Introduction to Modern Cryptography

Lecture 6

1. A Clarification regarding CBC MACs.
2. Chinese Remainder Theorem (at long last).
3. Testing Primitive elements in \mathbb{Z}_p
5. Integer Multiplication & Factoring as a One Way Function.

Reminder: MACs

Ensure integrity of messages, even in presence of an active adversary who sends own messages.

Alice (sender) Fred (forger) Bob (receiver)

Remark: Authentication is orthogonal to secrecy, yet systems often required to provide both.

Reminder: CBC MAC

Claim [Bellaire, Ki1an, Rogaway]:

If $E: \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a pseudo random function, then CBC MAC is resilient to adaptive existential forgery.

Proof of security applies only to fixed number of blocks m (e.g. $m=17$ or $m=n^2+51$).

Proof is inapplicable to variable length m (as discussed in Problem Set II).

Clarification: Security of CBC MAC

Adaptive Existential Forgery

1. Forger picks message$_1$, gets MAC_K (message$_1$)
2. Forger picks message$_2$, gets MAC_K (message$_2$)
3. Forger picks message$_3$, gets MAC_K (message$_3$)

Now forger should come up with any new pair new_message, MAC_K (new_message) adaptive existential

The Chinese Remainder Theorem (CRT)
Testing Primitive Element mod p

Let p be a prime number so that the prime factorization of p-1 is known:
\[p - 1 = q_1^{e_1} q_2^{e_2} \ldots q_k^{e_k}, \]
(q_1, q_2, \ldots, q_k primes).

Theorem: \(g \in \mathbb{Z}_p \) is a primitive element in \(\mathbb{Z}_p \) iff
\[g^{(p-1)/q_1}, g^{(p-1)/q_2}, \ldots, g^{(p-1)/q_k} \]
are all \(\neq 1 \mod p \)

Algorithm: Efficiently compute all \(k \) powers.

Caveat: Requires factorization of \(p-1 \).

Testing Primitive Element (cont.)

So far, 233926 looks like a good candidate (it passed all five tests it went through). However, we cannot know for sure without factoring the remaining \(c - 55 - 1 \) (which is not a prime).

Primality Testing

Input: A positive integer \(M \), \(2^n - 1 < M < 2^n \)

Decision Problem: Is \(M \) a composite number?

Decision problem is in NP (guess & verify).

Search Problem: Find prime factors of \(M \).

Factoring integers deterministically is believed to be computationally infeasible.

Primality Testing

A prime number with 2000 digit (40-by-50)

From John Cosgrave, Math Dept, St. Patrick’s College, Dublin, IRELAND.
http://www spd.dcu.ie/johnbcos/
Primality Testing

Evidence that \(M \) is non prime may come from Fermat's little theorem:
Any \(1 < a < M \) satisfying \(a^{M-1} \neq 1 \) supplies
concrete evidence that \(M \) is non prime (but no
factorization !)

Example:
\[
> M := 78888880997;
> 769967665 \mod (M-1) \mod M;
\]
\(_{10621956220}
\]
\(M \) is composite

Will "Fermat test" always find such evidence?

Primality Testing

There are some \(M \) where Fermat test fails!

Example:

Well, maybe \(M \) is prime after all?

End of story regarding \(M \).

Carmichael Numbers

Composites \(M \) where Fermat test fails
\((a^{M-1} = 1) \) for most \(a, 1 < a < M-1 \).

Theorem: \(M \) is a Carmichael number iff
\(M = p_1 p_2 p_3 \cdots p_k \) (\(k > 2 \)), all \(p_i \) are distinct primes,
and every \(p_i \) satisfies \(p_i - 1 \) divides \(M - 1 \).

Example:

Carmichael numbers: Rare, still infinitely many.

Evidence that \(M \) is non prime

A witness \(a, 1 < a < M \) such that either

1. \(\gcd(a, M) > 1 \) (non trivial factor).
2. \(a^{M-1} \neq 1 \mod M \) (Fermat test).
3. \(a^2 = 1 \mod M \) but \(a \neq M - 1 \) ?????

Such integer \(a \) will be called a witness for \(M \) being composite.

Evidence that \(M \) is non prime

Back to our favorite \(M = 225593397919 \)

Being a Carmichael number, we won't easily
find a witness that is either a non trivial
factor or flunks the Fermat test.

Denote \(M - 1 = 2^r \). So \(b^{M-1} = (b^r)^2 = 1 \mod M \).
If \(b^r = M - 1 \mod M \), then \(a = b^r \) is a witness
of type (3).

\textbf{Gotcha !}

In both cases \(a^2 = 1 \) but \(a \neq M - 1 \).
Pushing this Idea Further (General M)

Let \(M-1=2^kr \) where \(r \) is odd.
Then \(b^{M-1} = \ldots((b^r)^2)^2 \ldots \) \((k \text{ squaring ops}) \).

If \(b^{M-1} \equiv 1 \mod M \), we're all set. Otherwise,
let \(a_0 = b^r, a_1 = (a_0)^2, a_2 = (a_1)^2, \ldots, a_k = (a_{k-1})^2 \).
Then \(a_k = b^{M-1} \equiv 1 \mod M \).
Let \(j \) be the smallest index with \(a_j \equiv 1 \mod M \).
If \(0 < j \) and \(a_{j-1} \equiv M-1 \) then \(M \) is composite.

Evidence that \(M \) is Composite

Let \(M-1=2^kr \) where \(r \) is odd.
Pick \(1 < b < M \).
Compute \(a_0 = b^r, a_1 = (a_0)^2, a_2 = (a_1)^2, \ldots, a_k = (a_{k-1})^2 \).
1. If \(a_k \not\equiv 1 \) then \(M \) is composite.
2. If \(0 < j \) and \(a_{j-1} \equiv M-1 \) then \(M \) is composite.

Call \(b \) satisfying (1) or (2) a smart witness.

Miller Theorem (1977)

Let \(M=2^kr+1 \) where \(r \) is odd.
If \(M \) is composite then there is* a small smart witness \(b \)
(small means \(b < (\log M)^2 \).

* Assuming a (yet) unproven number theoretic statement: The extended Riemann hypothesis

Rabin Theorem (1980)

Let \(M=2^kr+1 \) where \(r \) is odd.
If \(M \) is composite then at least \(3M/4 \) of all \(b \) in the range
\(1 < b < M \) are smart witnesses.

No assumption required, and proof employs
only elementary tools.

Miller-Rabin Primality Testing

Input: Odd integer \(M \) (\(2^n-1 < M < 2^n \)).
Repeat 100 times:
Pick \(b \) at random (\(1 < b < M \)).
Check if \(b \) is a smart witness (poly(n) time).
If one or more \(b \) is a smart witness, output
"\(M \) is composite".
Otherwise output "\(M \) is prime".

Miller-Rabin Primality Testing

Properties of Algorithm:
- Randomized (uses coin flips to pick \(b \)'s).
- Run time - polynomial in \(n = \log M \).
- If \(M \) is prime the algorithm always outputs
"\(M \) is prime".
- If \(M \) is composite the algorithm may err.
 However to err, all choices of \(b \) should give
 non-witnesses, so
 Probability of error \(< (0.25)^{100} \ll 1 \).
Primality Testing
In terms of complexity classes, this algorithm (and its predecessor, Solovay-Strassen algorithm) imply

Composites \in \text{RP}

\text{RP}=\text{Random Poly Time, one sided error.}
\text{Easy fact: RP is contained in NP.}

Integer Multiplication & Factoring as a One Way Function.

$p, q \quad M = pq$

Q.: Can a public key system be based on this observation ?????

Next Lecture (2002)

A.: RSA public key cryptosystem

Rivest Shamir Adelman