Introduction to Modern Cryptography

Lecture 7

1. RSA Public Key CryptoSystem
2. One way Trapdoor Functions

Diffie and Hellman (76) "New Directions in Cryptography"

Split the Bob's secret key K to two parts:

- K_{E}, to be used for encrypting messages to Bob.
- K_{D}, to be used for decrypting messages by Bob.
K_{E} can be made public
(public key cryptography, assymetric cryptography)

Integer Multiplication \& Factoring as a One Way Function.

easy

Q.: Can a public key system be based on this observation ?????

Excerpts from RSA paper (CACM, Feb. 78)

The era of "electronic mail" may soon be upon us; we must ensure that two important properties of the current "paper mail" system are preserved: (a) messages are private, and (b) messages can be signed. We demonstrate in this paper how to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method. This method provides an implementation of a "public-key cryptosystem," an elegant concept invented by Diffie and Hellman. Their article motivated our research, since they presented the concept but not any practical implementation of such system.

The Multiplicative Group $\mathrm{Z}_{\mathrm{pq}}{ }^{*}$

Let p and q be two large primes.
Denote their product $N=p q$.
The multiplicative group $\mathrm{Z}_{\mathrm{N}}{ }^{*}=\mathrm{Z}_{\mathrm{pq}}{ }^{*}$ contains all integers in the range $[1, \mathrm{pq}-1]$ that are relatively prime to both p and q .

The size of the group is $\phi(p q)=(p-1)(q-1)=N-(p+q)+1$, so for every $x \in Z_{p q}{ }^{*}, x^{(p-1)(q-1)}=1$.

Exponentiation in $Z_{p q}{ }^{*}$

Motivation: We want to exponentiation for encryption.

Let e be an integer, $1<e<(p-1)(q-1)$.
Question: When is exponentiation to the $e^{\text {th }}$ power, $x \rightarrow x^{e}$, a one-to-one op in $Z_{p q}{ }^{*}$?

Exponentiation in $Z_{p q}{ }^{*}$

Claim: If e is relatively prime to $(p-1)(q-1)$ then $x \rightarrow x^{e}$ is a one-to-one op in $Z_{p q}{ }^{*}$

Constructive proof: Since $\operatorname{gcd}(e,(p-1)(q-1))=1$, e has a multiplicative inverse mod $(p-1)(q-1)$.
Denote it by d, then ed $=1+C(p-1)(q-1)$.

Let $y=x^{e}$, then $y^{d}=\left(x^{e}\right)^{d}=x^{1+C(p-1)(q-1)}=x \bmod p q$ meaning $y \rightarrow->y^{d}$ is the inverse of $x-->x^{e}$ QED

RSA Public Key Cryptosystem

- Let $N=p q$ be the product of two primes
- Choose e such that $\operatorname{gcd}(e, \phi(N))=1$
- Let d be such that ed=1 mod $\phi(N)$
- The public key is (N, e)
- The private key is d
- Encryption of $M \in Z_{N}{ }^{*}$ by $C=E(M)=M^{e} \bmod N$
- Decryption of $C \in Z_{N}{ }^{*}$ by $M=D(C)=C^{d} \bmod N$
"The above mentioned method should not be confused with the exponentiation technique presented by Diffie and Hellman to solve the key distribution problem".

Constructing an instance of RSA PKC

- Alice first picks at random two large primes, p and q.
- Alice then picks at random a large d that is relatively prime to $(p-1)(q-1)(\operatorname{gcd}(\mathrm{d}, \phi(\mathrm{N}))=1)$.
- Alice computes e such that de=1 $\bmod \phi(N)$
- Let $N=p q$ be the product of p and q.
- Alice publishes the public key (N, e).
- Alice keeps the private key d, as well as the primes p, q and the number $\phi(N)$, in a safe place.
- To send M to Alice, Bob computes $M^{e} \bmod N$.

A Small Example

Let $p=47, q=59, N=p q=2773 . \phi(N)=46 * 58=2668$.
Pick $d=157$, then $157 * 17-2668=1$, so $e=17$ is the inverse of 157 mod 2668.
For $N=2773$ we can encode two letters per block, using a two digit number per letter: blank=00, $A=01, B=02, \ldots, Z=26$. Message: ITS ALL GREEK TO ME is encoded 0920190001121200071805051100201500130500

A Small Example

$\mathrm{N}=2773, \mathrm{e}=17$ (10001 in binary). ITS ALL GREEK TO ME is encoded as 0920190001121200071805051100201500130500

First block $M=0920$ encrypts to $M^{e}=M^{17}=\left(\left(\left(M^{2}\right)^{2}\right)^{2}\right)^{2 *} M=948(\bmod 2773)$ The whole message (10 blocks) is encrypted as 0948234210841444266323900778077402191655 Indeed $0948^{\mathrm{d}}=09488^{157}=920(\bmod 2773)$, etc.

RSA as a One Way Trapdoor Function.

Easy with trapdoor info (d)

Trap-Door OWF

- Definition: $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{R}$ is a trap-door one way function if there is a trap-door s such that:
- Without knowledge of s, the function f is a one way function
- Given s , inverting f is easy
- Example: $\mathrm{f}_{\mathrm{g}, \mathrm{p}}(\mathrm{x})=\mathrm{g}^{\mathrm{x}} \bmod \mathrm{p}$ is not a trapdoor one way function.
- Example: RSA is a trap-door OWF.

Attacks on RSA

1. Factor $\mathrm{N}=\mathrm{pq}$. This is believed hard unless p, q have some "bad" properties. To avoid such primes, it is recommended to

- Take p, q large enough (100 digits each).
- Make sure p, q are not too close together.
- Make sure both ($p-1$), ($q-1$) have large prime factors (to foil Pollard's rho algorithm).

Attacks on RSA

- Find $\phi(N)=(p-1)(q-1)$.

This enables factoring N as from $p q=N$, $p q-p-q+1=\phi(N)$ we compute $p+q=N-\phi(N)+1$. Then we solve (over Q) $p q=A$ and $p+q=B$.

- Find the secret key d.

This also enables the efficient factoring of
N , by a more sophisticated argument (due to Miller).

Factoring N Given d: Goal

 We'll show that given $\mathrm{d}, \mathrm{e}, \mathrm{N}(\mathrm{N}=\mathrm{pq})$, one can factor N efficiently(random poly-time in $\log N$).Therefore, any efficient procedure of producing d, given just e and N, yields an efficient procedure for factoring N .

Conclusion:
Infeasibility to factor N given e implies infeasibility to find d given N and e .

Factoring N Given d

Input: d,e,N.
Both d and e must be odd since they are relatively prime to $(p-1)(q-1)$. By construction $e d=1 \bmod \phi(N)$. Let ed $-1=2^{k_{r}}(r$ is odd $)$.

Pick b at random ($1<b<N$).
If $\operatorname{gcd}(\mathrm{b}, \mathrm{N})>1$, we are done.
Else $b \in Z_{N}{ }^{*}$, so $b^{e d-1}=1 \bmod N$.

Factoring N Given d (cont.)

Input: d,e,N.
Let ed-1=2 ${ }^{k_{r}}$ where r is odd, bed-1 $=1 \bmod N$.
Compute mod N

$$
a_{0}=b^{r}, a_{1}=\left(a_{0}\right)^{2}, a_{2}=\left(a_{1}\right)^{2}, \ldots, a_{k}=\left(a_{k-1}\right)^{2} .
$$

1. We know $a_{k}=1$. Let j be the smalles \dagger index with $a_{j}=1 \bmod N$.
2. If $0<j$ and $a_{j-1} \neq N-1$ then a_{j-1} is
a non trivial square root of $1 \bmod \mathrm{~N}$.

Factoring N Given d (cont.)

Theorem: At least half the $b, 1<b<N$, yield a non trivial square root of $1 \bmod \mathrm{~N}$. Proof omitted.
Claim: If $x^{2}=1 \bmod N$ and $x \neq 1, N-1$ then $\operatorname{gcd}(x+1, N)>0$.
Proof: $x^{2}-1=(x+1)(x-1)$. N divides the product, but $x \neq \mathrm{N}-1,1$. Thus N does not divide $(x-1)$ or ($x+1$), so p must divide one of them and q must divide the other term

Factoring N Given d: Algorithm

Input: d,e,N. Pick b at random
Let ed-1=2kr where r is odd, bed-1 $=1 \bmod N$. Compute mod N

$$
a_{0}=b^{r}, a_{1}=\left(a_{0}\right)^{2}, a_{2}=\left(a_{1}\right)^{2}, \ldots, a_{k}=\left(a_{k-1}\right)^{2} .
$$

By theorem, with prob >0.5 one of the a_{j} is a non trivial square root of $1 \bmod \mathrm{~N}$. Such root yields N's factorization.

All ops are poly-time in $\log \mathrm{N}$

Factoring N Given d: Small Example

Input: $N=2773, e=17, d=157$. ed-1=2668=2*667.

Pick b at random. Operations mod 2773.

1. $b=7.7^{667}=1$. No good...
2. $b=8.8^{667}=471$, and $471^{2}=1$, so 471 is a non trivial square root of $1 \bmod 2773$.
Indeed
$\operatorname{gcd}(472, N)=59, \operatorname{gcd}(470, N)=47$.

Real World usage of RSA

1. Key Exchange
2. Digital Signatures (future lecture)
