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Abstract— This paper considers a popular class of recom-
mender systems that are based on Collaborative Filtering (CF)
and proposes a novel technique for diversifying the recom-
mendations that they give to users. Items are clustered based
on a unique notion of priority-medoids that provides a natural
balance between the need to present highly ranked items vs.
highly diverse ones. Our solution estimates items diversity by
comparing the rankings that different users gave to the items,
thereby enabling diversification even in common scenarios where
no semantic information on the items is available. It also provides
a natural zoom-in mechanism to focus on items (clusters) of
interest and recommending diversified similar items. We present
DiRec, a plug-in that implements the above concepts and allows
CF Recommender systems to diversify their recommendations.
We illustrate the operation of DiRec in the context of a movie
recommendation system and present a thorough experimental
study that demonstrates the effectiveness of our recommenda-
tion diversification technique and its superiority over previous
solutions.

I. INTRODUCTION

Online shopping has grown rapidly over the past few years.
Besides the convenience of shopping directly from one’s home,
an important advantage of e-commerce is the great variety
of items that online stores offer. However, with such a large
number of items, it becomes harder for vendors to determine
which items are more relevant for a given user and, given the
limited size of the screen, which of these possibly relevant
items should be presented first.

Much research has been devoted recently to the development
of Recommender systems[1]. These systems predict the rating
(e.g., a grade on a scale of 1 to 5) that a user would assign
to an unseen item, and consider items with a high predicted
rating to be relevant. But, which of these highly rated items
should be presented first to the user? A naive solution would be
to simply sort the items by their estimated rating and present
the top-k that fit onto the screen. This however may result
in an over-specialized items list. For example, suppose that
a user is interested in movie recommendations. Assume that
only 5 movies may fit onto the screen and that the top-5 ranked
movies, for this user, all happen to be Star Wars sequels. While
the given user may indeed like this series, a more diverse and
wider view of the highly ranked movies may be desirable. For
instance one that includes a Star Wars movie, but also other
movies like Star Trek or E.T., with the access to more Star
Wars sequels enabled via a “more of that” zoom-in button.

This papers aims to provide precisely such diversification
and zoom-in facilities. Specifically, we focus here on a popular
class of recommender systems that is based of Collaborative
Filtering (CF), in which user ratings to items based on previous
ratings of (similar) items by (similar) users[2]. A first question
that needs to be addressed when designing such a diversifi-
cation mechanism is how to measure the similarity/diversity
of two given items. Previous proposals are often based on
the assumption that some semantic information on items (e.g.
the genre of the movie, the director, the actors) is given. CF
recommender systems, however, typically do not carry such
semantic information [1]. But even if they had, a problem is
that it is not always clear how to define item diversity based on
a given semantic information [3]. For example, some movies
of the same director/leading actor may indeed be similar,
whereas others may not. To overcome this difficulty, we follow
the CF approach [2], [4] and instead of relying on semantic
information, determine items similarity (and correspondingly
diversity) based solely on ratings that previous users gave to
the items. Intuitively, each item here is viewed as a vector
of ratings, with vector distance (measured, e.g., by cosine, L°
distance, or Pearson correlation coefficient) used as measure
of similarity/diversity.

A second important challenge is the need to balance, when
choosing items, between two possibly conflicting objectives:
presenting highest ranked items vs. choosing highly diverse
ones. Some previous works attempted to resolve this by
assigning a weight to each objective and selecting an items
set that maximizes the weighted sum[5]; others used thresh-
olds to bound the allowed similarity between items and the
drop in rank [6]. But the difficult question always is which
weights or thresholds to choose?. Indeed, a manual tuning of
weights/thresholds (e.g. by experimentation) for a given data
set is not only time consuming but is also no longer effective
when the data changes [5]. To solve this problem we propose
here a novel approach that avoids the use of weights/thresholds
altogether. We introduce the notion of priority-medoids, an
adaptation of the classical notion of medoids[7] to a context
where items have priorities (ratings). Priority-medoids (to be
defined formally in the sequel) allow for natural clustering
of items and the selection of cluster representatives that
balance rank and diversity. The clustering further allows the
realization of an intuitive “zoom-in"’ mechanism, where users
can focus on specific items on the screen and view similar



recommended items. Priority-medoids sub-clustering is then
be used, recursively, to diversify their presentation (and to
allow further zooming-in).

To best of our knowledge, the only other previous algorithm
without weights/threshold is Algorithm Greedy of [6], which
does not support zoom-in. . The tradeoff between ranking and
diversity is hard-coded in the algorithm and no declarative
notion of optimality is given. As always, an advantage of
a declarative definition is that it is not tied to a particular
algorithm and thus allows for formal analysis and optimiza-
tion. While we show that identifying the optimal priority-
medoids is NP-hard, we present an efficient (ptime) heuristic
based on priority cover-trees, a particular sub-class of cover-
trees [8] that proves to be extremely effective in this context.
Our experiments show that the representatives chosen by
our algorithms, with no need for weights tuning whatsoever,
are as good and sometimes even superior to those obtained
even with optimally-tuned weights of previous algorithms.
(The comparison measures and the experiments are detailed
in Section V). We further present an optimization technique
that exploits the properties of our algorithm for an efficient
realization of the above mentioned “zoom-in” mechanism.

DiRec : To demonstrate the effectiveness of our ap-
proach, we implemented the above solution in the DiRec pro-
totype system. DiRec is designed as a plug-in that can be
deployed on CF-based recommender systems, by implement-
ing a simple API, and was demonstrated in [9]. [9] provides
a high-level description of the system, while the current
paper presents the underlying model and algorithms. Our
experimental study examines the operation of DiRec in the
context of a movie recommendations system using real data
from Netflix [10]. This data set provides only raw user ratings
to movies (such as 1 to 5 “stars” given by individual users)
and does not hold semantic information on the movies. The
results thus illustrate the effectiveness of our recommendation
diversification technique even in the absence of semantic
information.

Related Work: We next give a brief summery of previous
work, highlighting the contributions of this paper.

Modern recommender systems aim to generate a personal-
ized set of recommendations to each user. The difficulty of
gathering semantic information on items and user preferences
has triggered the development of recommender systems that
are based on Collaborative Filtering (CF) rather than on
semantics [1]. Such systems are very common nowadays and
are the focus of the present work.

As explained above, a recommendations list that consists of
the items with top-k predicted ratings may suffer from over
specialization. Indeed, [11] evaluated the diversity of top-k
items generated by traditional CF algorithms and showed it to
be fairly low. Several algorithms that attempt to diversify the
recommendation were proposed in the literature (see [5] for a
survey). They fall generally into two classes: greedy heuristics,
where the recommendation list is constructed “one-by-one” by
maximizing a given distance function at each step (e.g. [12],
[3], [6]), and interchange (Swap) heuristics, where an initial

list is first constructed and then refined by a series of actions
that forms the final list (e.g. [4], [6]). But common to most
is the use of predefined weights or thresholds to determine
the balances between ranking and diversity or to bound the
allowed similarity between items and the drop in rank [12],
[3], [4], [13]. While the selected weights/thresholds clearly
affects the performance of the algorithms, their precise choice
is left open in all the works we are aware of. Such use of
weights/thresholds is problematic since their manual tuning
(e.g. by experimentation) for a given data set is not only
time consuming but is also no longer effective when the data
changes [5]. As explained in the Introduction, our solution
employs, instead, priority medoids, to declaratively capture the
desired balance. This is in contrast to [6] where the tradeoff
is hard-coded in the algorithm. It further has the advantage of
allowing for a natural (and optimizable) zoom-in mechanism.

The importance of results diversification has been recog-
nized also in the context of database queries [14], [15], [16],
[17], [18]. For example, [14] proposes a notion of diversity
over structured query results which are post-processed and
organized in a decision tree to help users navigate them; [15]
introduces a hierarchical notion of diversity in databases and
develops efficient top-k processing algorithms; [16] proposes
to diversify query results to avoid over personalization; [17]
uses attributes content to group tuples in a meaningful way
that allows for convenient data exploration. This line of works
however relays heavily on the structured data content. But
such structured (semantic) information is not available in CF
Recommender systems. Our work alleviates this problem by
adopting the CF approach and relying on CF (dis)similarity
measures rather than semantic ones.

The most relevant to our work, although also targeted
to structured databases, is [18], where the authors used the
notion of classical medoids (approximated by classical cover-
trees) to select representatives for the query results and to
zoom in on similar answers. While our work was inspired by
[18], a key difference is that [18] completely ignores tuples
rating/priority. We will see that our use of priority medoids
and, resp., priority cover-trees, over the classical ones, prove
to be extremely effective and greatly improves that generated
recommendations.

Contributions: The technical contributions of this paper
can be summarized as follows:

o We introduce the novel notion of priority-medoids as
a tool for selecting item representatives. Our approach
naturally balances the rating and the diversity of the
recommended items and is applicable even in the absence
of semantic information (as often is the case is CF
recommender systems).

e We show that finding optimal priority-medoids is NP-
hard and provide an alternative effective heuristic based
on priority cover-trees.

o We exploit the properties of our algorithm to design an
efficient, incremental zoom-in mechanism that allows to
focus on individual items, identify their neighborhood
(similar) items and select appropriate representatives for



them.

o We discuss the implementation of the DiRec plug-in that
implements the aforementioned algorithms and present
an experimental study that demonstrates the superiority
of our solution relative to previous algorithms as well as
the efficiency of the algorithms.

The paper is organized as follows. Section II presents
priority-medoids. Section III then explains how they are ap-
proximated and how item representatives are selected. Section
IV describes the zoom-in mechanism. The system implemen-
tation and our experiments are described in Section V . Finally,
we conclude in Section VI.

II. PRIORITY-MEDOIDS

We start by providing the needed background and notation
for Collaborative Filtering (CF). We then consider the problem
of balancing the ratings and the diversity of the recommended
items and define priority-medoids.

A. Collaborative Filtering

Common CF algorithms are item-based, consisting of two
main steps: (1) choosing for each item a neighborhood of
similar items, and (2) predicting the rating that a user v will
give to an item ¢ using some aggregation function on the actual
ratings, gave by wu, to the items within the neighborhood of ¢
[2]. Symmetric user-based variants also exist but are less fre-
quently used [2]. A key ingredient in the algorithm is thus the
estimation of similarity between two items. Intuitively, each
item is viewed as a vector of ratings in a multi-dimensional
speace, where each dimension corresponds to a given user,
(recording her rating of that item). The distance between item
vectors is then used as a measure for the items similarity. In
principle, any distance measure can be employed here (e.g.
Cosine or L’ distance) but Pearson’s correlation coefficient
[19] seems to be the preferred choice in most major systems.
The basic intuition behind Pearson’s measure is to give a high
similarity score for two items that tend to be rated the same
by many users. In the reminder of this paper we use rate(u, i)
do denote the predicted rating of a user u to item ¢. When w is
known from the context we omit it and simply write rate().
We use dist(i, ) to denote the distance between items 4 and
7. W.lLo.g. we assume below that distance values are in the
range of [0,1]. (When this is not the case one may naturally
map the values to this range). The smaller the distance is, the
more similar (and less diverse) are the items.

B. Balancing Rating and Distance

We can now describe our main problem: given a set [
of items and a size k, where the former holds the most
relevant items for a given user (as decided by the given CF
recommender system) and the latter denotes the number of
items fitted onto the screen, we need to choose the subset I, C
I (of size k) that will be presented to the user. A naive solution
simply selects the top-k items with the highest rate() values,
namely the ones who maximize the sum >, _, rate(i). This
however may result in an over-specialized subset, as described
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Fig. 1. Priority-medoid vs. standard medoid

in the Introduction. Thus, we should consider the diversity
of the items as well, which may be analogically measured
by the sum }_, ., dist(i,j). As these are two opposing
measures, one needs to provide a good balance between the
two. Additionally, this subset should also provide a good
coverage for the entire set I, which intuitively can be viewed
as a classic clustering problem, where we need to minimize
the distances between the items in I and the “center” of the
cluster they belong to.

Our solution, as mentioned in the Introduction, is based on
the notion of priority-medoids, an adaptation of the classical
notion of medoids to this context. To explain this, let us
first briefly (and informally) recall what standard medoids are.
Consider a set I of items split into k disjoint subsets, referred
to as clusters. The medoid of a given cluster (also called the
cluster’s representative) is an element in the cluster s.t. the
sum of the distances from it to the other items in the cluster
is minimal. Other variants that consider e.g. the average,
min or max distance, also exist [7]. This sum is called the
cluster’s weight. The classical goal is to find a clustering that
minimize the overall sum of cluster weights. Note that, given
a set I, C I of k items in I, the minimal-weight clustering
for which the Ij, items serve as representatives (medoids),
is one where each item 7 € [ is associated (clustered) with
the element in I that is closest to it. Thus to find the best
clustering one essentially needs to identify the best I}, set.

In our context we are interested in representatives with high
rating. Priority-medoids therefore add the requirement that the
representatives are the ones having highest rating in their
corresponding clusters. Thus, when considering a set [ of
priority-medoids, the clusters it forms are different than the
ones formed when considering standard medoids.

More formally, consider a subset I}, C I of size k of items,
s.t. I, contains, among others, an item having the highest
rating in /. We will explain below why having such an item
in I, is important. For an element ¢ € I, we denote by rep(7)
the item within I satisfying the following two constraints:

« the rating of rep(i) is greater or equal to that of 4

o among all items in [ satisfying the above, rep(i) is

the closest to ¢, namely there is no other j € I with
dist(i,7) < dist(i,rep(i)).
The items with the same representative rep(i) form a cluster,
and thus [ yields a clustering formation for the items of I.
We refer to the items in I as the priority-medoids of their
corresponding clusters. Note that the fact that the highest rated



element in [ is a member of [ guarantees that all elements
in I indeed have a cluster to which they may belong.

Example 2.1: The example in Figure 1 illustrates the dif-
ference between the cluster formation in regular medoids and
that of priority-medoids. Assume that £ = 2 and that the set
I}, consists of the two items 7’ and 7. Also assume that the
euclidian distance between items describes their similarity. The
number in parenthesis, next to each item, describes its rating.
On the right (resp. left) hand side we see the clusters formed
when the items in I are treated as regular (resp. priority-)
medoids. The arrows outgoing the elements i; — ¢4 point to
their cluster representative. On the right hand side (regular
medoids) items 7s,i3 and 74 are clustered with ", as they are
closer to it than to ¢’. ¢; is clustered with i’. In contrast, on
the left hand side (priority-medoids), the clustering formation
is different as the item ratings are now also being considered.
Specifically, since the rating of ¢/ is lower than that of is, 45 is
clustered with (and represented by) 4/, that has higher rating,
even though it is slightly further.

The quality of the obtained clustering (and thereby the
quality of the set [, of priority-medoids that yielded the
clustering), is measured, as before, by the distance of the
items to the corresponding cluster representatives, namely by
Yicrdist(i,rep(i)). When I is known from the context, we
use a simplified notation and denote this sum by weight(1}).
As for standard medoids, the lower the weight, the better the
clustering (and the set I of priority-medoids) is. We are thus
interested in a set I, with minimal weight(I)). However, we
point out that there may be several sets with the same minimal
weight, in which case we break the tie by choosing the one
where rating values are lexicographically higher.

For example, assume k£ = 3 and we have two sets
I3 = {il,ig,ig}, Ié = {ill,ié, Zg}, where weight(Ig) =
weight(I4). If the rating values of the three elements in I3
(resp. I}), sorted in decreasing order are 5,4, 1, (resp. 5, 3,2)
then we choose I3 over I}. (An alternative could be to prefer,
e.g., item sets with higher average/sum of rating). Ties may
still occur when distinct items have the same rating, in which
case we break it arbitrarily.

We can show that identifying the best priority-medoids is
NP-hard (proof is omitted). We thus use a heuristic, based on
priority cover-trees - an adaptation of the classical cover-trees
[8] to our context. We explain this next.

IITI. PRIORITY COVER-TREE

A cover-tree is a data structure originally designed to speed
up a nearest neighbor search [8]. The use of cover-trees as a
tool for selecting (regular) medoids was recently proposed in
[18], in the context of diversification of query results. A key
difference from the present work is that item ratings were not
taken into consideration. We next show that a fairly simple
modification to the algorithm of [18] allows to account for
such ratings and thereby gradely improve the quality of the
generated recommendations.

A conventional cover-tree can be thought of as a hierarchy
of levels, where each node corresponds to a specific item, and
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each level is a “cover” for the level beneath it. (The root is
at level zero, its children at level one, and so on). Each node
in the tree is associated with an item in /. An item can be
associated with multiple nodes but can appear at most once in
every level [. A conventional cover-tree obeys, for all levels,
the first three invariants below. In our algorithms we use a
special sub-class of these trees, which we call priority cover-
trees, that further obey the forth invariant.

1) (Nesting) If a node is associated with an item i, then
one of its children must also be associated with 1.

2) (Separation) All nodes at level [ are at least 2% far from
one another.

3) (Covering) Each node at level [ is within distance 2—1, to
its children in level [ + 1.

4) (Priority) Each node has a rating higher or equal to that
of any of its children.

Example 3.1: To illustrate how a priority cover tree looks
like, consider for example the items ¢; — 47 on the right hand
side of Figure 2. While in general we do not assume that
the pairwise distances between items (the dist(i,j) measure)
forms a metric, the distances between the items in this
example are presented in the euclidian space for the readers
convenience. The number in the parentheses next to each item
denotes its rating. The tree on the left hand side of the figure
is an example for a priority cover-tree for these elements.
To maintain invariant 4, the item with the highest priority
ig 1s assigned to the root. Analogously, all other nodes are
assigned to items with higher priorities than their descendants.
For instance, in this specific tree 74 is a descendant of i5. We
note that without invariant 4, as e.g. in the case of standard
cover-trees, an alternative tree where the roles of the two items
is reversed would also be legal. Namely a tree where ¢4 is now
direct descendant of the root, and correspondingly ¢5 serve as
a descendant of 4.

We next explain the role that invariant 4 plays in our algo-
rithms for constructing priority-cover trees and for selecting
items representatives, based on the constructed tree.

A. Construction

Our construction algorithm for priority cover-trees resem-
bles the one of the original cover-tree [8]. Nevertheless, we



next detail the algorithm and the specific changes as they
are important for understanding our refinement (zoom-in)
algorithm.

The construction consists of two main components: the first
(Algorithm 1) starts by sorting the set I of items according to
their rating, in a descending order. This will allow preserving
the invariants of the priority cover-tree (see Theorem 3.3
below). The algorithm then constructs a new tree whose root
is the item with the highest rating. It then iterates orderly over
the rest of elements and adds them into the tree one by one, by
calling the second component: the Insert Single Item
function (depicted in Algorithm 2). This function finds the
first level into which the given item can be inserted. It works
in a recursive fashion: it is given as input the item ¢ to be
inserted, the current level of tree [ under which the item may
potentially be inserted (initially level O - the level of the root),
and the set (J; of the nodes in this level - the node that are
considered to serve as 4’s parent. Specifically, it contains all
the items whose dist() measure with the added item is below
% (due to invariant 3). On lines 1-3 the algorithms checks if
the separation (invariant 2) between the added item and the
descendants of items in ); holds. The function Ldist(Q,1)
returns the item ¢’ € @ whose dist(i,i’) value is the smallest
among all members of (. If the condition holds, the algorithm
returns frue and a previous instance of the recursion will add
the item. On line 5 the algorithm advances to the next level
I + 1 by choosing the item who is the most similar to ¢ from
all candidates that preserves invariant 3. Intuitively, this will
set the closest item as the item’s parent. This item is saved
in the set Q;41, and on line 6 the call for the recursion is
done. If the recursion returned true, and the condition holds,
the algorithm chooses, on line 8, the parent (out of the legal
candidates) and adds the new item underneath it, on line 9.
We point however that because of line 5, the selection on line
8 is unique as the set (; holds a single item at any time.

We illustrate the operation of the algorithm with the follow-
ing example.

Example 3.2: To continue with our running example, the
priority cover-tree in Figure 2 is obtained by running the con-
struction algorithm on the items in the figure. The algorithm
starts by sorting the items by their ratings. Item ¢4 is first set
as the root of the tree, followed by the insertion of items i3
and i5. Note that when two or more items share the same
rating value, their relative order is arbitrary; in this example
we used the lexicographic ordering of their corresponding item
number (thus item i3 was inserted prior to item i5). Then,
item i is inserted and added at level 2, as its distance from
with g, dist(ig,i7), is too small, and invariant 2 prevents it
from residing at level 1. Note that it is placed underneath
ig due to invariant 3. Analogously, items 41 and 74 are later
added at level 3 underneath items 72 and ¢5 correspondingly.
Both are not added at level 2 because their dist(iq,i2) and
dist(i4,15) values are too high (that is, they are too similar) for
preserving invariant 2. We finally note that the tree presented
in Figure 2 is “fully presented”, where every node is shown.
It is not necessary to repeat a node when it has no (different)

descendants (for example, i3, i and i in Figure 2).

Algorithm 1 Construct Priority Cover-tree

Require: Set of items [

1: Sort I by relevance
¢ ipoot = pop first 1
1 set 1ro0t AS rOOt tree
: for all i € I\{iyo0t} do
InsertSingleItem(i, 0, {iroot })
: end for

Algorithm 2 Insert Single Item
Require: Item ¢, Cover set Q;, level [
1: Q = {Children()|i’ € Qi}
2. if dist(Ldist(Q,4),i) > % then
3:  return true (parent found)
4: else
S Quo = {Ldist(Q,1)}
6:  found = InsertSingleltem(i, Q41,0 + 1)
7. if found == true AND dist(Ldist(Q;,i),i) < 5 then
8
9

q = the node in Q;
insert 7 into children(q)

10: return false (finish)
11:  else

12: return found

13:  end if

14: end if

Comparison with the construction of regular cover-trees
The construction algorithm for priority cover-tree can be
viewed as a refinement of the basic algorithm for (regular)
cover-tree construction from [8]. Specifically, there are two
particular actions which our prioritized variant takes:

e Ordered Insertion. In the conventional cover-tree con-
struction algorithm, items are inserted in an arbitrary
order. Instead, our algorithm first sorts the items w.r.t
their ratings, then inserts them in descending order.

e Tight Insertion. In the original algorithm, at the point
when the algorithm finally inserts the given item into the
tree, it may have several candidate nodes that may act
as the item’s parent. As any node in this set is a ‘legal’
parent (in the sense that the invariants will be preserved),
the original algorithm chooses among them arbitrary. In
contrast, our refined algorithm always prefers the node
with the smallest dist() measure to the inserted items.

We note here that ordered insertion suffices to guarantee
Invariant 4 (see Theorem 3.3). Tight insertion, on the other
hand, is not mandatory for the correctness of the construc-
tion. However it will prove useful later, when considering
recommendations refinement (zoom-in). We discuss this issue
in more detail in Section IV.

Theorem 3.3: At any point of the construction, the tree built
by Algorithm 1 preserves all four invariants of the priority
cover-tree.



Proof: As our algorithm is a refinement of the regular
cover-tree construction algorithm, that preserves the first three
invariants, so does Algorithm 1. For the fourth invariant, we
need to show that for any item 4 and any of its descended 4/,
the rating of the former is higher than the one of the latter.
Indeed, as our tree is constructed in a top-down fashion, and
¢ is higher in the tree than i/, we know that ¢ was inserted
prior to ¢’. As the order of the insertion respects the rating (in
descending order), it follows that 7 is of higher rating. ]

B. Representative Selection

We next explain how the constructed priority cover-tree is
used to select item representatives. We use below the following
notations. Given a node n in the tree and an integer [ > 0, we
say that n is at level [ in the tree, if the distance between n
and the root of the tree (counted by the number of edges on
the path between them) is . We use C; to denote the set of
nodes at level [.

The pseudo-code of the algorithm is given in Algorithm 3
and we sketch below the key ideas. Consider a set I of items
which the CF recommender determined as most relevant for
a given user. As explained above, the k items that we want to
present to users are the priority-medoids of I. To find such a
subset, with low weight, we use the priority cover-tree of [
as follows: Starting from the tree root, we search for the first
level ! within the tree that includes at least k nodes, namely
where |C;_1] < k and |C}| > k (lines 1-7). We then choose
our k representatives from within C; (lines 8-14). Recall that
due to the structure of the priority cover-tree the nodes in
C; are at least 2% far from one another and have rating higher
than their descendants. If C; contains exactly k nodes, then we
simply choose these nodes for representatives and we are done.
Otherwise, we need to select a subset of size k. To select good
representatives, we use the tree structure: Recall the nesting
property of the tree, which implies that C;_; C Cj. Moreover,
because of the hierarchical structure of the tree, the nodes
(items) within C;_; have rating > than those in C; and are
pairwise further apart from each other than from the remaining
nodes. Thus, we first select the nodes (items) in C;_1, then add
the remaining k—|C;_1| from within C;—C)_1. We consider in
our implementation and experiments three alternative methods
for choosing these additional elements:

e Max-rating - the elements having the maximal ratings,

o Max-diversity - the elements that are farthest from the

previously chosen elements, and

e Max-coverage - the elements having the maximal number

of descendants.
The next example illustrates the difference between these
variants.

Example 3.4: Consider our running example of the priority
cover-tree depicted in Figure 2. Assume that we look for three
representatives (k = 3). The first level that contains at least
three items is the level 1. All items in the above level (0)
are “automatically” selected, which is only ¢¢ in the running
example. The algorithm then needs to decide which two more
items out of the three candidates in C'; — Cy will be selected

as well. When considering Max-rating, items ¢3 and i5 are
selected as their rating (4) is higher than the one of item
ia (3), resulting with the final set {is,i5,%g}. Alternative,
when considering Max-diversity, items i, and i3 are selected
as their dist() measure with ig is higher than the ones of
item 145, resulting with the final set {is, 3, ig}. Finally, when
considering Max-Coverage, items 12 and i5 are selected as the
number of their descendants is higher than the ones of s,
resulting with the final set {is,i5,4}. We note that although
in this example each of the three measures yields a different
representative sets, this is not always the case in general and
they naturally may agree.

Note that, during the tree construction, we can easily record
the number of descendants each node has, and use this infor-
mation for the implementation of the Max-coverage variant.
Thus, all three options are equivalent in terms of computational
effort. They may differ however, as we shall see later, in the
quality of the generated representatives set.

Algorithm 3 Priority-medoids Selection
Ctreehight| > k

Require: k, trechight,
:1=0

2: while [ < treehight do

3. if |C)| >=k then

4 break

5 end if

6: I+ +

7: end while

8: PriorityMedoids = C;_4
9: Crest = C1—1 — C}

10: sort (descending) C)..s; by rating, diversity or coverage
11: while | PriorityMedoids| < k do

122 i = pop first Chest

13:  PriorityMedoids = PriorityMedoids| J{i}

14: end while

15: return PriorityMedoids

IV. RECOMMENDATION REFINEMENT

Alongside each item (representative) ¢ that is presented on
the screen, DiRec offers a “more of that” zoom-in button that
allows the user to view further related items.

One possible approach for identifying such items in [ is
to select the ones whose distance from 7 (as measured by
the dist() function) is below a certain threshold. However, as
it is never obvious which threshold should one choose, we
take, instead, an alternative approach based on the following
intuition: when a user clicks on a specific item ¢, she not only
signals her interest in item’s ¢ family but also signals that ¢ in-
terests her more than the other £ —1 presented representatives.
Recalling the clustering formation generated by the presented
representatives (priority-medoids), we determine the items in
the cluster represented by ¢ as relevant, denoting this set by
relevant(i). Formally,

relevant(i) = {i'|rep(i’) = i/\i' el}



Here again, the set relevant(i) often contains more items
than could fit on the screen and a subset needs to be chosen,
to be presented to the user. A straightforward approach to
choose k representatives for relevant (i) is to build a priority
cover-tree for the set, then use it to select representatives, as
described above. We refer this as the naive approach. Rather
than doing so, we employ instead an optimized, significantly
more efficient, algorithm that is based on the following obser-
vation: In the priority cover-tree previously constructed for
I, most of the elements in relevant(i) already appear in
subtree rooted at ¢. Indeed, the tight Insertion used in to the
construction algorithm (Section III-A) was employed precisely
to increase the number of such elements. We thus use this
subtree as a basis for the construction of the priority cover-tree
of relevant(i). Note however that the subtree may not include
all the members of relevan(i) and also it might include some
redundant elements that are not members of relevant(i). We
show this on the following example:

Example 4.1: We continue with our running example of
the priority cover-tree depict in Figure 2, and assume that
{42, 13,16} is the set of representatives. (Note that this scenario
was presented at the previous section when k£ = 3 and Max-
diversity was selected). The set relevant(ig) consists of the
item ¢7 as well as i4 and 5, as the rating of item ¢4 is higher
than their rating and their distance to it is smaller than their
distance to the (non selected) items 75 and 73. But the subtree
underneath item ¢g consists only of item ¢7 (and trivially item
i), leaving items 74 and 75 outside. Note that this scenario
may occur when |Cj| > k, as some items here do not reside
underneath the subtree of any representative.

We also note that some elements that belong to the subtree
rooted at the selected representative ¢ may not be members of
relevant(i). This scenario can occur if the pairwise distances
between the items (the dist() measure) do not form a metric.
We thus need to prune redundant elements and add missing
ones into the subtree. This is performed by Algorithm 4.

The algorithm starts by pruning redundant elements from
the tree (lines 1-5). As such elements may have attached
descendants, the remove function removes the entire subtree
underneath these elements (line 3). Note that their descendants
may or may not be a member of relevant(i). The algorithm
then initialize a “to be inserted” priority queue (line 6) and
adds all the missing elements to it (lines 7-11). The priority
queue is sorted by the item ratings from high to low. The
algorithm then iterates over these element and inserts (in order)
the missing items into the subtree (lines 13-14). The insertion
follows the usual procedure described in the previous section,
except that special attention is payed to cases where an element
with high rating is to be inserted below one with lower rating.
Note that such special treatment is essential if one wants to
preserve invariant 4 of the priority cover-tree. In such cases
we first prune out the “problematic” subtree (lines 15-16) -
that is, the one rooted at the node with the lower rating -
and adds its items to the “to be inserted” items priority queue
(lines 17-18). The process is guaranteed to terminate since the
queue is sorted: when an element is inserted, only items with

lower rating are added to the queue, and the number of such
elements is finite. The updated subtree is then fed as input to
Algorithm 3 for selecting the item representatives (line 22).

Algorithm 4 Refinement - Optimized approach
Require: i, subtree
1: for all ' € subtree do
2:  if not i’ € relevant(i) then
3 subtree.removeSubtree (i)
4:  end if
5: end for
6: init priorityQueue
7
8
9

: for all ¢/ € relevant(i) do
if not i’ € subtree then

: priorityQueue.add(i’)
10:  end if
11: end for
12: while not priorityQueue.empty do
13: i = priorityQueue.pop
14 subtree.add(i’)
15:  if subtree.violated then

16: subtree’ = subtree.removeViolated()
17: for all i’ € subtree’ do

18: priorityQueue.add(i’)

19: end for

20:  end if

21: end while
22: return Algorithm 3 with respect to subtree

While the worst case complexity of the algorithm equals
to that of the naive, full tree construction, in practice many
of the items indeed appear in the subtree and only few
conflicts are encountered. This yields significant performance
improvement, as demonstrated in our experiments in Section
V-D.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented the above algorithms in DiRec , a
plug-in that allows CF Recommender systems to diversify
the recommendations that they present to users. We first
present the system architecture and the settings used in our
experiments. Then we describe the experimental results. The
experiments study both the representative selection algorithms
and the refinement process.

System Architecture: DiRec is implemented in Java and
PHP, and designed to be deployed alongside any existing CF-
based recommender system. Figure 3 illustrates the system
architecture, divided into operating modules. When a user
logs in, her id is passed to the CF Recommender System
module which generates a customized list of recommended
items, along with their ratings, and computes pair-wise item
similarities. This information is then passed to the Priority
Cover-Tree module, which constructs the corresponding tree.
The Priority-Medoid Approximation module receives this tree
and selects the representative items. These are presented to
the user via an intuitive User Interface (UI). When a user
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clicks on a “more of that” button, the corresponding item id
is passed to the Recommendation Refinement module. This
module uses the previously generated priority cover-tree, to
efficiently compute a refined tree. The tree is again passed to
the Priority Medoid Approximation module for choosing item
representatives, and the result is presented to the user.

Experiments setting: In our experiments, DiRec was em-
ployed on top of a CF-based recommender system (C2F [20]).
For estimating item similarity, C2F (and thus DiRec ) uses
Pearson’s correlation coefficient [19]. We used a natural linear
inverse mapping to compute items distance out of their Pearson
correlation value: dist(i,j) = (1 — Pearson(i,j))/2. The
experiments were preformed on an Intel quad-core machine
(Q9400) with 2.66 GHz CPUs, (using only a single core of
the CPU), 4GB memory and windows XP x64 edition. As data,
we used a real-life data set from the cinema domain, provided
by Netflix [10]. This data set contains over 100 million distinct
raw movie ratings (such as 1 to 5 “stars”), by approximately
500,000 users, and no semantic information on the movies.

Algorithms: Our algorithm for representatives selection
first constructs a priority cover tree, then chooses represen-
tatives out of this tree. We consider the three variants of this
choice: Max-rating, Max-diversity and Max-coverage, denoted
below PCT-R, PCT-D and PCT-C, respectively. (PCT stands
for Priority Cover-Tree). As we have mentioned, our use of
priority cover-tree, instead of the classical cover-tree of [18],
allows to take items rating into consideration. To illustrate
the resulting improvement in the quality of the generated
recommendations we had also implemented the cover-tree
algorithm of [18], denoted below CT.

Recall that previous works typically use semantic infor-
mation, to diversify items, and predefined weights/thresholds,
to balance between rating and diversity. Since no sematic
information is available in our context, one can employ here
only algorithms that operate without it. We have implemented
the state of the art such algorithms from [6] (Greedy and Swap)
and compared them to ours. Note that Algorithm Swap, like
all other previous works (except for Algorithm Greedy), use
predefined thresholds to balance rating and diversity. We had
thus first optimized the thresholds (to be explained in Section
V-E) and had our algorithms compete against these optimized

versions. The results for Greedy and Swap were similar and
we thus show below only those of Swap.

Finally, as a base line, we had also implemented the two
“extreme case” algorithms, optR (for Optimal Rating), which
operated like a standard CF algorithm, selecting the k items
having highest rating and ignoring diversity, and optD (for
Optimal Diversity), which ignores the rating of items and

selects k items whose pairwise distance values is the highest.
1

A. Users feedback

To assess the quality of the item sets that DiRec generates
(and thereby the quality of our algorithms), we first ran a set
of experiments with real users who were asked to evaluate
the quality of the presented movie recommendations. A pre-
liminary set of experiments was used to select the optimal
threshold value for Swap (and thus, represents also Algorithm
Greedy). Then in the remaining experiments we compared our
PCT algorithms to Swap (with this value), CT, optR and optD.

In each experiment, we first presented to the user a list of
50 highly ranked movies, with their prediction values, selected
by the underlying CF system. We then asked the user to
consider various subsets, each consisting of 5 movies (recom-
mendations), generated by the different algorithms. 50 users
participated in the trial. Each time the user was presented seven
recommendation sets, generated by the different algorithms,
and was asked to rate each one on a scale of 1 to 10 (10
being the highest grade). The average grade was computed for
each algorithm and rounded to an accuracy of 0.1. Algorithm
PCT-R got the highest results (8.9), with PCT-C (8.4), Swap
(8.3) and PCT-D (8.1) not so far behind. Not surprisingly,
these four algorithms got much higher results than optR (5.2),
optD (4.7) and CT (3.8), as they consider both the relevance
and the diversity of the items (while the others focus solely
on one property). While the grade difference between PCT-
R and Greedy is smaller, recall that the former has further
the advantage of supporting a natural zoom-in mechanism, as
demonstrated below in Section V-D.

B. Rating vs. diversity

To better understand the results and how the PCT algorithms
(and the preferred PCT-R in particular) balance ranking and
diversity, we run a second set of experiments over the Netflix
data where we analyzed the quality the item sets generated
by all the algorithms, in terms of their rating and diversity. In
each set of experiments reported below we randomly chose
a set of 1000 users from the Netflix data set and run the
experiment for each of them. The results presented here are
the average of all 1000 users. (The variance was less that 5%).
We ran all experiments for varying size I of item candidates
returned by the CF-system (I ranging from 10 to 1000) and
varying number £ of representative items selects out of them (%

'Note that optD require solving an NP-hard problem [5]. Its EXP-time
algorithm iterates over all subsets of size k to find the best one. In our
experiments this became infeasible for items sets of size > 100, and we
thus show results for them only up to that size.
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ranging from 3 to 20). The results were generally independent
of the number k of selected representative. Thus, except when
stated otherwise, we present below a representative sample
for k = 5, the common number of recommendations given
by typical recommender systems. For a generated set [; of
representatives, we evaluated its quality w.r.t to the following
measures.

Rating: We measure the relevance of the suggested set of
item I to the current user by the sum of the element ratings,
ie. rating(I) = >, , rate(i). (Higher value means better
results).

1 — -
2 o8 —
g - L~
096
L 0.94
2 —+-0ptR  -m-optD
% 0.92
5 ~4-PCT-R  =<PCT-D
z 09 PCT-C S
=) = - -o-Swa
o 088 o P
€ 086
5 084 < < < < < < o
7]

0.82 ‘ ‘

# of tems 10 20 50 100 250 500 1000

Fig. 6. Semantic (sequel) diversity

Q"
i [6)
@' 3
@

Sequel-based diversity

@

Fig. 7. Sequel diversification vs. distance diversification

Diversity: In the absence of semantic information, the
diversity of the items in [ may be measured by the
pairwise-distances of the items, namely diversity(ly) =
> ijer, dist(i, j). (Here too, higher value means better re-
sults).

Although our algorithms do not require semantic informa-
tion, it is interesting to examine the actual semantic diversity
of the selected items. To get a sense of this, we extracted for
each movie information from the Internet Movie Databases
IMDb [21] and used it to determine, for each movie, to
which of series it belongs (if any). We also extracted the
movie’s genre (action, drama, etc.). For diversification, it is
intuitively preferable not to have multiple movie sequels in the
set presented to the user, and to have movies from different
genres. We quantify this as follows.

o We denote below by sequel(i) the series to which an item
(movie) ¢ belongs. We count the number of distinct series
to which the movies in I}, belong and divide this by k, the
number of movies in Ij. Namely, sequel Divers(Iy) =
M. Observe that sequel Divers is a number
in the range of (0 : 1]. Higher values reflect higher
diversity, hence better result.

e« We assume some total order (e.g. lexicographical) on
the possible move genres and denote by genres(i) a
boolean vector that records the (possibly multiple) genres
of the movie ¢. (A value 1 in entry j means that the
movie ¢ belongs to genre ¢). To measure diversity we
consider the pairwise distances (by the Cosine measure)
between the vectors. Then, genreDivers(Ily) = 1 —
average{cosine(genres(i), genres(j)) | i,j € I}. Here
again genreDivers is a number in the range of (0 : 1]
with higher values reflecting higher diversity.

Figures 4, 5 and 6 shows the values for the relevance,
distance-based diversity, and sequel-based diversity, corre-
spondingly, for the various algorithms, for varying sizes of
item sets I. The results for genre-based diversity are similar to
those of sequel-based one and are thus omitted for space con-
straints. The figure depicts these values, for the sets computed
by the seven algorithms mentioned before: PCT-R, PCT-D,
PCD-C, Swap (with its tuned threshold), CT, optR and optD.
k here equals 5 and the size of the set I ranges from 10 to
1000.2

Recall that higher values here mean better results. Diversity

2Recall that optD became infeasible for items sets of size greater than 100,
and we thus show results for them only up to that size.



Rating | Distance-based | Sequel

diversity diversity
PCT-D - + =
PCT-C - = =
Swap - + -
CT - - = =
optR ++ - - - -
optD - - ++ -

TABLE I

SUMMARY OF THE RESULTS (RELATIVE PCT-C)

generally increases when I grows, as there are more items
to choose from; Rating decreases, as more diverse but lower
ranked items are chosen. Table I provides a summary of
the graphs in Figures 4, 5 and 6 that highlights how the
various algorithms perform (for the various measures) relative
to PCT-R, and helps to explain why users may have found
its results superior. For an algorithm A and measure M, an
“+” (resp. “++7) entry indicates that Algorithm A generally
performed slightly (significantly) better than PCT-R in measure
M. Similarly, “—" (resp. “——") indicates that A performed
slightly (significantly) worse than PCT-R in M. An “=" entry
indicates similar performance.

As expected optR have the highest rating value and lowest
diversity. Analogously, optD has lowest rating value and high-
est distance-based diversity. CT too has lowest rating value as
it ignores item ranks. An interesting point to observe is that
although some algorithms (and in particular optD) achieve bet-
ter distance-based diversity than PCT-R, no algorithm achieves
better sequel diversity. To understand this discrepancy between
distance-based and semantic (sequel) diversity, consider the
following example.

Example 5.1: Consider a simple scenario where the set [
consists of six movies, out of which 5 need to be selected.
Assume that two of the six movies are sequels. Let us denote
them by 41 and i} and the remaining movies by i-i5. Figure
7 depict this scenario with two different selected subsets. Intu-
itively, the most diversified, sequel-wise, set of representatives,
is the one that includes i5-i5 and either #; or ¢} (as no sequels
are present in this selection). This selection is illustrated on
the left-hand side of the figure. The filled circles denote the
selected movies. Assume that the euclidian distance between
the items reflects their actual dist(i,j) measures. Since i;
and i} are sequels, they are fairly close. When applying
an algorithm which maximize the abstract diversity measure,
however, we obtain here a different set of representatives, that
maximizes the distance between the elements, as shown in
the right part of the figure. Here, although i; and i’1 are close
to each other, they are nevertheless both selected as they are
relatively far from all other items, and the algorithm aims to
the sum of dist(i, ) values for all pairs of representatives.
The same phenomenon, illustrated by that particular example,
occurs more generally in many real life cases and explains
why PCT-R is not handicapped by its non optimal distance
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diversity. Indeed, its sequel diversity is close to 1 (meaning
that, as desired, the result contains no sequels) and we can see
that no other algorithm was able to achieve better semantic
(sequel) diversity. Furthermore, among the algorithms that
achieve sequel diversity equal to that of PCT-R, it is the
one with highest rating score, which can explain why its
recommendations were more favorable than the rest.

It is important to note that, for Swap, the value for the above
measures depends on the chosen threshold: The threshold
determines what is the lowest rating that is allowed to be
considered for diversification, so lower threshold values yield
lower rating score and, correspondingly, higher diversity score.
We present in Section V-E experimental results that illustrate
this drop (resp. increase) in relevance (diversity) score, as the
threshold decreases. Interestingly, as seen in Figures 4 and
5, the rating and diversity values yielded by the tuned Swap
are rather close to those of our PCT algorithms (obtained
naturally, with no need for tuning).

C. PCT Performance

To conclude the discussion of our PCT algorithms we show
that they operate fast enough to guarantee a pleasant user
experience. Figure 8 depict the average time (in milliseconds)
it takes to compute Iy, for a set I of size ranging from 10
to 1000 and varying % values, for Algorithm PCT-R. The
running time for Algorithms PCT-D and PCT-C is similar
(and thus omitted). This is because most of the running time
of the algorithms is spent on the construction of the priority
cover-tree, which is similar for all PCT algorithms. This is
also the reason why the results are only marginally effected
by the number %k of selected representatives. We can see that
the running time naturally increases (polynomially) with the
number of items, but even for 1000 item candidates it takes
less 0.04 of a second to select a representative subset.

D. Recommendations Refinement

When a user zooms-in on an item ¢, DiRec invokes the
refinement algorithm to computes a set of representatives for
relevant(i). We next analyze the efficiency of the algorithm
and the quality of its output.
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Efficiency: Our optimized refinement algorithm is based
on the observation that much of the items in relevant(i)
already belong to the subtree rooted at ¢, in the existing priority
cover-tree. This phenomenon is due to the tight insertion em-
ployed by our algorithm (as opposed to the random insertion
used in the classical cover-tree construction). To demonstrate
the effectiveness of tight insertion, relative to a random one,
we implemented a variant of our algorithm that uses random
insertion. In the following we refer to our algorithm as Tight
and to its variant with random insertion as Random. We
compared the precision and recall of the subtrees generated
with the two variants. Namely, the average fraction of the
relevant items, out of all the items in the subtree (resp. out
of all the desired ones). Formally,

|subtree(i) (" relevant()]

precision(I) = average{ subtree(D) li € I}
|subtree(i) (N relevnat(i)], .
(1) = 1
recall(Iy) = average{ relevant(d)| li e I}

Here, subtree(i) is the set of all the items in the subtree
rooted at . The results are depicted in Figures 9 and 10 for
k = 5 and I ranging from 10 to 1000 (the results for other
k values were similar). We can see that tight insertions yields
significantly better precision and recall than the random one
and the gap increases as I grows. Note that while the precision
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of Tight increased with the growth of I, the recall decreases.
This is expected as the increased number of items generates
wider levels in the constructed tree; This causes more items to
not reside under any representative subtrees, thus decreasing
the recall values.

Yet, the relatively high precision and recall of the tight
insertion makes our optimized, refinement algorithm very
efficient. To demonstrate this we compared the running time
of our algorithm to that of the naive one which constructs a
new priority cover-tree from scratch. We measured the time it
takes each of the two algorithms to refine all k representatives
(simulating a user click on each of the presented items) and
computed, for each algorithm, the average time for a single
refinement. Our optimized algorithm was in all cases at least
twice faster than the naive one. The improvement further
increased to a factor of three when the size of I was between
50 and 500. This is because the ratio between the precision
and the recall of the subtree is better in this interval, as shown
in Figures 9 and 10. These good results persisted for all &
values.

Quality: Finally, to evaluate the quality of our refinement
process, we checked how many of the sequels of a given
movie are effectively retrieved by our zoom-in mechanism.
Recall from section V-B that sequel(i) denotes the series to
which a movie 4 belongs. Let sequels(i) = {j|sequel(j) =
sequel(i) Nj € I}. We checked in this experiment what
portion of sequels(i) are included in relevant(i). Interest-
ingly, we found that in over 90% of the cases, sequels(i) C
relevant(i), namely, all sequels are indeed identified. More-
over, all the other cases were movies with many sequels,
with just one of them not appearing in relevant(i). These
positive results are particularly interesting given the fact that
no semantic information is used by our algorithms.

For the readers convenience, Figure 11 presents an example
for a refined recommendations set generated by DiRec . In
this specific case, the user clicked on the “more of that”
button of the “Star Wars II: Attack of the Clones” movie. Di-
Rec successfully identifies the Star Wars sequels and presents
in response three additional sequels. It also presents two
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additional movies that do not belong to this series, yet are
related, and were chosen by DiRec to provide a more diverse
set of recommendations.

E. Tuning Algorithm Swap

We first give a brief description of Algorithm Swap (for
further details see [6]). Then we illustrate the effect of different
threshold values on its operations.

The basic idea behind Algorithm Swap is to start with the
top-k most relevant items, and then swap the item which con-
tributes the least to the diversity of the entire list with the high-
est ranked further item (not yet in the list). As we initialized
the list with the highest ranked items, the swapped candidates
naturally would reduce the overall relevance measure of the
list. To prevent large drop in this value, the algorithm employs
a hard threshold representing the minimal relevance value
required from the swapped items. The difficulty is to determine
the best threshold to use (which naturally differ from different
data sets).

We tested the affect of different threshold values on the
relevance and the diversity of the generated lists. Figures
12 and 13 depict these values, respectively. Lower threshold
values allow the algorithm to use items with lower rating
values, which naturally decrease the overall rating measure.
This is illustrated in Figure 12. Another point to note is the
decrease of the rating measure as the number of item increases.
This is because the items are sorted by their relevance, and

thus, when more are added, the overall rating measure can
only decrease. On the other hand, the diversity of the items,
as shown in Figure 13, analogously increases as the threshold
decrease and as the number of items increases. In our users
study the recommendations obtained with value of 4.2 were
most favorable and this is what we used for the remaining
experiments.

VI. CONCLUSION

The DiRec plug-in presented in this paper allows CF
recommender systems to diversify the recommendations that
they present to users. It is based on a novel notion of priority-
medoids that declaratively balances the rating and the diversity
of the recommended items. We introduced priority cover-
trees as a tool for efficient selection of item representatives.
Our solution further allows for an effective realization of a
natural “zoom-in” mechanism, presenting to users similar yet
diversified items. Our experiments demonstrated the effective-
ness of our recommendation diversification technique and its
superiority over previous proposals.

DiRec provides an effective solution in common scenarios
where semantic information is unavailable. Combining our
ratings-based (quantitative) approach with a semantic (qualita-
tive) one, when such semantic data is available, is an intriguing
future research direction.
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