Probabilistic Termination and Composability of Cryptographic Protocols

[Crypto ‘16]

Ran Cohen (TAU)
Sandro Coretti (NYU)
Juan Garay (Yahoo Research)
Vassilis Zikas (RPI)
Motivation

Given: Protocol with *expected* $O(1)$ running time (geometric distribution)

What’s the expected running time of n parallel instances?

$\Theta(\log n)$ rounds

Example: Coin flipping

- Stand-alone coin flip: $\text{Pr}(\text{heads}) = 1/2$

 Output is *heads* in expected 2 rounds

- Flipping in parallel n coins, each coin until *heads*

 Expected $\log n$ rounds

Probabilistic Termination & Composability
Motivation (2)

• Most secure protocols assume a broadcast channel
• Fast broadcast protocols run in expected $O(1)$ time
 - Parallel executions no longer constant
 - Probabilistic termination round
 - Non-simultaneous termination

• **Composable security**: we want security of broadcast to hold in arbitrary protocols/networks/environments
 - Not guaranteed by known solutions

• How to simulate probabilistic termination?
This Work

We study universal composability of cryptographic protocols with \textit{probabilistic termination}

- **Framework**
 - Design and analyze simple protocols in \textit{modular composition} fashion
 - Compiler to UC protocols with \textit{same} expected round complexity

- **Applications**
 - Perfect, adaptively secure protocols in the P2P model
 1) Byzantine agreement with expected $O(1)$ rounds
 2) Parallel broadcast with expected $O(1)$ rounds
 3) SFE with expected $O(d)$ rounds
 \hspace{1cm} $d = \text{depth of the circuit}$
Secure Multiparty Computation (MPC)
Ideal World/“Functionality”
Simulation-based Security

Probabilistic Termination & Composability
Communication Models

• Point-to-point model
 – Secure (private) channels between the parties
 \((Secure\ Message\ Transmission)\)

• Broadcast model
 – Additional \(broadcast\ channel\)

• Synchronous communication
 – Protocol proceeds in rounds
 • Bounded delay
 • Global clock
Feasibility of MPC with Broadcast

• Classical results [BGW’88] [CCD’88]
 – Perfect, adaptively secure for $t < n/3$
 – Concurrently composable
 – $O(d)$ rounds, $O(d)$ broadcasts

• Improving broadcast-round complexity
 – $O(d)$ rounds, 1 broadcast [Katz, Koo’07]

Can we get same security and efficiency in the point-to-point model (without broadcast)?
Protocols with Broadcast

Parallel broadcast

Parallel SMT
Instantiating Broadcast Channel

Byzantine agreement (BA)

Each P_i has input x_i

- **Agreement**: all honest parties output the same value
- **Validity**: if all honest parties have the same input x, the common output is x

BA to broadcast (honest majority)

- The sender sends x to all parties
- All parties run BA on these values
Deterministic BA/Broadcast Protocols

- Deterministic Termination (DT) – single & known output round
- Perfect and adaptive security for $t < n/3$
 \[\text{[BGP’89] [GM’93] [HZ’10]}\]
- Concurrently composable
- Require $O(n)$ rounds – this is inherent \([\text{Fischer, Lynch’82}]\)
Deterministic BA/Broadcast Protocols

- Deterministic Termination (DT) – single & known output round
- Perfect and adaptive security for $t < n/3$
 \[\text{[BGP’89] [GM’93] [HZ’10]} \]
- Concurrently composable
- Require $O(n)$ rounds – this is inherent \[\text{[Fischer, Lynch’82]} \]
Randomized BA/Broadcast Protocols

Randomization can help [Ben-Or’83] [Rabin’83]

Binary BA protocol [Feldman, Micali’88] (simplified: [FG’03] [KK’06])
- Proceeds in phases until termination
- In each phase each party has a bit (initially its input)

1) Voting - if all honest parties have same bit
 - Yes: Terminate
 - No:
 2) Oblivious coin flip
 - w.p. p: Terminate
 - w.p. $1 - p$: A decides
 - Some honest parties: Terminate
 - A decides:
 - Next phase, remaining honest parties will terminate
 - Another phase
Randomized BA/Broadcast Protocols (2)

- **[FM’88]** has *Probabilistic Termination* (PT):
 - Termination round not a priori known
 - No simultaneous termination:
 - honest parties might terminate at different rounds
 - This is inherent [Dolev, Reischuk, Strong’90]
 - Expected $O(1)$ rounds
 - All honest parties terminate within c rounds (constant)

- Extends to multi-valued BA [Turpin, Coan’84]
 - Two additional rounds

- Perfect security [Goldreich, Petrank’90]
 - Best of both worlds

- Variant for parallel broadcast [Ben-Or, El-Yaniv’03]
What’s Missing?

• All PT broadcast protocols are proven secure using a game-based definition (no composition guarantees)
• Composition follows from simulation-based proofs
• [KMTZ’13] defined a UC-based framework for synchronous DT protocols
 – Subtleties of PT protocols are not captured by [KMTZ’13]

We introduce a framework for designing and analyzing synchronous PT protocols
Rest of the Talk

1. The Framework, Part I: Probabilistic Termination
 – Define PT functionalities
 – Construct PT protocols when parties start at same time

2. The Framework, Part II: Non-Simultaneous Start
 – Composition theorem
 – Construct PT protocols without simultaneous start

3. Applications
The Framework
Part I: Probabilistic Termination
Canonical Synchronous Functionality (CSF)

- Separate the function from the round structure
- A CSF consists of input round and output round
- Parametrized by
 - (Randomized) function $f(x_1, ..., x_n, \alpha)$
 - Leakage function $l(x_1, ..., x_n)$
CSF Examples

• **SMT**: P_i sends x_i to P_j
 - $f(x_1, \ldots, x_n, a) = (y_1, \ldots, y_n)$, s.t. $y_j = x_i$ and $y_k = \lambda$ ($k \neq j$)
 - $l(x_1, \ldots, x_n) = \begin{cases} |x_i| & \text{if } P_j \text{ honest} \\ x_i & \text{if } P_j \text{ corrupted} \end{cases}$

• **Broadcast**: P_i broadcasts x_i
 - $f(x_1, \ldots, x_n, a) = (x_i, \ldots, x_i)$
 - $l(x_1, \ldots, x_n) = |x_i|$

• **SFE**: parties compute a function g
 - $f(x_1, \ldots, x_n, a) = g(x_1, \ldots, x_n)$
 - $l(x_1, \ldots, x_n) = (|x_1|, \ldots, |x_n|)$

• **BA**:
 - $f(x_1, \ldots, x_n, a) = \begin{cases} y & \text{if at least } n - t \text{ inputs are } y \\ a & \text{otherwise} \end{cases}$
 - $l(x_1, \ldots, x_n) = (x_1, \ldots, x_n)$

Parallel versions
Synchronous Normal Form (SNF)

• SNF protocol:
 – All parties are synchronized throughout the protocol
 – All hybrids are (2-round) CSFs
 – In each round exactly one ideal functionality is called (as in [Canetti’00])
• Example: Protocol π_{RBA} (based on [FM’87])
Extending Rounds (DT)

• Most functionalities cannot be implemented by two-round protocols
• Wrap the CSFs with \textit{round-extension} wrappers
 – Sample a termination round \(\rho_{\text{term}} \leftarrow D \)
 – All parties receive output at \(\rho_{\text{term}} \)
Extending Rounds (PT)

• PT: ρ_{term} is an upper bound
 – Sample a termination round $\rho_{\text{term}} \leftarrow D$
 – All parties receive output by ρ_{term}
 – A can instruct early delivery for P_i at any round
Where Do We Stand?

Thm: Protocol π_{RBA} implements $\mathcal{W}_{PT}^{D}(\mathcal{F}_{BA})$ in the $(\mathcal{F}_{PSMT}, \mathcal{F}_{OC})$-hybrid model, for $t < n/3$, assuming all parties start at the same round.

Diagram:
- π_{RBA}
 - P-SMT
 - OC
 - P-SMT
 - P-SMT
 - P-SMT
- \mathcal{F}_{BA}
 - $\mathcal{W}_{PT}^{D}(\cdot)$

Probabilistic Termination & Composability
The Framework
Part II: Non-Simultaneous Start
Sequential Composition

Fast parties start new execution before slow parties finished previous execution
Sequential Composition

Fast parties start new execution before slow parties finished previous execution

Additional phase
Sequential Composition

Fast parties start new execution **before** slow parties finished previous execution

![Diagram illustrating sequential composition with overlapping execution phases.](image-url)
Sequential Composition (2)

Goal: ℓ sequential executions of expected $O(1)$ rounds protocols in expected $O(\ell)$ rounds

- Previous solutions [LLR’02] [BE’03] [KK’06]
 - Specific to broadcast
 - Game-based proofs (no composable security)
- We introduce **generic compiler** for SNF protocols
 - Non-simultaneous start
 - “slack” parameter $c \geq 0$: parties start within $c + 1$ rounds
 - Parties not synchronized (concurrent calls to hybrids)
 - Same round complexity
Non-Simultaneous Start

Main idea: add “dummy” rounds to make overlap meaningless

Extend each round to $3c + 1$:
• $2c + 1$ rounds: listen
 – Round $c + 1$: listen & send
• c rounds: wait
 (without listening)

Concurrent Composition
• Each party proceeds in a locally sequential manner
• Round r messages after round $r - 1$
 before round $r + 1$
Slack Reduction

• PT hybrids might introduce additional slack ⇒ rounds might blow-up
• Use slack-reduction techniques [Bracha’84]
 – Upon receiving output v, send (ok, v) to all the parties
 – Upon receiving $t + 1$ messages (ok, v), accepts v
 – Upon receiving $n - t$ messages (ok, v), terminates
• Applies to public-output functionalities

Non-Simultaneous start wrapper

Probabilistic Termination & Composability
Composition Theorem (Illustrated)

If\[\pi_{RBA} \]

Then\[\text{Comp}^c(\pi_{RBA}) \]

Then

Probabilistic Termination & Composability
Applications
(see the paper for more)
Parallel Broadcast

• n parallel runs of [FM’88] ⇒ exp. $\Theta(\log n)$ rounds

• Prior constant-round solutions [BE’03] [FG’03] [KK’06] implement unfair parallel broadcast

• We show how to get parallel broadcast from unfair parallel broadcast using secret sharing (not VSS)

• Thm: Let $c \geq 0$. $\mathcal{W}_{ns-start}^c \left(\mathcal{W}_{PT}^D(\mathcal{F}_{PBC}) \right)$ can be realized in \mathcal{F}_{PSMT}-hybrid in expected $O(1)$ rounds, assuming all parties start within $c + 1$ rounds

[HZ’10] \mathcal{A} can corrupt senders based on their inputs and replace the messages
SFE with Expected $O(d)$ Rounds

Protocol [BGW’88] realizes $\mathcal{W}_{PT}^D(\mathcal{F}_{SFE})$ in $(\mathcal{F}_{PSMT}, \mathcal{F}_{PBC})$-hybrid in $O(d)$ rounds, assuming all parties start at same round

Thm: Let $c \geq 0$

$\mathcal{W}_{ns-start}^c(\mathcal{W}_{PT}^D(\mathcal{F}_{SFE}))$ can be realized in \mathcal{F}_{PSMT}-hybrid in expected $O(d)$ rounds, assuming all parties start within $c + 1$ rounds
Summary

We study universal composability of cryptographic protocols with *probabilistic termination*

- **Framework**
 - Design and analyze simple protocols in *modular composition* fashion
 - Compile to UC protocols with same expected round complexity

- **Perfect, adaptively secure protocols in the P2P model**
 1) BA with expected $O(1)$ rounds
 2) Parallel broadcast with expected $O(1)$ rounds
 3) SFE with expected $O(d)$ rounds

Thank You