For basic robotics, see

J.J. Craig

* Introduction to Robotics *

3nd Edition, Pearson Prentice Hall, 2005.

For robot motion planning, see

A classical book:

J.-C. Latombe,

* Robot Motion Planning *

Kluwer Academic Publishers, 1991.

newer books:

H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, and S. Thrun,

* Principles of Robot Motion: Theory, Algorithms, and Implementations *
The MIT Press, 2005.

S.M. LaValle,

* Planning Algorithms*

Cambridge University Press, 2006

Basic techniques of computational geometry can be found in the following book:

M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
* Computational Geometry: Algorithms and Applications *

2nd Edition, Springer, 2000.

Survey papers in:

* CRC Handbook of Discrete and Computational Geometry*

J.E. Goodman and J. O'Rourke (eds.),

2nd Edition, Chapman and Hall/CRC, 2004,

(1) Algorithmic Motion Planning (Chapter 47), M. Sharir

(2) Robotics (Chapter 48), D. Halperin, L.E. Kavraki, and J.-C. Latombe

(3) Collision and Proximity Queries (Chapter 35), M.C. Lin, and D. Manocha

(4) Shortest Paths and Networks (Chapter 27), J.S.B. Mitchell

Davenport-Schinzel sequences, single face results

M. Sharir and P.K. Agarwal

* Davenport-Schinzel Sequences and Their Geometric
Applications *

Cambridge University Press, New York, 1995