
Enriching Topic-Based Publish-Subscribe Systems with
Related Content ∗

Rubi Boim and Tova Milo
School of Computer Science, Tel Aviv University
boim@post.tau.ac.il, milo@post.tau.ac.il

Abstract
This demonstration presents RMFinder (Related Messages Finder),
a system that retains the simplicity and efficiency of topic-based
P2P pub-sub, while providing a richer service where users can
automatically receive all messages related to those in the topics
to which they are subscribed. RMFinder is based on a novel,
dynamic, distributed clustering algorithm, that takes advantage of
similarities between topic messages to group topics together, into
topic-clusters. The clusters adjust automatically to shifts in the fo-
cus of the messages published by the topics, as well as to changes
in the users interest, and allow for an effective delivery of related
messages with minimal overhead.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: [Distributed networks]

; C.2.4 [Distributed Systems]: [Distributed applications]
; H.3.3 [Information Search and Retrieval]: [Clustering]

General Terms
Algorithms, Performance, Experimentation

Keywords
Publish-Subscribe, P2P, Dynamic Clustering, Related Content

1. INTRODUCTION
The amount of information available to Internet users is increas-

ing rapidly. The need of users to be constantly updated with an
up-to-date, accurate, and relevant data, out of this ocean of infor-
mation, makes the publish-subscribe interaction scheme (pub-sub,
for short) particularly appealing. In this demo we focus on a rel-
atively simple class of such systems, called topic-based systems,
where users subscribe to topics and are notified on messages that
belong to those subscribed topics [2, 3].

The main reason for the popularity of topic-based pub-sub sys-
tems is their simplicity. It allows for a simple intuitive user in-
terface as well as a very efficient implementation, and is thus a
perfect fit for application areas where messages divide naturally
into groups that correspond to users interest. A typical example is
the increasingly popular RSS news syndication. An RSS system
is a simple topic-based pub-sub system. Publishers publish their
news by putting them into an RSS feed and providing the URL for
∗The research has been partially supported by the European Project
Mancoosi and the Israel Science Foundation.

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

the feed on their website. It is interesting to note that many ex-
isting RSS applications rely on a rather primitive implementation
where RSS readers poll the feeds periodically. But with the contin-
uous dramatic increase in the number of RSS users, it is anticipated
that, for scalability, future implementation will move to push-based
peer-to-peer (P2P) platforms.

The simplicity of topic-based pub-sub, however, has a price: A
user subscribes to a set of topics (feeds) that she considers interest-
ing. But related messages, possibly of great interest, may be pub-
lished in other topics that she is not subscribed to (and may even
be completely unaware of their existence). These relevant mes-
sages will never reach her. Clearly, a possible solution is to move
to a more sophisticated class of pub-sub systems such as content-
based systems [8]. In such systems, subscribers specify their in-
terest through message filters, which are boolean queries on the
message content. This added flexibility however does not come for
free - content-based pub-sub typically requires much more sophis-
ticated protocols with higher runtime overhead, as well as more
sophisticated user interaction.

The goal of this demonstration is to present RMFinder (Re-
lated Messages Finder), a system that retains the simplicity and ef-
ficiency of topic-based P2P pub-sub, while providing a richer ser-
vice where users can automatically receive all messages related to
those in the topics to which they are subscribed. RMFinder is
based on a novel, dynamic, distributed clustering algorithm, that
takes advantage of similarities between topic messages to group
topics together, into topic-clusters. The clusters adjust automati-
cally to shifts in the focus of the messages published by the topics,
as well as to changes in the users interest, and allow for an effective
delivery of related messages with minimal overhead.

It should be stressed that our aim here is not to invent yet another
topic-based pub-sub system, but rather to present a generic novel
technique for better utilization of existing platforms. Indeed, while
our implementation uses the Scribe[1] pub-sub system to manage
topics and user subscriptions, the technique that we propose can
similarly be used on any such network.

Remark The grouping of topics into sets has been previously pro-
posed in the literature in a different context: To provide users with
varying subscription granularity it was suggested to group topics
into sets forming a sub-set hierarchy[7]. A main difference with the
present work is the static nature of that grouping. In contrast, our
solution adapts continuously the topic-clusters to the actual corre-
lations between the topics messages, guaranteeing, as we shall see,
stable good results even when the type of the messages published
by the topics changes significantly.

2. RMFINDER OVERVIEW
We start by providing some background on topic-based pub-sub

systems and the challenges encountered when trying to enrich them
to deliver related content. Next we present RMFinder.

Topic-based pub-sub. The interfaces of typical P2P topic-based
pub-sub systems share four common operations: CREATE, PUB-
LISH, SUBSCRIBE and UNSUBSCRIBE. To send messages, the
publishers first CREATE topics. Each topic is virtually represented
by an individual peer (often called a channel), which is recognized
by a unique ID (called a topic-ID), and serves as a mediator be-
tween the publishers’ side and the subscribers’ side. To publish a
message for a given topic, the publisher calls the PUBLISH op-
eration with a specific topic-ID. The message is passed to the ap-
propriate channel and propagated from it to the topic subscribers.
To become subscribers of a given topic, interested users call the
SUBSCRIBE operation, with the appropriate topic-ID. The corre-
sponding UNSUBSCRIBE operation removes the subscription.

Enriched topic-based pub-sub. In our enriched topic-based
pub-sub, before a message is sent from the channel to the sub-
scribers, it is enriched with information on related messages re-
cently published by other topics. This may include just the iden-
tifiers of such related messages (the topic-ID and the message id
within that topic), some message summary (e.g. title and date) or
the full message text.

How can one find these related messages? Channels often store
recent messages for a certain time interval to allow users that were
not connected to catch up. But a naive approach that simply queries
all the channels (e.g. using some search criteria that defines what
qualifies as related messages) is clearly infeasible: The number
of topics in a typical pub-sub system is very large. Furthermore,
most topics are completely irrelevant to the message at hand. Thus,
querying all topics each time that a message is sent is prohibitively
wasteful. To avoid this, we cluster together topics that are likely
to contain related messages. This is done as follows. We build for
each topic a “profile" (features set) that concisely describes the na-
ture of messages recently published by the topic. We then use these
profiles to group topics with similar profiles into a set, which we
call a topic-cluster. Just like individual topics, each topic-cluster
is given a unique id and is represented by a channel (peer). When
such a cluster is created, the channels of its topics are informed. (In
general, the clusters are not required to be disjoint and a topic may
belong to more than one cluster). Now, when a publisher passes a
message to the topic‘s channel, before propagating the message to
the subscribes, the peer first sends the message to the channels of all
those clusters to which the topic belongs and awaits their response.
The (cluster) channels then each match the message to the profiles
of the topics in the cluster. They determine which topics are most
likely to contain relevant messages and query only those topics.
The message is then enriched with the retrieved data and returned
to the topic channel to be sent to the subscribers. To efficiently re-
trieve relevant messages at the queried peers, each message is also
assigned a profile (features set) and a dedicated query optimization
technique is used to identify messages with similar profiles.

For optimal results, we would like to form the “best" topic-clusters,
s.t. most of the relevant messages are indeed retrieved while the
overhead of querying irrelevant topics is minimized. While this
may appear to be a traditional clustering problem, there are three re-
quirements, derived from the specific context, which together make
the problem particularly challenging.

• Adaptivity. A P2P pub-sub environment has a dynamic na-
ture: not only that topics and publishers may come and go,
but also the focus and type of the messages published in each
topic may change over time. For instance, a sports chan-
nel may focus at different times on baseball, basketball, or

soccer. A good solution thus must have a dynamic nature,
continuously adapting the topics profile and clusters to the
current system state.

• Distribution. The decentralized P2P nature of pub-sub sys-
tems, where no central coordinator has full knowledge about
the systemŠs state and the topics behavior, calls for a corre-
sponding distributed clustering algorithm.

• Low overhead. Finally, the continuous clustering efforts,
as well as the adjustment of the topics profile, should incur
only very minimal overhead, not to harm the overall system
performance.

To address these requirement, RMFinder uses a novel dynamic
distributed clustering algorithm that we developed recently in [10].
The algorithm employs local cluster updates to change the overall
system configuration. Each local update is performed only when it
is estimated to be (globally) cost effective. Furthermore, to min-
imize the overhead involved in gain estimations, a probabilistic
component is employed to guarantee that (with high probability)
gain estimation are computed only for updates that are likely to
be beneficial. The clustering algorithm was originally introduced
in [10] as a technique for reducing communication overheads in
topic-based pub-sub systems, and is adjusted in the present work to
enable efficient retrieval of related messages.

3. DYNAMIC CLUSTERING
To complete the picture, let us go briefly over the main compo-

nent of the clustering algorithm and see what is required to apply it
in our context.

Clusters Quality. The clustering algorithm is based on a set of
local "cluster update" operations, performed by individual channels
(of topics and clusters) consulting only a relatively small neighbor-
hood. These operations include: the grouping of two individual
topics to form a new cluster; the addition of a topic to an existing
cluster; the merge of two existing clusters into a single cluster; and
conversely the removal of topics from a cluster and the destruction
of clusters. The algorithm uses a formula F that estimates the qual-
ity of the current clusters. Only updates that are determined to be
beneficial (i.e. increase the value of F) are performed.

The formula F used by RMFinder is given below. It uses the
following notation. T denotes the set of all topics. C denotes
the current set of clusters. For a topic t ∈ T , Ct denotes the
set of clusters in which t is a member, and Tt denotes the set of
all topics that are members of these clusters. For two topics t, t′

RM(t, t′) → [0 : 1] is a function that estimates the likelihood
for t and t′ to publish related messages. (RM will be discussed in
more details below). Recall that a “good" clustering is one where
most relevant messages are indeed retrieved while the overhead of
querying irrelevant topics is minimized. To capture this, F consid-
ers each topic t ∈ T . For each topic, the first summand estimates
which portion of the related messages, out of all related messages,
will be found when considering only the topics in the clusters to
which t belong. The second part of the formula measures the “tight-
ness" of the clustering - it estimates how many topics irrelevant for
t, out of all the potentially irrelevant topics, might be queried by
the clusters. The relative importance of these two criteria is tuned
using the weight (constant) w.

F (T, C) =
∑
t∈T

[

∑
t′∈Tt

RM(t, t′)∑
t′∈T RM(t, t′)

− w

∑
c∈Ct

∑
t′∈c(1−RM(t, t′))∑

t′∈T (1−RM(t′, t))
]

It should be noted that since all the cluster update operations are
local in nature, to evaluate the potential benefit of an update, there
is no need to evaluate the full formula but only the changes entailed
to the small neighborhood involving the updated topics/clusters.

Features extraction and relevance estimation. To mea-
sure the quality of the clustering, we need to estimate the likeli-
hood for t and t′ to publish related messages. (The function RM
used above). For that, we build for each topic a “profile" (features
set) that concisely describes the nature of messages recently pub-
lished in this topic. More specifically, for each topic we consider a
sliding window that includes its recent messages of a given time in-
terval. From this set of messages we extract a features set of size k
(for some predefined constant k). The features set is incrementally
updated as time advances and the window slides. In our imple-
mentation we use a simple TFIDF features selection [9], where the
selected features are words that appear in the messages with highest
TFIDF score. Stop words are excluded and words appearing in the
title get higher weight. Finally, for two topics t, t′, the likelihood
for them to contain related messages is estimated by the similarity
of their feature sets s, s′: RM(t, t′) = |s∩s′|

k
.

We will show in the demonstration that even with these very sim-
ple feature extraction and relevance estimation, RMFinder yields
impressive results. But clearly, if desired, more sophisticated fea-
tures extraction/relevance estimation can easily be plugged in (in-
cluding ones that take users’ feedback into consideration).

Triggering cluster updates. To complete the picture, let us
explain what triggers cluster updates. Looking at the formula F
above we can see that when the features set of some topic changes
(hence its relevance to other cluster topics decreases or increases),
the formula needs to be re-evaluated to determine if the topic should
be removed from existing clusters or be added to some other clus-
ters (and if consequently some clusters should be merged). To de-
termine which cluster and topic pairs should be considered, RMFinder
uses a simple heuristics based on the observation that people that
subscribe to a given topic are likely to subscribe also to related top-
ics. Clusters thus search for new candidate topics (or clusters) by
probing the subscribers of the cluster topics and checking to which
other topics (clusters) they are subscribed (belong).

D H T

U t i l i z e A p p l i c a t i o n

R M F i n d e r A P I

R M F i n d e r

P u b - S u b I n t e r f a c e

P u b l i s - S u b s c r i b e

N e t w o r k

Figure 1: RMFinder architecture

4. DEMONSTRATION SCENARIO
RMFinder is developed in Java, designed to be deployed on

any pub-sub network by simply implementing its pub-sub interface.
We provide the implementation for the popular topic-based pub-sub
platform Scribe [1]. Scribe itself is built over Pastry [4] – a DHT
(Distributed Hash Table [5, 6]) that provides the overlay network
services. RMFinder exposes to users the same API as Scribe for
defining topics, publishing messages, and (un)subscribing. In addi-
tion, to support all RMFinder features, a few more functions have
been added to its API. It uses the dynamic clustering algorithm

described above to automatically group topics into clusters and to
enrich messages with related content. Figure 1 illustrates the lay-
ered architecture that we adopted in our design, starting from the
highest level - the application that utilizes RMFinder through its
API, and ending with the Network itself.

To illustrate the power of RMFinder we will show how it can
be used to enrich typical RSS feeds with related content. In our
demonstration we will use real life RSS feeds whose messages we
accumulated over the last six months from popular sites such as
CNN, ESPN, and Yahoo. These include in particular fifteen dif-
ferent feeds from three main categories (news, basketball and en-
tertainment). Throughout the demonstration we will follow the op-
eration of the system from three angles: (1) we will show how the
news publishers post messages, (2) we will see how the feed readers
receive the (enriched) messages, and (3) we will follow what hap-
pens behind the scene using a surveillance panel. The panel will
show the topics and their selected feature sets, the formed (and dy-
namically updated) clusters, and the message enrichment process.

The demonstration has two main parts. The first part aims to
illustrate the daily system operation. We will show how standard
RSS messages are posted and enriched before they are delivered to
the readers. The importance of this enrichment will be illustrated
by showing how critical related messages are automatically discov-
ered and delivered to the users. The second part of the demonstra-
tion focuses on the dynamic aspects of RMFinder. It illustrates
the adaptability of the clustering (and of the messages retrieval) to
changes in the type of the messages, as well as to the addition (resp.
removal) of feeds. For that we will simulate a scenario where the
news reporters of some feeds switch to write for some other feeds
(hence the style and content of the messages in these feeds will
dramatically change). We will see how the selected features of the
feeds (and consequently the clusters) adapt to the new setting, and
how related messages are properly identified and sent to the users.

Finally, to conclude our demonstration we will show an applica-
tion of RMFinder to RSS archives, where enriched messages are
archived and a standard Web browser provides a simple, intuitive
navigation between (transitively) related news items.

5. REFERENCES
[1] M. Castro and P. Druschel and A. Kermarrec and A. Rowstron.

SCRIBE: A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in communications
(JSAC) 2002

[2] V. Ramasubramanian and R. Peterson and Emin Gun Sirer. Corona:
A High Performance Publish-Subscribe System for the World Wide
Web. Proc. of Networked System Design and Implementation 2006

[3] D. Sandler and A. Mislove and A. Post and P. Druschel. FeedTree:
Sharing Web Micronews with Peer-to-Peer Event Notification. Proc.
Int. Workshop on Peer-to-Peer Systems (IPTPSŠ05) New York 2005

[4] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. Proc.
IFIP/ACM Middleware 2001

[5] I. Stoica and R. Morris and D. Karger and F. Kaashoek and
H.Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup Service
for InternetApplications. Proc. ACM SIGCOMM 149–160 2001

[6] B. Y. Zhao and J. D. Kubiatowicz and A. D. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location andRouting. UC
Berkeley 2001 UCB/CSD-01-1141 April

[7] E. Patrick Th. and G. Rachid and S. Joe. Type-Based
Publish/Subscribe. 2000

[8] R. Zhang and Y. C. Hu. HYPER: A Hybrid Approach to Efficient
Content-based Publish/Subscribe. ICDCS Proc. ICDCS 2005

[9] G. Salton and C.S. Yang. On the specification of term values in
automatic indexing. J. Documents 1973

[10] T. Milo, T. Zur and E. Verbin. Boosting topic-based
publish-subscribe systems with dynamic clustering. Proc. SIGMOD
2007

