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ABSTRACT
Recommender systems usually rely on user profiles to generate per-
sonalized recommendations. We argue here that such profiles are
often too coarse to capture the current user’s state of mind/desire.
For example, a serious user that usually prefers documentary fea-
tures may, at the end of a long and tiring conference, be in the mood
for a lighter entertaining movie, not captured by her usual profile.
As communicating one’s state of mind to a system in (key)words
may be difficult, we propose in this work an alternative method
which allows users to describe their current desire/mood through
examples. Our algorithms utilizes the user’s examples to refine the
recommendations generated by a given system, considering sev-
eral, possibly competing, desired properties of the recommended
items set (rating, similarity, diversity, coverage). The algorithms
are based on a simple geometric representation of the example items,
which allows for efficient processing and the generation of suitable
recommendations even in the absence of semantic information.

1. INTRODUCTION
Recommender systems aim to provide personalized recommen-

dations by capturing the user’s taste. Solutions range from ones
using semantic properties of users and items (e.g. age, genre, etc.)
to semantic-less ones such as Collaborative Filtering that are based
only on users scores for items (e.g. “people who liked this set of
items also liked...”)[16]. While many recent works focus on im-
proving the accuracy of such systems, we argue that the granularity
of “user’s taste” that they capture is too coarse. Indeed, none of
these methods, sophisticated as they might be, captures the user’s
current “state of mind”, or her current “mood”. For instance, a
user might usually prefer documentary features, but before a date
with her boyfriend she might be in a lighter romantic mood and
prefer recommendations for a romantic comedy. Alternatively, the
same user may be sharing her laptop with her daughter and thus
get recommendations for the new “Harry Potter” book, rather than
ones that interest her, because her daughter often uses her laptop
and thus the profile is more affected by her choices.

A key difficulty in providing suitable recommendations to users
in such a scenario is that it is not always easy for a user to describe
her current mood/desire to the system in (key)words. Indeed, recent

works suggested the use of an example, instead of verbal descrip-
tion [11]. For instance, Pandora [11] asks users for an example of
a song they would want to hear, then attempts to generate a playlist
of similar songs. (We will discuss what “similar” means later).

But is a single example indeed enough to describe the user’s cur-
rent state of mind/mood? We argue that the answer is No. A user,
for instance, might have had a long day at work and is interested in
watching a “light” movie (that is, an enjoyable movie which does
not require its full attention). Capturing such a desire with a single
movie example is hard, as there are different kinds of light movies,
e.g. of different genres. If she gives, for instance “American Pie” - a
comedy - as a (single) example, or alternatively “The Rock” - an ac-
tion movie, the two recommendation lists would be very different:
In the first case it is likely to consist only of comedy-like movies,
whereas in the second case of only action-like features. While each
individual list indeed contains relevant items, it clearly does not
cover the relevant spectrum. The overspecialization may further
yield improper recommendations, e.g. “heavy” action movies like
“Predator”. Indeed, what is desirable here is to use jointly the two
examples above to capture the user desire more accurately, rec-
ommending action-comedy features like “Lethal Weapon” or “Bad
Boys”. (We refer below to such items as joint representatives).

This paper aims to provide precisely such methods for captur-
ing the user’s current desire/mood through multiple examples. Our
proposed algorithm utilizes the user’s examples to refine the rec-
ommendations generated by a given recommender system, by con-
sidering several, possibly competing, properties of the proposed
items (to be further discussed in the sequel); (a) the similarity to
the given individual examples, (b) the joint similarity to subsets of
the examples, as illustrated above, (c) the (possibly personalized)
items scores - often called rating - given by the recommender sys-
tem (items with higher rating are more relevant), (d) the diversity
of the recommended items, and (e) their coverage of the examples.

The problem that we address here is a particular type of per-
sonal, context-aware, recommendations. Prior work on Context-
Aware Recommender Systems (CARS) (e.g. [10, 7, 15]) typically
assumes the presence of some (auxiliary) context information, such
as location, time, domain, semantics, etc., which plays a key role in
their algorithms. Our work targets common situations where such
data does not suffice to indicate the current user mood, or is not
available. (If such information is present, it can still be leveraged
by the underling recommender system, as explained below).

Our work integrates several existing technologies in a new algo-
rithm to produce a user mood-specific recommendations list. Given
the set of user examples, we first take a Collaborative Filtering (CF)
approach [16] to evaluate the similarity between the given exam-
ples and the items in the database, without requiring any seman-
tic information. (We explain briefly in the sequel how CF works).
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Figure 1: Mood4 ’s main screen (iPad version)

Our algorithm then creates a geometric representation of the items
space, in order to find the joint representatives mentioned above
(also to be discussed in the sequel) which play a key role in the al-
gorithm. The geometric representation is then updated and blended
with the (personalized) rating of each item, as given by the under-
lying recommender system, in preparation for the final weighting
mechanism. Finally, we use a novel technique from [5], based on
priority-medoids, to diversify the final recommendations.

Mood4. To demonstrate the effectiveness of our approach, we
implemented the above solution in the Mood4 prototype system.
Mood4 is designed as a plug-in the can be deployed on CF-based
recommender system. Figure 1 depicts a screenshot of Mood4 when
used in the context of movie recommendations, following the ex-
ample of the “light-viewing” mood discussed above. “American
Pie” (comedy), “The Rock” (action) and “Independence Day” (ac-
tion) are the examples chosen by the user to describe her current
desire/state of mind (on the left part of the screen). The recommen-
dation generated by Mood4 are presented on the main screen, and
indeed include joint representatives such as “Bad boys” and “Lethal
Weapon” (both are action-comedy) . Interestingly, Mood4 also
captures a different kind of relationship - one that is not only based
on the genre, but also on the casting: “Hitch” is a comedy movie,
and its leading actor is Will Smith, which stars in “Independence
Day”. This is a especially interesting as it is achieved in spite of the
fact that no semantic information on movies is used by Mood4 ,
and is due to the power of CF. Finally, Mood4 also provides two
useful features to its users: a visual explanation for each recom-
mendation, and a “zoom-in” facility attached to each recommended
item, allowing users to further explore similar recommended items.

Mood4 was demonstrated in [4] where only a high-level descrip-
tion of the system was given. The current paper presents the under-
laying model, the algorithms, and their experimental evaluation.
Section 2 briefly describes CF and presents the geometric represen-
tation that we use. Section 3 presents the joint representatives, the
enhanced geometric representation, and the items selection process
used to generate the recommendations. The experimental results
and the related work are finally presented in Sections 4 and 5.

2. GEOMETRIC REPRESENTATION
In this section we present the model on which we base our rec-

ommendations. We start with notations and a short description of
CF, then we describe the geometric representation that we employ.

Let I be a finite domain of items and let S ⊆ I be the set of
example provided by the user. We refer the items in S as seeds. Our
goal is to find a subset Ik ⊂ I , of size k, of items to recommend the
user, matching best her mood as reflected by the provided seeds.

Collaborative Filtering. Collaborative Filtering (CF) is a method
of making automatic predictions, and thereby recommendations,
for how much a user would like a given item, based on the ratings
that other (similar) users gave to (similar) item. Unlike semantic-
based systems, where recommendations are made by analyzing the
(semantic) properties of each item (such as color, genre, size, etc.),
CF utilizes only raw user ratings (such as 1 to 5 stars). Intuitively,
it is based on the assumption that users who agreed in the past on
items ratings are likely to agree again in the future. Recommenda-
tions are made first by the estimation of unknown ratings, that is
the items the user have yet rated, and then by the selection of the
items with the highest estimated rating. (Intuitively, these items are
the ones the system believes the user would like best).

The main component in CF system is the similarity estimation
between two items (users). Intuitively, each item is viewed as a vec-
tor of ratings in a multi-dimensional space, where each dimension
represents the rating of the user corresponding to that dimension.
(The similarity between users is analogously defined). Similarity
between items is then evaluated by measuring the distance between
different vectors, by some distance measure such as cosine or Pear-
son’s correlation coefficient [12]. Rating predictions are tradition-
ally computed in two steps: First, we search for a neighborhood of
items, similar to the given one, that have already been rated. Then
the predicted rating is computed by aggregating (e.g. averaging)
the known ratings of the neighborhood members. In the reminder
of this paper we denote by rate(u, i) the (predicted) rating of an
item i by a user u. For simplicity, we assume the current user is
known from the context and simply use rate(i). More generally,
rate(i) can be used to denote the value of a more sophisticated per-
sonalized algorithm, if such is available. We denote the similarity
between two items i and j by sim(i, j). W.l.o.g. we assume below
that distance values are in the range of [0, 1] (a larger value yield a
higher similarity). When this is not the case one may naturally map
the values to this range.

Geometric Representation. Our algorithm starts by comput-
ing, for each seed item s ∈ S, a neighborhood N(s) consisting
of the K items most similar to it, for some constant value K (we
later show that K = 50 provides us the best results). We then look
at the geometrical representation of the seeds and their neighbor-
hoods. Note that, in general, sim is not always a metric function.
But to simplify the presentation we will assume below that it is, and
display the geometric representation on a simple 2-d plan, where
the geometric distance between items represents the sim function
(items with a higher similarity measure will appear closer). Figure
2 (a) depict the geometric representation of the example discussed
in the Introduction. The rating of each item (as evaluated by the
underlying recommender system) is given next to the item’s name.
The neighborhood of each seed item defines a circle where the cor-
responding seed is the center and the radius is defined by the least
similar item in its corresponding neighborhood.

But how can we decide which items should we choose to present
the user? (That is, to construct the set Ik). As mentioned in the
Introduction, our algorithm considers several (possibly conflicting)
properties. We recall below these properties and describe their geo-
metrical equivalent requirement: For (a), the similarity to given in-
dividual seeds, the geometric requirement is to choose items closest
to the center of the circles. For (b), the joint similarity to subsets of
the seeds, the requirement is to choose items in the intersections of
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Figure 2: (a) Geometric Representation (partial) (b) Geometric Representation with Joint Representatives (partial)

the circles (more of this to be followed). For (c), the ratings of the
items, there is not (yet) direct relation to the geometric represen-
tation, and in general, the requirement is to choose items with the
highest ratings. For (d), the diversity of the recommended items,
the requirement is not to choose items too similar to each other.
Finally, for (e), the coverage Ik of the seeds, the requirements is,
broadly speaking, to choose items throughout the entire geometric
representation, instead of focusing (or neglecting) a specific area.

3. GENERATING RECOMMENDATIONS
Our algorithm naturally blends all the above properties by inter-

preting the geometrical representation of the items. A key role in
the algorithm are the join representatives, which we next explain.

3.1 Joint Representatives
Joint representatives are the items that captures best the mood

reflected by multiple seeds. Intuitively, these are the items which
resembles most to all the seeds of a specific subset. In the geomet-
ric representation, these are the items located in the intersection of
multiple circles. Each such area corresponds to a subset of seeds
that are the center of the overlapping circles. Intuitively, the items
in each such area are similar (only) to all seeds of the correspond-
ing subset. For example, in Figure 2 (a) American Pie 2 is indeed
similar only to the seed American Pie, but Air Force One is similar
to both The Rock and Independence Day.

For each subset of seed items, corresponding to the overlapping
areas discussed above, we wish to find the item that “represents”
it the most. To decide which item to choose between (possibly)
several candidates (that is, ones that all are similar to all the subset
of seeds), we consider the rating of the items as well. Formally, for
a subset of seeds S′ ⊆ S we define the joint representative item to
be the one that maximizes the value of the following equation:

JointRep(S′) = argmax
i∈N(s)|s∈S′

[min
s∈S′

[
sim(i, s) ∗ rate(i)
avgj∈N(s)(rate(j))

]]

The formula captures the following intuition: Intuitively, the joint
representative is the item which resides in the center of the geomet-
ric area, with respect to the subset of seeds. To find this item, we
search the candidate items (the ones in the corresponding neighbor-
hoods) for the item whose minimal similarity among the subset of
seeds is the maximal. To consider item ratings as well, we combine
the similarity measure with the rating of each item and divide it by
the mean rating of the neighborhood of the corresponding seeds.

In practice, we take an additional “filtering” step that avoids
choosing joint representatives which are “too close” to any of the
seeds. While this verification can be easily checked once a spe-
cific threshold is manually set, we take an alternative approach that
avoids such arbitrary selection by considering the entire neighbor-
hood of each of the original seeds. Specifically, we consider as “too
close” items ones whose similarity with any of the seed items is
above the mean similarity of that seed and its neighborhood items.

“Too far” items, on the other side, also needs to be addressed.
When the seeds of a specific subsets are too far away from each
other, no item can be close enough to provide meaningful repre-
sentation. For instance, in the movie domain, there is no meaning-
ful representative item for two seeds from totaly different domains
such as Documentary and Fantasy. As in the opposite “too close”
items scenario, we wish to avoid arbitrary threshold to define which
seeds are too far (or alternatively which joint representative are
not meaningful). We use instead a simple condition that requires
JointRep(S′) to be a positive greater than 0. For scenarios were
the value equal to 0, or below, the joint representative is undefined.

3.2 Enhanced Geometric Representation
The next step of the algorithm is enhancing the geometric repre-

sentation. We start by augmenting the seed set with the joint rep-
resentatives discussed above. Specifically, we go over all possible
subsets of seeds (analogous to go over all intersections of circles)
and for each subset we evaluate the corresponding joint representa-
tive item. Note that the same item may be the joint representatives
of different subsets, and in this specific case, we only add it once.

We next update the basic similarity measure used before. We
combine (multiply), as for the joint representatives, the similarity
and the rating of the items, then normalize the results not only by
the mean rating, but also by the mean similarity of the neighbor-
hood of the corresponding seed item. This refined similarity mea-
sure between an item i and a seed s is given by:

Sim′(i, s) =
sim(i, s) ∗ rate(i)

avgj∈N(s)(sim(j, s)) ∗ avgj∈N(s)(rate(j))

It will (i) better help our algorithm merge the neighborhoods on the
next step, and (ii) will prevent biased towards highly rated items.

Figure 2 (b) depicts the updated plot which includes the joint
representatives and the updated similarity measure. The joint rep-
resentatives added by the algorithm are in red, and their neighbor-
hoods are surrounded by solid circles (as opposed to the dashed
ones surrounding the seeds). Note that these neighborhoods may
include new items - that is, ones which were not members in any
of the original neighborhoods. “Hitch” in this current scenario is
such an example. Also note that the circle symmetry shown before
in Figure 2 (a) is not preserved as the similarity measure is now
blended with the rating. The ratings shown in (a) are thus omitted.

We finally briefly discuss the complexity of this part of the al-
gorithm. Finding all the joint representatives requires traversing all
possible subsets of seed sets which clearly impose an exponential
overhead on the algorithm. In practice, however, the size of the seed
set is small (around |S| = 3) and thus does not pose any restriction
on the running time. Moreover, as we will later see in the exper-
iments, the algorithm is extremely efficient even for larger sets of
seeds. Additionally, we will consider an optimization that caches
the neighborhoods of all items which will reduce the running time
to (only) a few milliseconds regardless to the size of |S|.
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3.3 Items Selection
The next step of the algorithm extracts from the enhanced ge-

ometric representation a weighted list of the top K most relevant
items (based on all the properties discussed above). From within
this list we will choose in the next step the set of item Ik to rec-
ommend the user. Note that we do not directly choose the set Ik
in order to use the diversification mechanism based on the priority
cover-trees (to be explained shortly). The current center of the cir-
cles, intuitively, describes best the users’s current mood. We would
thus like to choose the K items closest to all centers. We next
define, for each item i in the geometric representation, a weight
function MoodRel(i) that reflects its overall relevance to the mood
reflected by the input seeds. The weight function is given by:

MoodRel(i) = #circles(i) ∗mSim+ max
s∈S+

Sim′(i, s)

where S+ is the augmented seed set (with the joint representatives),
#circles(i) is the number of circles i resides within the enhanced
geometric representation and mSim is a constant bigger than the
maximal value of Sim′. Note that for the next stage of the algo-
rithm, we are less interested in the exact values MoodRel() re-
turns, and instead, we utilize the order it projects. Thus, the func-
tion orders the items by the number of circles they resides within,
and to break ties, it sorts the items by their distance to the seed /
joint representative closest to them.

We finally note that the normalization made by the Sim′() func-
tion is designed to provide a good balance (in terms of coverage) in
the selection of the top-K items. Without it, the variation in both
the sim() and rate() functions, which Sim′() is built on, can lead
to a biased list, where large sections of the geometric representation
can remain without any “representatives” in the top-K list.

3.4 Diversification
The last step of the algorithm refines the top-K items, evaluated

before, into the final set of recommendations Ik (of size k) that
would be presented to the user. To get into perspective, the default
value we chose for K was 50 and for k was 5, which is a standard
selection that fits most of today’s mobile screens. Note that sim-
ply choosing the top-k items from the top-K list may lead to an
unattractive overly homogenous set of recommendations; for ex-
ample, in the movie domain, a set all consisting of sequel movies.
Clearly the user would prefer to be presented with a wider and more
diverse subset of the highly rated items (possibly with an option to
view more sequels via a click on a “more of that” button).

To achieve this, we employ the diversification mechanism from
[5]. It is based on the notion of priority-medoids, which naturally
clusters items based on both their distances from each other and by
their assigned rating (MoodRel() in our context). As it is an NP-
Hard problem, an approximation is done by priority cover-trees [5].

4. EXPERIMENTS
We implemented the algorithms discussed above in the Mood4 sys-

tem [4]. We used Mood4 in a variety of settings to evaluate the de-
scribed algorithms by (i) empirical evaluation, (ii) a user study, and
(iii) performance measures. We next give a summary of all results.

System settings. In all experiments, Mood4 was deployed on
top of a CF-based recommender system (C2F [3]). For estimating
item similarity, we used Pearson’s correlation coefficient [12]. We
install Mood4 on an Intel machine (Core i7-870), running on 2.93
GHz with 16GB memory and Win7 64Bit (we used only a single
core and 2.5GB of RAM). As data, we used a real-life data set from
the cinema domain, provided by Netflix [2], which contains over
100 million distinct raw movie ratings (such as 1 to 5 “stars”), by
almost 500,000 users, and no semantic information on the movies.

Experiments settings. The first step of the experiments is the
selection of the seed set S. Throughout the experiments we con-
struct a seed set by choosing first a single item, which will act as
the base of the set, and then enrich it with more items that will
construct the final set. We tested both random and popular item
selection as the base of the set and found similar trends for both
approaches (thus, the results presented here are for random). The
exact number of items added (to the base), and their distances are
variables which will be set in the upcoming experiments (more on
that below). Once we have evaluated a seed set S we used it as in-
put to several algorithms (see below) in order to evaluate, for each
algorithm, a set of items to recommend the user (Ik).

Algorithms. We denote by Mood4 the main algorithm described
in this paper. We first compared it to two baseline algorithms (i)
MaxRel (Maximum Relevance) that returns the top k items with
the highest rate() values; The candidate items being all the items
of the surrounding neighborhoods of the seeds, and (ii) MaxSim
(Maximum Similarity) that, instead, selects the items with the high-
est sim() values, as well as to a simpler variant of Mood4, denoted
Mood4ˆ, that avoids the use of the joint representatives. (The geo-
metric representation is considered only with the original seeds).

We have also tested a few variations of the above algorithms,
such as MaxDiversity [5], that diversifies the selected highest rated
items, and variant that uses only a single seed example (as in Pan-
dora) to capture the user’s mood. As they were always outper-
formed by Mood4ˆ, which may be viewed as a generalization of
both, we omit their results here. We finally note that we did not
compare our performance to algorithms from the Context-Aware
Recommender Systems field as all algorithms we are aware of re-
quire additional auxiliary information (e.g. semantics, context, etc.)
which is not available here. See Section 5 for further discussion.

4.1 Empirical Evaluation
We start by presenting the empirical measures used to evaluated

the algorithms, and then present the different parameters tested.
Then we present a summary of the results.

Measures. Following we briefly describe the different measures
used to evaluate the results of the above algorithms. Each measure
is the sum of a different function over the recommended items Ik.
Rating. The classical property of recommender system. The higher
the (general) relevance of the recommended items the better. For-
mally, Rating(Ik) =

∑
i∈Ik

rate(i).
Diversity. Avoids monotonicity recommendations and generates
a wider view of the available items. For simplicity, we used the
same method as [5] and took the inverse value of the similarity.
The higher the value, the more diverse are the items, and better the
results. Formally, Diversity(Ik) =

∑
i,j∈Ik

(1− sim(i, j)).
Similarity (Max). Measures the similarity of the recommended
items with the original seeds by choosing, for each item, the maxi-
mal similarity among all seeds. A higher value yields a more sim-
ilar relation to a specific seed, and thus a better result. Formally,
Sim(max)(Ik) =

∑
i∈Ik

maxs∈S sim(i, s).
Similarity (Average). An alternative measure of similarity that re-
flects the joint similarity of the recommended items to all seeds
simultaneously. Specifically, the measure returns the average simi-
larity among all seeds, and thus, a higher value also yields a better
result. Formally, Sim(avg)(Ik) =

∑
i∈Ik

avgs∈Ssim(i, s)
Variance. Measures “how far” are the recommended items from
the original seeds. Unlike previous measures, lower values here
means tighter items and thus better results. Formally, V ar(Ik) =∑

i∈Ik

∑
s∈S

(sim(i,s)−sim(i,S))2

|S| where sim(i, S) is the average
similarity between i and all seeds in S.
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Parameters. We consider next the parameters tested. In each
experiment, we highlight the effect of each one by fixing all others
to a given default value while varying the parameter of interest.
Number of Seeds (|S|) - the number of seeds entered by the user.
Neighborhood Size (K) - the size of both the neighborhoods in the
geometric representation, and of the final weighted list.
Seed distances - the distance (similarity) between the different
seeds, and like the number of seeds, it depends on the user’s in-
put (e.g., in the movie domain, the user can enterer two comedies
and an action feature, or instead, three comedies).

We note that we also tested a varying range of values for k (the
number of recommended items). As it had no affect on all mea-
sures, we chose a common value k = 5 for all experiments.

Summary of the Results. Due to space constraints, we present
the results only for (1), and give a brief summary for (2) and (3).
The results are averages of 1000 different seed sets.

Number of Seeds (1). We start the experiment by evaluating the
affect of the number of seeds (|S|) used. Note that in a real sys-
tem setting this parameter is not fixed and depends solely on the
user’s input. We nevertheless tested a varying (reasonable) range
of possible values, staring from |S| = 2 and up to |S| = 6.

We start with the rating measure depicted in Figure 3 (a). MaxRel
is ranked the highest, not surprisingly, as it focuses solely on the
rating property, and is naturally increases with the size of |S|. MaxSim
however, which is focused solely on the similarity, is clearly ranked
the lowest. Both Mood4 and Mood4ˆ are ranked between the two
baselines as they do not focus on a single property. Between them,
we can see that the use of the joint representatives has a small (neg-
ative) affect on the rating measure (we will later see the positive
affect on the average similarity). This is also the case for the diver-
sity measure depicted in Figure 3 (b); Algorithm Mood4ˆ achieves
a higher value than Mood4 as |S| increases. Essentially, this means
that the items in the set Ik evaluated by Mood4 are closer to each
other than the items generated by Mood4ˆ. It is expected as the joint
representatives used by Mood4 are designed to help the algorithm
to discover items that are similar to several seeds together, and thus,
the final recommended items will naturally be more related to each
other than the items who are similar only to a specific seed. This
is also the reason why the diversity measure slightly decrease for
Mood4 with the increase of |S|. Nevertheless, Mood4 still achieves
a higher diversity measure compared to MaxRel and MaxSim.

We continue with the similarity (max) measure depicted in Fig-
ure 3 (c). Broadly speaking, the results were not too affected by the
size of |S|, as expected, as we focus here on the single seed simi-
larity. In terms of ranking, MaxSim is clearly at the top, followed
by Mood4ˆ which focuses, as MaxSim, on the similarity of a single
seed. Mood4, which focuses on the joint similarity, is ranked next
before the last MaxRel which does not consider the similarity at all.
For the similarity (average) measure, depicted in Figure 3 (d), the
results were entirely different: except for low values of |S|, Mood4
achieves the best results among all algorithms. (The order among
the rest of the algorithms remains the same). This is surprising as
we would expect Mood4 to outperform MaxSim even for small val-
ues of |S|. We found that this discrepancy is due to the variance
of the items. Intuitively, a large similarity (average) value can be
evaluated when (only) a single item holds a high value of similar-
ity. For example, the similarity (average) value of the similarities
{0.8, 0.2, 0.2} is higher than of {0.4, 0.3, 0.3} (0.4 > 0.333). It
comes on the expense of a much higher variance (0.08 > 0.018 in
this example). Figure 3 (e) depicts the variance of the similarity for
the varying |S|. Unlike all previous figures, lower measures yield
here better results. We can see that the variance is indeed much

lower for Mood4 than for MaxSim, even for low values of |S|. We
thus conclude that Mood4 achieves the best joint seed similarity.
Neighborhood size (2). We tested a range of neighborhood sizes
from K = 5 up to K = 200. Note that this is the only parameter
that needs to be fixed by our algorithm, and thus, the goal of the
experiments was to find the optimal value for it. Intuitively, a value
too low would restrict the algorithm to use items too similar to the
original seeds, while a value too high may consider irrelevant items
(that is, ones that are not related to the seeds). We observed that
K = 50 provided a good balance between all measures. Interest-
ingly, we manually (subjectively) tuned the algorithm prior to these
empirical experiments and chose the same value.
Seed distances (3). Like the number of seeds, this parameter is
defined in a real world setting solely by the user (that is, it is de-
rives by the items she chooses as seeds). For the experiments, once
the based seed was selected, we ordered the all items by their sim-
ilarity to it, and then selected the i’th and the i ∗ 2’th elements as
the second and third seeds for a varying i (from i = 1 to i = 100).
Interestingly, we found that all algorithms were not too affected by
the different distances, except for the average similarity (slightly
decreased with the increase of the distances) which was expected.
We conclude that this parameter has no crucial affect on the algo-
rithms, and thus, chose a balanced value (i = 50) as default value.

4.2 User Study
The ideal way to assess the real-world quality of the algorithms

is by measuring the click-through rate (CTR) it derives in an actual
deployed system. As we do not possess such a luxury setting, we
took a alternative approach and asked volunteers to compare and
assess themselves the outputs of the tested algorithms. Note that a
subjective assessment of recommendations is not a trivial task, as
the volunteer needs to be familiar with all the items the algorithms
output in order to estimate how well they match her current desire.
(In our context, to watch the suggested movies).

Our initial survey included 40 volunteers. Specifically, each one
was asked to choose three items (movies), indicating their current
mood, and then compare three sets of recommendations generated
in response by the Mood4, Mood4ˆ and MaxSim algorithms. (The
volunteers were able slip the output and repeat the process if recom-
mended unfamiliar movies whose relevance they could not asses).
Then, in the course of the Mood4 demo in [4], 30 more users
where asked to to assess the algorithms quality, in a similar set-
ting. The trends in the two experiment were similar: The majority
of users ( 70%) preferred the recommendations of Mood4. Algo-
rithm Mood4ˆ came second (20%) while MaxSim came last (10%).

4.3 Performance
To conclude we show that our algorithm operates fast enough to

support real life scenarios of a working system. Figure 3 (f) de-
picts the running time of Mood4 with the defaults settings for a
varying number of seeds |S|. The results are an average of 1000
different runs, and are presented in milliseconds. For the common
value of |S| = 3 we can see that the running time is around 25
milliseconds. When |S| increases, the running time naturally in-
creases but not as dramatically as expected (evaluating the joint
representatives requires exponential behavior). We further exam-
ined the specific running times of each part of the algorithm and
found that the majority of the time was spent on the evaluation of
the item neighborhoods. We thus implemented an additional mod-
ule to Mood4 that caches the neighborhoods, once evaluated, in
memory for fast future use. We refer the tweaked implementation
by Mood4 (Stored Neighborhood) and its results are also depicted
in Figure 3 (f). As we can see, the running time drops dramatically
from the non optimized version of Mood4 and does not exceed 15
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Figure 3: Results for varying number of seeds (|S|)

millisecond even for the |S| = 6. Note that for the Netflix data set
used in here we only needed less than 3.5 MB additional memory.

5. RELATED WORK AND CONCLUSION
A key objective of recent research on recommender systems is

to improve the ratings estimation and thereby the overall recom-
mendations [16, 9]. Recently, there has been extensive research
in the context of social networks. Examples include [6] that allows
users to tweak the underlying algorithms to better balance the infor-
mation derived from different networks, [17] that generates multi-
modal graphs to describe multi-network information, and [14] that
uses a latent factor model to process such data. All these works
leverage (external) social information. They are complimentary to
ours and can be used to enhance our basic CF model of ratings.

Context awareness has been recently addressed by a subclass
of recommender systems called CARS (Context-Aware Recom-
mender Systems) [10, 7, 15]. Here, recommendations are generated
not only based on the user-item rating matrix, but also using addi-
tional dimensions which represents contextual information such as
location, domain, semantics, etc. For example, [10] exploits spa-
tial, social and temporal (context) information in order to better
capture the user profiles in the context of photo recommendations,
[7] used POI (points of interests) in order to understand the user’s
intentions, and [15] devised a mood specific movie similarity mea-
sure in order to provide, like us, recommendations that fits your
current mood. All these works leverage the context of the user by
exploiting some (additional) external information (location - [10,
7], social - [10] and semantics [15]). In contrast, our work extract
the user’s context without requiring any information but the local
items data set. If such additional information is present, we can in-
corporate the above methods into our underlying rating prediction
mechanism to improve our mood capturing recommendations.

Most relevant to our work is the problem of group-recommendations
[1, 13]. While one may view each group member as an “example”,
the algorithms from [1, 13] are not suitable here as they (i) focus
on reducing the group disagreement (e.g. maximizing the similar-
ity to all the seeds), not incorporating the other properties discussed
above [1], and (ii) they require the use of semantics (genres) [13].
Bootstrapping is also related, and its often addressed by methods
for choosing the items needed to be rated by new users which max-
imize the prediction gain [8]. A difficulty is that a user may be
asked to rate unfamiliar items. In contrast, our algorithm generates
recommendations instantly upon entering familiar items.

From the industry, Pandora [11] is a good example for a system
that generates recommendations by asking the user to enter a sam-
ple song (or an artist) she likes, generating in response a playlist of
similar tunes. Unlike Mood4 , Pandora only focuses on a single
example at a time (even with its new “variety” option), and does
not try to find overlapping features as Mood4 .

In summary, we presented in this paper a novel method for gener-
ating recommendations based on the user’s current mood. The rec-
ommendations are generated based on a geometric representation
model, formed using the user’s input examples, extended with the
use of joint representatives. We showed that our effective algorithm
operates extremely quickly in practice and is feasible for a real time
large scale system. Finally, we note that while our solution does
not require semantic data on the items, leveraging such data (when
available) may be an intriguing direction for future work.
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