1. A Clarification regarding CBC MACs.
2. Chinese Remainder Theorem (at long last).
3. Testing Primitive elements in \mathbb{Z}_p
5. Integer Multiplication & Factoring as a One Way Function.
Reminder: MACs

Ensure integrity of messages, even in presence of an active adversary who sends own messages.

Remark: Authentication is orthogonal to secrecy, yet systems often required to provide both.
Reminder: CBC MAC_K

\[\text{CBC-MAC}_K(X_1, X_2, \ldots, X_m) = Y_m \]
Clarification: Security of CBC MAC

Claim [Bellaire, Kilian, Rogaway]:

If $E : \{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a pseudo random function, then CBC MAC is resilient to adaptive existential forgery.

Proof of security applies only to fixed number of blocks m (e.g. $m=17$ or $m=n^2+51$). Proof is inapplicable to variable length m (as discussed in Problem Set II).
Adaptive Existential Forgery

1. Forger picks $message_1$, gets $MAC_K(message_1)$
2. Forger picks $message_2$, gets $MAC_K(message_2)$
3. Forger picks $message_s$, gets $MAC_K(message_s)$

Now forger should come up with any new pair $new_message, MAC_K(new_message)$
The Chinese Remainder Theorem
(CRT)
Let p be a prime number so that the prime factorization of $p-1$ is known:

$$p-1 = q_1^{e_1} q_2^{e_2} \cdots q_k^{e_k} \quad (q_1, q_2, \ldots, q_k \text{ primes}).$$

Theorem: $g \in \mathbb{Z}_p$ is a primitive element in \mathbb{Z}_p iff $g^{(p-1)/q_1}, g^{(p-1)/q_2}, \ldots, g^{(p-1)/q_k}$ are all $\neq 1 \mod p$.

Algorithm: Efficiently compute all k powers.

Caveat: Requires factorization of $p-1$.
> isprime(2^229-91);
 true
> p:= 2^229-91;
 p := 862718293348820473429344482784628181556388621521298319395315527974821
> a:= (p-1)/2 :
> 3^a mod p; # naïve exponentiation
 Error, integer too large in context # infeasible
> 3 &^ a mod p;
 1 # thus 3 is not a primitive element mod p
> verify (6 &^ ((p-1)/2) mod p , 1, equal);
 false
> ifactor(p-1,easy); # the “easy to get” factors of p-1
 (2)^2 (3)^5 (5) (3143029) (40591) c-55-1
> p:= 2^229-91: # 2,3,5,40591,3143029 are the easy factors of p-1
> verify (6 &^ ((p-1)/3) mod p , 1, equal);

 true # thus 6 is not a primitive element mod p

> FactorsList:={2,3,5,40591,3143029}:
> g:=233926: # a candidate primitive element (~ the 15th I tried)
> for q in FactorsList do
> print(q,verify(g &^ ((p-1)/q) mod p,1,equal)); od;

 2,false
 3,false
 5,false
40591,false
3143029,false

So far, 233926 looks like a good candidate (it passed all five tests it went through). However, we cannot know for sure without factoring the remaining c-55-1 (which is not a prime).
Primality Testing

A prime number with 2000 digit (40-by-50)

from John Cosgrave, Math Dept,
St. Patrick's College,
Dublin, IRELAND.

http://www.spd.dcu.ie/johnbcos/
Primality Testing

Input: A positive integer $M, 2^{n-1} < M < 2^n$

Decision Problem: Is M a composite number?

Decision problem is in NP (guess & verify).

Search Problem: Find prime factors of M.

Factoring integers deterministically is believed to be computationally infeasible.
Primality Testing

Question: Is there a better way to solve the decision problem (test if \(M \) is composite) than by solving the search problem (factoring \(M \))?

Basic Idea [Solovay-Strassen, 1977]:
To show that \(M \) is composite, enough to find evidence that \(M \) does not behave like a prime. Such evidence need not include any prime factor of \(M \).
Primality Testing

Evidence that \(M \) is non prime may come from Fermat’s little theorem:

Any \(1 < a < M \) satisfying \(a^{M-1} \neq 1 \) supplies concrete evidence that \(M \) is non prime (but no factorization!)

Example:

\[
\begin{align*}
> & M:=78888880997; \\
> & 769967665 \&^ (M-1) \mod M; \\
> & 10621956220
\end{align*}
\]

\(M \) is composite

Will “Fermat test” always find such evidence?
Primality Testing

There are some M where Fermat test fails!

Example:

```plaintext
> M := 225593397919:
> 769967665 &^ (M-1) mod M;  # 1
> 3222223664 &^ (M-1) mod M;  # 1
```

Well, maybe M is prime after all?

```plaintext
> gcd(6619, M);  # 6619
```

End of story regarding M...
Carmichael Numbers

Composites \(M \) where Fermat test fails for most \(a, 1 < a < M-1 \).

\(a^{M-1} = 1 \) for most \(a, 1 < a < M-1 \).

Theorem: \(M \) is a Carmichael number iff \(M = p_1 p_2 p_3 \ldots p_k (k > 2) \), all \(p_i \) are distinct primes, and every \(p_i \) satisfies \(p_i - 1 \) divides \(M - 1 \).

Example

\[
\begin{align*}
> & M := 225593397919: \\
& \text{ifactor}(M); \\
& (15443) (6619) (2207) \\
> & (M-1) \mod 15442; (M-1) \mod 6618; (M-1) \mod 2206; \\
& 0 \\
& 0 \\
& 0 \\
\end{align*}
\]

Carmichael numbers: Rare, still infinitely many.
Evidence that M is non prime

An integer a, $1 < a < M$ such that either

1. $\gcd(a, M) > 1$ (non trivial factor).
2. $a^{M-1} \neq 1 \pmod{M}$ (Fermat test).
3. $a^2 = 1 \pmod{M}$ but $a \neq M - 1$??????

Such integer a will be called a witness for M being composite.
Evidence that M is non prime

A witness a, $1 < a < M$ such that either

1. $\gcd(a, M) > 1$ implies M has non trivial factors.

2. $a^{M-1} \neq 1 \mod M$ implies the size of the multiplicative group \mathbb{Z}_M^* is smaller than $M-1$.

3. $a^2 = 1 \mod M$ but $a \neq M - 1$ implies 1 has more than two square roots in \mathbb{Z}_M^*.
Back to our favorite $M=225593397919$

Being a Carmichael number, we won’t easily find a witness that is either a non trivial factor or flunks the Fermat test.

Denote $M-1=2r$. So $b^{M-1} = (b^r)^2 = 1 \mod M$.

If $b^r \neq M - 1 \mod M$, then $a=b^r$ is a witness of type (3).

Gotcha!

In both cases $a^2 = 1$ but $a \neq M - 1$.

$> 769967665 \land ((M-1)/2) \mod M;$

187977462064

$> 3222223664 \land ((M-1)/2) \mod M;$

206734298217
Pushing this Idea Further (General M)

Let $M-1=2^kr$ where r is odd.

Then $b^{M-1} = \ldots((b^r)^2)\ldots)^2$ (k squaring ops).

If $b^{M-1} \not\equiv 1 \mod M$, we’re all set. Otherwise, let $a_0 = b^r$, $a_1 = (a_0)^2$, $a_2 = (a_1)^2$, ..., $a_k = (a_{k-1})^2$.

Then $a_k = b^{M-1} = 1 \mod M$.

Let j be the smallest index with $a_j = 1 \mod M$. If $0 < j$ and $a_{j-1} \not\equiv M-1$ then M is composite.
Evidence that \(M \) is Composite

Let \(M-1=2^k r \) where \(r \) is odd.

Pick \(1 < b < M \).

Compute mod \(M \)

\[a_0 = b^r, \quad a_1 = (a_0)^2, \quad a_2 = (a_1)^2, \ldots, \quad a_k = (a_{k-1})^2. \]

1. If \(a_k \neq 1 \) then \(M \) is composite.

2. If \(0 < j \) and \(a_{j-1} \neq M-1 \) then \(M \) is composite.

Call \(b \) satisfying (1) or (2) a smart witness.
Miller Theorem (1977)

Let $M = 2^k r + 1$ where r is odd.

If M is composite then there is* a small smart witness b
(small means $b < (\log M)^2$.

* Assuming a (yet) unproven number theoretic statement: The extended Riemann hypothesis
Rabin Theorem (1980)

Let $M = 2^kr + 1$ where r is odd.
If M is composite then at least $\frac{3M}{4}$ of all b in the range $1 < b < M$ are smart witnesses.

No assumption required, and proof employs only elementary tools.
Miller-Rabin Primality Testing

Input: Odd integer M ($2^{n-1} < M < 2^n$).
Repeat 100 times:
- Pick b at random ($1 < b < M$).
- Check if b is a smart witness (poly(n) time).

If one or more b is a smart witness, output “M is composite”.
Otherwise output “M is prime”.
Miller-Rabin Primality Testing

Properties of Algorithm:

• **Randomized** (uses coin flips to pick b’s).
• Run time - polynomial in $n = \log M$.
• If M is prime the algorithm always outputs “M is prime”.

• If M is composite the algorithm may err. However to err, all choices of b should give non-witnesses, so

$$\text{Probability of error} < (0.25)^{100} \ll 1.$$
Primality Testing

In terms of complexity classes, this algorithm (and its predecessor, Solovay-Strassen algorithm) imply

\[\text{Composites} \in \text{RP} \]

\text{RP}=\text{Random Poly Time, one sided error.}
\text{Easy fact: RP is contained in NP.}
Integer Multiplication & Factoring as a One Way Function.

Q.: Can a public key system be based on this observation??
Next Lecture (2002)

A.: RSA public key cryptosystem

Rivest Shamir Adelman