pointer to the entry of t1 in DTable. In
the next iteration, the algorithm can derive the fact t4 =

dealsWithv
t
1(France, Cuba) using t3 and the edb fact t2 =

imports(France, tobacco) with overall weight of 0.5. When
t4 is selected in Line 4 (In this example other facts may be
chosen due to ties), the algorithm adds (t4, 0.5, {∗t2, ∗t3})
to DTable. After t4 is added to DTable, the fact t5 =
dealsWithv0(Cuba, France) can be derived with overall weight
of 0.5 · 0.8 = 0.4, and the algorithm adds (t5, 0.4, {∗t4}) to
DTable.

Using DTable, the top-1 derivation tree of every fact t
can be constructed using the entry of t, by attaching t to the
top-1 derivation trees of each one of the facts t1, . . . , tk in
the pointers list of t (which are recursively constructed).

5.2 Top-K
The algorithm for TOP-K computes the top-i derivations

for each fact t ∈ Pp(D) in a bottom-up manner for 2 ≤ i ≤ k.
For each i it essentially repeats the procedure of Algorithm
2, but starting with DTable consisting of the top-(i − 1)
trees, i.e. τ jt for all t ∈ Pp(D) and j < i. A subtlety is
that different trees in Pp(D) may have the same origin in
P (D), thus computing top-k using the instrumented pro-
gram should be done carefully in order to avoid generating
the same tree (up to annotations) over and over again.

To this end, we say that a derivation tree τt for a fact
t is a top-i candidate, if one of the following holds: (i) τt
uses at least one “new” fact that was added in the i’th it-
eration or (ii) the last derivation step in τt is different from
the last derivation step in τ jt for all 1 ≤ j < i, such that
origin(τt) 6= origin(τ jt ). Given the top-(i − 1) derivation
trees, to compute i’th best tree for each fact we compute
in a bottom up manner top-i candidates that can be de-
rived from facts in DTable using a single rule application.
Then we select the candidate τt with maximal weight (out
of candidates computed for all facts) and add it to a new
entry ti in DTable. The step of computing the i’th best
tree terminates when there are no more new facts to add to
DTable. To find the top-k derivations we may simply com-
pute the top-i for each 1 ≤ i ≤ k. After the k’th iteration
DTable contains a compact representation the top-k deriva-
tion trees. The enumeration of top-k trees for each fact may
then simply be done by pointer chasing.

Overall Complexity. The algorithm for TOP-K computes
for each 1 ≤ i ≤ k the top-i derivation trees for each fact.
For each i, the computation of the top-i trees consists of
at most DTable iterations, each polynomial in DTable with
exponent |P ||p|. A subtlety is in the verification that two
compactly represented trees do not have the same origin:
we note that a recursive such comparison may be performed
in time that is polynomial in DTable with the exponent



depending on the maximal tree width (maximal number of
children of a tree node), which in turn depends only on the
program size. Next, DTable contains at most k entries for
each fact t ∈ Pp(D) where Pp is the instrumented program
given the program P and pattern p. The number of facts

t ∈ Pp(D) is a most |D||Pp| = |D|(|P |
|p|), where |D| is the

extensional Database size, thus on the i’th step, the size of

DTable is bounded by i · |D|(|P |
|p|). Therefore the time com-

plexity of the i’th step is O(i2 · |D|O(|P ||p|)). The complexity
of computing the top-k derivation trees is therefore

k∑
i=1

O(i2 · |D|O(|P ||p|)) = O(k3 · |D|O(|P ||p|))

Finally, generating the top-k trees from DTable is linear in
the output size, and thus the overall complexity of TOP-K is

O(k3 · |D|O(|P ||p|) + |out|), where |out| is the output size.

5.3 Alternative heuristic top-k computation
An alternative approach for finding top-k derivations is

based on ideas of the algorithm for k shortest paths in a
graph [18]. The basic idea is to obtain the i’th best deriva-
tion tree of a fact t by modifying one of the top-(i − 1)
derivation trees of t. Each node u with children u0, . . . , um
in a derivation tree τ for a fact t ∈ Pp(D), corresponds to
an instantiation of a derivation rule r in Pp. Given a node
u ∈ τ , a modification of u in τ is using a different instanti-
ation to derive u, i.e. using different derivation rule r′ ∈ Pp
or a different assignment to the variables in r s.t. for the
obtained tree τ ′ it holds that origin(τ) 6= origin(τ ′). We
say that two modifications are different if for their results τ1
and τ2 satisfy origin(τ1) 6= origin(τ2).

Given a derivation tree τ , we denote by τu,r,σ the deriva-
tion tree obtained by modifying v in τ using r and σ. We
define δ(u, r, σ) = w(τ) − w(τu,r,σ). Intuitively, δ(u, r, σ)
is the “cost” of the modification. Note that the i’st best
derivation tree can be obtained by a modification of any
one of the top-(i− 1) trees. Given the top-(i− 1) derivation
trees for the fact t, the next best derivation can be com-
puted as follows: traverse each one of the top-i trees τ in a
top-down fashion, compute the cost of all possible different
modifications (without recomputing trees that were already
considered; this can be done by tracking the rules and as-
signment used for each modification), and find the modifi-
cation of minimal cost. The algorithm for top-k computes,
for each fact outputted by Algorithm 2, the top-k derivation
trees as described above, and terminates when we find top-k
derivation or when there are no more modifications to apply
on the trees found by the algorithm.

Note that the consideration of modifications can be done
without materializing the derivation trees, but rather only
using DTable. A subtlety is that a fact t may have mul-
tiple occurrences in a derivation tree τ , however it appears
only once in the DTable. Thus, modifying the entry of t in
DTable would result in modifying the sub-trees rooted at
all occurrences of t (instead of modifying a subtree rooted
at one occurrence of t). To avoid this undesirable modifi-
cations, we generate a new copy of all the facts in the path
from the root of τ to t (including t) for each modification of
t’s sub-tree.

Example 5.2. Reconsider the output program of the al-
gorithm in Example 4.1. The top-2 derivation trees for the

(a) Top-1

(b) Top-2

Figure 5: Top-2 Derivation Trees (with annotations)

fact dealsWith(Cuba, France) are shown in Figure 1, and
we next partially illustrate the computation process using the
alternative approach. The top-1 derivation tree τ1 of the fact
dealsWith(Cuba, France) is depicted in Figure 5a. The
nodes u and u0 correspond to the derivation rule
[r] dealsWithv0(Cuba, b):- dealsWithv

t
1(b, Cuba)

with the assignment σ = {b ← France}. The weight of τ1

is 0.4. By replacing r with
[r′] dealsWithv0(Cuba, b):- dealsWithv

t
1(Cuba, f),

dealsWith(f,b)

and the assignment σ′ = {b ← France, f ← Mexico},
we obtain the top-2 derivation tree τ1δ(u,r′,σ′) = τ2. The

weight of τ2 is 0.28 and δ(u, r′, σ′) = 0.12. origin(τ1) and
origin(τ2) are shown in Figure 1 (as τ2 and τ3 respectively).

Diversification. Our paradigm may be adapted to support
diversification, by intersecting the program with a negated
pattern between computing the top-i and the top-(i + 1)
results. For instance we may intersect the program with a
negated pattern consisting of a new root labeled by wildcard,
connected by a transitive edge to a copy of the i’th result;
this will make sure that the i’th tree will not appear as a
sub-tree in the i+ 1 result. Other notions of diversification
are conceivable and some may also be encoded by negation;
developing dedicated optimizations for them is left for future
work.

6. IMPLEMENTATION AND EXPERIMENTS
We have implemented our algorithms in a system proto-

type called selP (for “selective provenance”, demonstrated
in [15]). The system is implemented in JAVA and its archi-
tecture is depicted in Figure 3: the user feeds the system
with a datalog program and a selPQL query, and the instru-
mented program is computed and fed, along with an input
database, to the TOP-K component. This component is im-
plemented by modifying and extending IRIS [31], a JAVA-
based system for in-memory datalog evaluation. Users may
then choose a tuple of interest from the output DB and view
a visualization of the top-k qualifying explanations (accord-
ing to the pattern) for the chosen tuple.

We have conducted experiments to examine the scalability
and usefulness of the approach, in various settings. We next



describe the dedicated benchmark (including both synthetic
and real data) developed for the experiments, and then the
experimental results.

6.1 Evaluation Benchmark
We have used the following datasets, each with multiple

selPQL queries (different number of requested results and
different patterns, varying in size and structure), and for
increasingly large output databases 4. The weights in the
reported results are all elements of the monoid ([0, 1], ·, 1, <);
we have experimented with all other monoids given in Ex-
ample 3.7, but omit the results for them since the observed
effect of monoid choice was negligible.

1. IRIS We have used the non-recursive datalog program
and database of the benchmark used to test IRIS per-
formance in [31]. The program consists of 8 rules and
generates up to 4.26M tuples; weights have been ran-
domly assigned in the range [0,1].

2. AMIE We have used the following recursive datalog
program consisting of rules mined by AMIE [23], auto-
matically translated into datalog syntax, with weights
assigned by AMIE and reflecting rule confidence:
hasChild(a, b) :- isMarriedTo(e, a), hasChild(e, b)
hasChild(a, b) :- isMarriedTo(a, f), hasChild(f, b)
isMarriedTo(a, b) :- isMarriedTo(b, a)
dealsWith(a, b) :- dealsWith(a, f), dealsWith(f, b)
isMarriedTo(a, b) :- hasChild(a, c), hasChild(b, c)
dealsWith(a, b) :- dealsWith(b, a)
produced(a, b) :- directed(a, b)
dealsWith(a, b) :- imports(a, c), exports(b, c)
influences(a, b) :- influences(a, f), influences(f, b)
isCitizenOf(a, b) :- wasBornIn(a, f), isLocatedIn(f, b)
diedIn(a, b) :- wasBornIn(a, b)
dealsWith(a, b) :- exports(a, f), exports(b, f)
dealsWith(a, b) :- imports(a, f), imports(b, f)
directed(a, b) :- created(a, b)
influences(a, b) :- influences(a, f), influences(b, f)
isPoliticianOf(a, b) :- diedIn(a, f), isLocatedIn(f, b)
isPoliticianOf(a, b) :- livesIn(a, f),isLocatedIn(f, b)
isInterestedIn(a, b) :- influences(a, f),
isInterestedIn(f, b)
worksAt(a, b) :- graduatedFrom(a, b)
influences(a, b) :- influences(e, a), influences(e, b)
isInterestedIn(a, b) :- isInterestedIn(e, b),
influences(e, a)
produced(a, b) :- created(a, b)
isPoliticianOf(a, b) :- wasBornIn(a, f),
isLocatedIn(f, b)

The underlying input database is that of YAGO [53].
The program consists of 23 rules (many of which in-
volve recursion and mutual recursion) for Information
Extraction that generate up to 1.2M tuples.

3. Explain We have used a the following variant of the
recursive datalog program described in [3], as a use-
case for the “explain” system, see discussion of related
work (arithmetic operations were treated through ded-
icated relations, and aggregation was omitted):
b_o_m(Part, C) :- subpart_cost(Part, SubPart, C)
subpart_cost(Part, Part, Cost) :-
basic_part(Part, Cost)
subpart_cost(Part, Subpart, Cost) :-
assembly(Part, Subpart, Quantity),
b_o_m(Subpart, TotalSubcost),
Quantity * TotalSubcost = Cost

4The precise datalog programs and patterns that have been
used may be found in the full version [22].

The database was randomly populated and gradually
growing so that the output size is up to 1.17M tuples,
and weights have been randomly assigned in the range
[0,1].

4. Transitive Closure. Last, we have used a recursive
datalog program consisting of 3 rules and computing
Transitive Closure in an undirected weighted graph.
The database was randomly populated to represent
undirected fully connected weighted graphs, yielding
output sizes of up to 1.7M tuples.

Baseline algorithms. To our knowledge, no solution for
evaluation of top-k queries (or tree patterns) over datalog
provenance has been previously proposed. To nevertheless
gain insight on alternatives, we have tested two “extreme”
choices: (1) standard, semi-naive evaluation with no prove-
nance tracking, using IRIS implementation; and (2) com-
pact representation of full provenance, based on the notion
of equations systems from [29], where for each idb fact there
is an equation representing its dependency on other idb facts
and on edb facts, with additional optimizations that allow
for “sharing” of identical parts between different equations.

All experiments were executed on Windows 7, 64-bit, with
8GB of RAM and Intel Core Duo i7 2.10 GHz processor.

6.2 Experimental Results
Figure 9 presents the execution time of standard sem-

inaive evaluation and of selective provenance tracking for
the four datasets and for different selPQL queries of inter-
est (fixing k = 3 for this experiments set). Full provenance
tracking has incurred execution time that is greater by order
of magnitude, and is thus omitted from the graphs and only
described in text.

In Figure 9a, the results for the IRIS dataset are presented
for 4 different patterns: (p1) binary tree pattern with three
nodes without transitive edges and (p2) with two transitive
edges, (p3) three nodes chain pattern with two transitive
edges, and (p4) six node pattern with three levels and four
transitive edges. The pattern width and structure unsur-
prisingly has a significant effect on the execution time, but
the overhead with respect to seminaive evaluation was very
reasonable: 38% overhead w.r.t. the evaluation time of sem-
inaive even for the complex six-node pattern and only 3%
- 21% for the other patterns. The absolute execution time
is also reasonable: 56–65 seconds for the different patterns
and for output database of over 4.2M tuples (note that for
this output size, the execution time of standard semi-naive
evaluation is already 53 seconds In contrast, generation of
full provenance was infeasible (in terms of memory consump-
tion) beyond output database of 1.6M tuples, taking over 5
minutes of computation for this size.

As explained above, the program we have considered for
the AMIE dataset is much larger and more complex. Full
provenance tracking was completely infeasible in this com-
plex settings, failing due to excessive memory consumption
beyond output database of 100K tuples. Of course, the com-
plex structure leads to significantly larger execution time
also for semi-naive and selective provenance tracking. It
also leads to a larger overhead of selective provenance track-
ing, since instrumentation yields an even larger and more
complex program. Still, the performance was reasonable for
patterns of the flavor shown as examples throughout the pa-
per. We show results for the AMIE dataset and 9 different
representative patterns. 5 patterns without any constants
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Figure 6: Example Patterns for IRIS

(a) p5 (b) p6 (c) p7 (d) p8 (e) p9

Slovakia,Nicaragua

(f) p∗6

Slovakia,Nicaragua

(g) p∗7

Slovakia,Nicaragua

Nicaragua

(h) p∗8

Slovakia,Nicaragua

Nicaragua

(i) p∗9
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Figure 8: Example Patterns for TC
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(only wildcards): (p5) a single node pattern, (p6) a 2-node
pattern with a regular edge and (p7) with a transitive edge,
(p8) a binary 3-node pattern with regular edges, and (p9)
with one transitive edge. The other 4 patterns are (p∗i ) for
all 6 ≤ i ≤ 9, where each (p∗i ) has the same nodes and edges
of (pi), but with half of the wildcards replaced by constants.
The results are shown in Figure 9b. We observe that the
“generality” of the pattern, i.e. the part of provenance that
it matches, has a significant effect on the performance. For
the “specific” patterns p∗i , the computation time and over-
head was very reasonable: the computation time for 1.2M
output tuples was only 44.5 seconds (1.3 times slower than
seminaive) for p∗6. For p∗7 and the same number of out-
put tuples it took 62 seconds (less than 2 times slower than
seminaive), 44.6 seconds (1.3 times slower than seminaive)
for p∗8 and 105 seconds (3.2 times slower than seminaive)
for p∗9. The patterns containing only wildcards lead to a
larger instrumented program, which furthermore has more
eventual matches in the data, and so computation time was
greater (but still feasible). the computation time for 1.2M
output tuples was less than a minute (and 61% overhead
w.r.t. seminaive in average) for p5, less than 2 minutes (3.5
times slower than seminaive) for p6, 2.6 minutes (4.8 times
slower) for p7, and less than 2 and 2.9 minutes (3.6 and 5.4
times slower) for p8 and p9 respectively.

In Figure 9c we present the results for the TC dataset
and 4 different patterns: (p10) a single node, (p11) 3-nodes
binary tree pattern with regular edges, (p12) 3-nodes chain
pattern with 2 transitive edges, and (p13) binary tree pat-
tern with three nodes and 2 transitive edges. We observe
a non-negligible but reasonable overhead with respect to
semi-naive evaluation (and the execution time is generally
smaller than for the AMIE dataset). The execution time
for 1.7M output tuples for p10 was 31 seconds (and 56%
overhead with respect to seminaive in average), 33 seconds
for p11 (1.8 times slower than seminaive in average), 74 sec-
onds for p12 (4 times slower) and 82 seconds for p13 (4.5
times slower than seminaive). Here full provenance track-
ing was extremely costly, requiring over 6.5 hours for output
database size of 1.7M tuples.

Figure 9d displays the results for the “explain” dataset.
We considered 3 different patterns: (p14) a single node, (p15)
a 3-nodes binary tree pattern with regular edges and (p16)
a 2-node pattern with a transitive edge. The computation
time for 1.16M output tuples was less than 3.2 minutes (7%
overhead w.r.t seminaive) for p14, 3.3 minutes (10% over-
head w.r.t seminaive) for p15 and 4.4 minutes (85% over-
head w.r.t seminaive) for p16. Full provenance tracking has
required over 2 hours even for an output database size of
115K.

From top-1 to top-k. So far we have shown experiments
with a fixed value of k = 3. In Figure 10 we demonstrate
the effect of varying k, using the TC dataset and fixing the
pattern to be p10. The overhead due to increasing k is rea-
sonable, due to our optimization using the heuristic algo-
rithm for TOP-K (after top-1 trees were computed): about
6%, 13%, and 21% average overhead for top-3, top-5 and
top-7 respectively with respect to top-1 execution time. Sim-
ilar overheads were observed for other patterns and for the
other datasets. Our optimization was indeed effective in
this respect, outperforming the non-optimized version with
a significant gain, e.g. average of 64% for k = 3, 77% for
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Figure 10: Varying K (Transitive Closure Dataset)

k = 5 and 82% for k = 7 (and again the trend was similar
for the other patterns and datasets).

Discussion. Recall that the algorithm consists of two steps:
program instrumentation and top-k evaluation. The instru-
mentation step is extremely fast (less than 1 second in all
experiments), since it is independent of the database. A
crucial factor for the performance of the top-k step is the
size and structure of the obtained instrumented program,
which in turn is highly dependent on the size and structure
of the pattern and of the original program. As observed in
the experiments, “simple” patterns (small, containing con-
stants rather than wildcards) lead to smaller programs and
good performance, while more complex patterns can lead to
meeting the lower bound of Prop. 4.2, and consequently to a
greater overhead (yet, unlike full provenance tracking, exe-
cution time was still feasible even for the complex programs
and patterns we have considered). We note that our opti-
mizations aimed at reducing the number of rules, as outlined
in section 4, have indeed improved the algorithm’s perfor-
mance by as much as 50%.

7. RELATED WORK
We next overview multiple lines of related work.

Data provenance models. Data provenance has been stud-
ied for different data transformation languages, from rela-
tional algebra to Nested Relational Calculus, with different
provenance models (see e.g. [6, 29, 28, 24, 35, 10, 55, 7,
19]) and applications [54, 42, 50, 41, 26], and with different
means for efficient storage (e.g. [4, 9, 46, 19]). In particular,
semiring-based provenance for datalog has been studied in
[29], and a compact way to store it, for some class of semir-
ings, was proposed in [17]. However, no notion of selective
provenance was proposed in this work. Consequently, (1)
the resulting structure is very complex and difficult to un-
derstand (it is not geared towards presentation, thus there
is no support of ranking or selection criteria), and (2) as
we have experimentally showed, tracking full datalog prove-
nance fails to scale.

Selective provenance for non-recursive queries. There
are multiple lines of work on querying data provenance,
where the provenance is tracked for non-recursive queries
(e.g. relational algebra or SQL). Here there are two ap-
proaches: one that tracks full provenance and then allows
the user to query it (as in [34, 32]), and one that allows on-
demand generation of provenance based on user-specified
criteria. A prominent line of work in the context of the
latter is that of [27, 25], where the system (called Perm)
supports SQL language extensions to let the user specify
what provenance to compute. Three distinct features in our



settings are (1) the presence of recursion (we support recur-
sive datalog rather than SQL), (2) the use of tree patterns
to query derivations (which is natural for datalog), and (3)
the support of ranking of results. These differences lead to
novel challenges and consequently required novel modeling
and solutions (as explained in the Introduction and in the
description of technical content).

Explanation for deductive systems. There is a wealth of
work on explaining executions for deductive DBMSs. For
instance, in [3] the authors present an explanation facility
called “explain” for CORAL, a deductive database system.
It allows users to specify subsets of rules as different “mod-
ules”, and then to set provenance tracking “on” or “off” for
each module. For the chosen modules, the system generates
a record of all instantiations of rules that has occurred dur-
ing the program execution. This is a counterpart of our no-
tion of full provenance, since all derivation trees may be ob-
tained from this structure. Once full provenance is tracked,
one may analyze it (e.g. using further CORAL queries), or
browse through it through a dedicated Graphical User In-
terface. In contrast to our work, this line of work focuses
on analyzing the the full provenance, and cannot be used to
specify in advance which parts of the provenance to track
(the in-advance specification is limited to the very coarse-
grain specification of modules). As we have shown, tracking
full provenance is infeasible for large-scale data and complex
programs. Indeed, experiments in [3] are reported only for
a relatively small scale data (up to 30K rule instantiations,
which implies less than 30K tuples in the output database).
Consequently, we focus on static instrumentation that al-
lows to avoid full provenance tracking.

This then leads to the need for a careful design of a declar-
ative language (and corresponding algorithms) for specifying
selective provenance tracking, such that the language is rich
enough to express properties of interest, while allowing for
feasibility (and low complexity) of instrumentation (which
was not addressed in [3]). Indeed, selPQL allows the specifi-
cation of expressive queries through the combination of tree
patterns and ranking, while still allowing for efficient instru-
mentation. These major distinctions in the problem setting
also naturally imply that our technical development is novel.
The same distinctions apply to the other works in this con-
text, such as the debugging system for the LDL deductive
database presented in [51]. We note that a feature that is
present in [51] and absent from ours is the ability to query
missing facts, i.e. explore why a fact was not generated.
Incorporating such ability in our system (e.g. to find ranked
explanations for absence of facts) is an intriguing direction
for future work.

Program slicing. In [11, 47] the authors study the notion
of program slicing for a highly expressive model of func-
tional programs and for Nested Relational Calculus, where
the idea is to trace only relevant parts of the execution.
While the high-level idea is similar to ours, and the trans-
formation languages they account for are more expressive,
our focus here is on supporting provenance for programs
whose output data is large (in contrast, the output size for
the programs in the experiments of [11, 47] is much smaller
than in our experiments). We have thus chosen datalog as a
formalism, leading to our tree-based language for patterns,
to our theoretical complexity guarantees (which naturally

could not be obtained for arbitrary functional programs),
and to our experimental study supporting large-scale out-
put data. Importantly, our ranking mechanism and top-k
computation are also absent from this line of work.

Workflow provenance. Different approaches for capturing
workflow provenance appear in the literature (e.g. [14, 13,
2, 30, 20, 52, 43]), however there the focus is typically on
the control flow and the dataflow between process modules,
treating the modules themselves and their processing of the
data as black boxes. A form of “instrumenting” executions
in preparation for querying the provenance is proposed in [5],
but again the data is abstracted away, the queries are limited
to reachability queries and there is no ranking mechanism.

Context Free Grammars. Analysis of the different parses
of Context Free Grammars (CFGs) has been studied in dif-
ferent lines of work. In [38] the author proposes an algorithm
for finding the top-1 derivation in a weighted CFG; other
works have studied the problem of finding top-k parses of a
given string (thus the derivation size is bounded) in a prob-
abilistic context free grammar. In [12] the author study the
problem of querying the space of parse trees of strings for a
given probabilistic context free grammar, using an expres-
sive query language, but focus on computing probabilities
of results, where the probability is obtained by summation
over all possible parse trees satisfying a pattern.

There are technical connections between datalog and CFGs;
but perhaps the most significant conceptual difference is that
in datalog there is a separation between the program and the
underlying data, which has no counterpart in CFGs. In par-
ticular, we have shown that it is essential for the algorithm
performance that we avoid grounding the program (which
is the equivalent of full provenance generation) and instead
instrument it without referring to a particular database in-
stance. These are considerations that are of course absent
when working with CFGs. This means that no counter-
part of our novel instrumentation algorithm (or of the key
Proposition 4.2) appears in these works. Then, the top-
k trees computation requires again a novel algorithm and
subtle treatment of different cases. Only a very basic idea
of the algorithm for top-1 is inspired by that of [38] for
finding the (single) maximal weight of a tree in a weighted
CFG. Novel challenges include having the top-1 algorithm
(1) work for datalog, and specifically side-by-side with data-
log evaluation and (2) generate a compact representation of
the tree itself rather than just its weight, and (3) the entire
algorithm for top-k, where a major challenge is in avoiding
generation of trees that (when removing the “instrumenta-
tion annotations”) are duplicates.

Probabilistic XML. Different works have studied models
and algorithms for representing and querying probabilistic
distributions over XML documents (see e.g. [36, 37, 39]).
Top-k queries over probabilistic XML was studied in e.g. [44,
8, 39]. A technical similarity is in the use of tree patterns for
querying a compactly represented set of trees, each associ-
ated with probability (counterpart of weight in our model).
However our different motivation of querying datalog prove-
nance is then reflected in many technical differences. First,
the separation between the program and the underlying data
and the need for instrumentation that is independent of the
data (as explained in the Introduction and in the discussion



of CFGs above) is also absent from models for probabilistic
XML, and leads to novel challenges and a novel instrumen-
tation algorithm, which also significantly effects the further
development for top-k computation (see again the discussion
above for CFGs). An additional difference is due to our use
of a general weight function rather than probabilities. We
further note that beyond the difference in model, the prob-
lem typically considered for probabilistic XML is different
than ours. The problem typically studied in these works is
finding the probability of an “answer” (e.g. a match), or the
top-k such answers based on the answers probabilities. The
difference is that the probability of an answer is defined as a
sum over all possible worlds (e.g. all possible trees in which
this match appears), where we are computing a maximum
(or top-k) over the possible trees. This is a different problem
with different motivation and different techniques for solu-
tions. Furthermore, for most realistic models this problem
becomes ]P-hard in general (while ours is PTIME), and re-
strictions which are not imposed in our case (such as bound-
ing the trees depth) are required to allow for tractability.

Markov Logic Networks and other probabilistic mod-
els. The combination of highly expressive logical reasoning
and probability has been studied in multiple lines of work.
These include Markov Logic Networks [48, 33, 45] which may
be expressed as a first-order knowledge base with probabil-
ities attached to formulas, and probabilistic datalog where
probabilities are attached to rules (e.g. [21, 16]). However,
the focus in these lines of work is on the problem of prob-
abilistic inference, i.e. computing the probability of a fact
or formula (by summing over all possible worlds in which
the fact appears/the formula is satisfied); to our knowledge,
no counterparts of our query language or techniques were
studied in these contexts. In contrast, the various formu-
lations of probabilistic inference typically lead to very high
complexity, with solutions that involve approximation algo-
rithms based on sampling.

8. CONCLUSION
We have presented in this paper selPQL, a top-k query

language for datalog provenance, and an efficient algorithm
for tracking selective provenance guided by a selPQL query.
We have showed that the algorithm incurs polynomial data
complexity and have experimentally studied its performance
for various datalog programs and selPQL queries. There
are many intriguing directions for future work, including
further optimizations and incorporating considerations such
as diversification and user feedback.
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