Introduction to Modern Cryptography

Lecture 3

(1) Finite Groups, Rings and Fields

(2) AES - Advanced Encryption Standard
Def (group): A set G with a binary operation $+$ (addition) is called a commutative group if

1. $\forall a,b \in G, a+b \in G$
2. $\forall a,b,c \in G, (a+b)+c = a+(b+c)$
3. $\forall a,b \in G, a+b = b+a$
4. $\exists 0 \in G, \forall a \in G, a+0 = a$
5. $\forall a \in G, \exists -a \in G, a+(-a) = 0$

+ 0, and $-a$ are only notations!
Sub-groups

• Let \((G, +)\) be a group, \((H, +)\) is a sub-group of \((G, +)\) if it is a group, and \(H \subseteq G\).

• Claim: Let \((G, +)\) be a finite group, and \(H \subseteq G\). If \(H\) is closed under \(+\), then \((H, +)\) is a sub-group of \((G, +)\).

• Examples

• Lagrange theorem: if \(G\) is finite and \((H, +)\) is a sub-group of \((G, +)\) then \(|H|\) divides \(|G|\)
Order of Elements

• Let a^n denote $a + \ldots + a$ (n times)
• We say that a is of order n if $a^n = 1$, and for any $m < n$, $a^m \neq 1$
• Examples
• Euler theorem: In the multiplicative group of \mathbb{Z}_m, every element is of order at most $\phi(m)$.
Cyclic Groups

• Claim: let G be a group and a be an element of order n. The set $\langle a \rangle = \{1, a, \ldots, a^{n-1}\}$ is a sub-group of G.
• a is called the generator of $\langle a \rangle$.
• If G is generated by a, then G is called cyclic, and a is called a primitive element of G.
• Theorem: for any prime p, the multiplicative group of \mathbb{Z}_p is cyclic.
Def (ring): A set F with two binary operations $+$ (addition) and \cdot (multiplication) is called a **commutative ring** with identity if

1. $\forall a,b \in F, a+b \in F$
2. $\forall a,b,c \in F, (a+b)+c=a+(b+c)$
3. $\forall a,b \in F, a+b=b+a$
4. $\exists 0 \in F, \forall a \in F, a+0=a$
5. $\forall a \in F, \exists -a \in F, a+(-a)=0$
6. $\forall a,b \in F, a\cdot b \in F$
7. $\forall a,b,c \in F, (a\cdot b)\cdot c=a\cdot(b\cdot c)$
8. $\forall a,b \in F, a\cdot b=b\cdot a$
9. $\exists 1 \in F, \forall a \in F, a\cdot 1=a$
10. $\forall a,b,c \in F, a\cdot(b+c)=a\cdot b+a\cdot c$

$+, \cdot, 0, 1$ and $-a$ are only notations!
Review - Fields

Def (field): A set F with two binary operations $+$ (addition) and \cdot (multiplication) is called a field if

1. $\forall a, b \in F, a + b \in F$
2. $\forall a, b, c \in F, (a + b) + c = a + (b + c)$
3. $\forall a, b \in F, a + b = b + a$
4. $\exists 0 \in F, \forall a \in F, a + 0 = a$
5. $\forall a \in F, \exists -a \in F, a + (-a) = 0$
6. $\forall a, b \in F, a \cdot b \in F$
7. $\forall a, b, c \in F, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
8. $\forall a, b \in F, a \cdot b = b \cdot a$
9. $\exists 1 \in F, \forall a \in F, a \cdot 1 = a$
10. $\forall a, b, c \in F, a \cdot (b + c) = a \cdot b + a \cdot c$

11. $\forall a \neq 0 \in F, \exists a^{-1} \in F, a \cdot a^{-1} = 1$

$+, \cdot, 0, 1, -a$ and a^{-1} are only notations!
Review - Fields

A field is a commutative ring with identity where each non-zero element has a multiplicative inverse

\[\forall \ a \neq 0 \in F, \exists \ a^{-1} \in F, \ a \cdot a^{-1} = 1 \]

Equivalently, \((F, +)\) is a commutative (additive) group, and \((F \setminus \{0\}, \cdot)\) is a commutative (multiplicative) group.
Polynomials over Fields

Let \(f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \ldots + a_1 \cdot x + a_0 \) be a polynomial of degree \(n \) in one variable \(x \) over a field \(F \) (namely \(a_n, a_{n-1}, \ldots, a_1, a_0 \in F \)).

Theorem: The equation \(f(x) = 0 \) has at most \(n \) solutions in \(F \).

Remark: The theorem does not hold over rings with identity. For example, in \(\mathbb{Z}_{24} \) the equation \(6 \cdot x = 0 \) has six solutions (0,4,8,12,16,20).
Polynomial Remainders

Let \(f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \ldots + a_1 \cdot x + a_0 \) and
\(g(x) = b_m \cdot x^m + b_{m-1} \cdot x^{m-1} + b_{m-2} \cdot x^{m-2} + \ldots + b_1 \cdot x + b_0 \)
be two polynomials over \(F \) such that \(m < n \) (or \(m=n \)).

Theorem: There is a unique polynomial \(r(x) \) of degree < \(m \) over \(F \) such that

\[f(x) = h(x) \cdot g(x) + r(x). \]

Remark: \(r(x) \) is called the remainder of \(f(x) \) modulo \(g(x) \).

```plaintext
> rem(4*x^5 + 3*x^2 + 1 , x^3+2 , x);
1 - 5 x^2
> gcd(4*x^5 + 3*x^2 + 1 , x^3+2 );
1
```
Finite Fields

Def (finite field): A field \((F,+,\cdot)\) is called a finite field if the set \(F\) is finite.

Example: \(\mathbb{Z}_p\) denotes \(\{0,1,\ldots,p-1\}\). We define \(+\) and \(\cdot\) as addition and multiplication modulo \(p\), respectively.

One can prove that \((\mathbb{Z}_p,+,\cdot)\) is a field iff \(p\) is prime.

Q.: Are there any finite fields except \((\mathbb{Z}_p,+,\cdot)\)?
The Characteristic of Finite Fields

Let \((F,+,\cdot)\) be a finite field.

There is a positive integer \(n\) such that

\[
1 + \ldots + 1 = 0
\]

\((n \text{ times})\)

The minimal such \(n\) is called the characteristic of \(F\), \(\text{char}(F)\).

Thm: For any finite field \(F\), \(\text{char}(F)\) is a prime number.
Galois Fields $GF(p^k)$

Theorem: For every prime power p^k (k=1,2,...) there is a unique finite field containing p^k elements. These fields are denoted by $GF(p^k)$.

There are no finite fields with other cardinalities.

Remarks:
1. For $F=GF(p^k)$, $\text{char}(F)=p$.
2. $GF(p^k)$ and \mathbb{Z}_{p^k} are not the same!

Évariste Galois (1811-1832)
Polynomials over Finite Fields

Polynomial equations and factorizations in finite fields can be different than over the rationals.

Examples from an XMAPLE session:

```maple
factor(x^6-1); # over the rationals
(x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1)
Factor(x^6-1) mod 7; # over Z7
(x + 1)(x + 3)(x + 2)(4 + x)(x + 5)(x + 6)
factor(x^4+x^2+x+1); # over the rationals
x^4 + x^2 + x + 1
Factor(x^4+x^2+x+1) mod 2; # over Z2
(x + 1)(x^3 + x^2 + 1)
```
Irreducible Polynomials

A polynomial is irreducible in GF(p) if it does not factor over GF(p). Otherwise it is reducible.

Examples:

\[
\text{Factor}(x^5 + x^4 + x^3 + x + 1) \mod 5; \\
(x + 2)(x^3 + 3x + 2)(x + 4)
\]

\[
\text{Factor}(x^5 + x^4 + x^3 + x + 1) \mod 2; \\
x^5 + x^4 + x^3 + x + 1
\]

The same polynomial is reducible in \(\mathbb{Z}_5\) but irreducible in \(\mathbb{Z}_2\).
Implementing $GF(p^k)$ arithmetic

Theorem: Let $f(x)$ be an irreducible polynomial of degree k over Z_p.

The finite field $GF(p^k)$ can be realized as the set of degree $k-1$ polynomials over Z_p, with addition and multiplication done \textit{modulo} $f(x)$.
Example: Implementing $\text{GF}(2^k)$

By the theorem the finite field $\text{GF}(2^5)$ can be realized as the set of degree 4 polynomials over \mathbb{Z}_2, with addition and multiplication done \textit{modulo} the irreducible polynomial $f(x) = x^5 + x^4 + x^3 + x + 1$.

The coefficients of polynomials over \mathbb{Z}_2 are 0 or 1. So a degree k polynomial can be written down by $k+1$ bits. For example, with $k=4$:

\[x^3 + x + 1 \leftrightarrow (0,1,0,1,1)\]
\[x^4 + x^3 + x + 1 \leftrightarrow (1,1,0,1,1)\]
Implementing \(GF(2^k) \)

Addition: bit-wise XOR (since \(1+1=0 \))

\[
x^3 + x + 1 \quad (0,1,0,1,1)
+ \quad \quad \quad \quad \\
x^4 + x^3 + x + 1 \quad (1,1,0,1,1)
\]

\[
x^4 + 1 \quad (1,0,0,0,1)
\]
Implementing GF(2^k)

Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x):

\[
\begin{align*}
\text{g(x)} & := (x^4 + x^3 + x + 1) \cdot (x^3 + x + 1); \\
g(x) & := (x^4 + x^3 + x + 1)(x^3 + x + 1) \\
\text{f(x)} & := x^5 + x^4 + x^3 + x + 1; \\
f(x) & := x^5 + x^4 + x^3 + x + 1 \\
\text{rem(g(x), f(x), x);} \\
& 1 + 3 \cdot x^4 + x^3 + 2 \cdot x \\
\% \ mod \ 2; \\
& 1 + x^4 + x^3
\end{align*}
\]

\[(1,1,0,1,1) \cdot (0,1,0,1,1) = (1,1,0,0,1)
\]

For small size finite field, a lookup table is the most efficient method for implementing multiplication.
Implementing $\text{GF}(2^5)$ in XMAPLE

Irreducible polynomial

```maple
> G32 := GF(2, 5, x^5 + x^4 + x^3 + x + 1):
> a := G32[ConvertIn](x);
   a := x
> b := G32[^](a, 8): # colon at end of statement suppresses printing
> c := G32[^](a, 9):
> G32[ConvertOut](b); # canonical representation, higher momonials to the left
> G32[ConvertOut](c);

x^3 + x^2 + x + 1
x^4 + x^3 + x^2 + x
```
More $GF(2^5)$ Operations in XMAPLE

Addition: $b + c$

test primitive element

e \leftarrow inverse of a

Multiplication: $a \cdot e$

Loop for finding primitive elements

```
> d := G32["+"](b,c):
    G32[ConvertOut](d);
    x^4 + 1

> G32[isPrimitiveElement](d);
    true

> e := G32["^"](a,-1):
    G32[ConvertOut](e);
    x^4 + x^3 + x^2 + 1

> G32["*"](a,e);
    1

> for i from 1 to 32 do
    f := G32["^"](a,i):
    print(f, G32[isPrimitiveElement](f))
end do:
    x, true
    x^2, true
    x^3, true
    x^4, true
    1 + x + x^3 + x^4, true
    1 + x^2 + x^3, true
    x + x^3 + x^4, true
```
Back to Symmetric Block Ciphers

DES AES
Historic Note

DES (data encryption standard) is a symmetric block cipher using 64 bit blocks and a 56 bit key.

Developed at IBM, approved by the US government (1976) as a standard. Size of key (56 bits) was apparently small enough to allow the NSA (US national security agency) to break it exhaustively even back in 70's.

In the 90's it became clear that DES is too weak for contemporary hardware & algorithmics. (Best attack, Matsui "linear attack", requires only 2^{43} known plaintext/ciphertext pairs.)
Historic Note (cont.)

The US government NIST (national inst. of standards and technology) announced a call for an advanced encryption standard in 1997.

This was an international open competition. Overall, 15 proposals were made and evaluated, and 6 were finalists. Out of those, a proposal named Rijndael, by Daemen and Rijmen (two Belgians) was chosen in February 2001.
AES - Advanced Encryption Standard

- Symmetric block cipher
- Key lengths: 128, 192, or 256 bits
- Approved US standard (2001)
AES Design Rationale

• Resistance to all known attacks.

• Speed and code compactness.

• Simplicity.
AES Specifications

• **Input & output block length**: 128 bits.

• **State**: 128 bits, arranged in a 4-by-4 matrix of bytes.

<table>
<thead>
<tr>
<th>$A_{0,0}$</th>
<th>$A_{0,1}$</th>
<th>$A_{0,2}$</th>
<th>$A_{0,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{1,0}$</td>
<td>$A_{1,1}$</td>
<td>$A_{1,2}$</td>
<td>$A_{1,3}$</td>
</tr>
<tr>
<td>$A_{2,0}$</td>
<td>$A_{2,1}$</td>
<td>$A_{2,2}$</td>
<td>$A_{2,3}$</td>
</tr>
<tr>
<td>$A_{3,0}$</td>
<td>$A_{3,1}$</td>
<td>$A_{3,2}$</td>
<td>$A_{3,3}$</td>
</tr>
</tbody>
</table>

Each byte is viewed as an element in $\text{GF}(2^8)$
Encryption: Carried out in rounds

Secret key (128 bits)

input block (128 bits)

output block (128 bits)
Rounds in AES

128 bits AES uses 10 rounds

• The *secret key* is expanded from 128 bits to 10 *round keys*, 128 bits each.
• Each round changes the state, then XORS the *round key*.

Each rounds complicates things a little. Overall it seems *infeasible to invert* without the *secret key* (but easy given the key).
AES Specifications: One Round

Transform the state by applying:

1. Substitution.
2. Shift rows
3. Mix columns
4. XOR round key
Substitution (S-Box)

Substitution operates on every Byte separately:

\[A_{i,j} \leftarrow A_{i,j}^{-1} \]

(multiplicative inverse in GF(2^8) which is highly non linear.)

If \(A_{i,j} = 0 \), don’t change \(A_{i,j} \).

Clearly, the substitution is invertible.
Cyclic Shift of Rows

<table>
<thead>
<tr>
<th>$A_{0,0}$</th>
<th>$A_{0,1}$</th>
<th>$A_{0,2}$</th>
<th>$A_{0,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{1,3}$</td>
<td>$A_{1,0}$</td>
<td>$A_{1,1}$</td>
<td>$A_{1,2}$</td>
</tr>
<tr>
<td>$A_{2,2}$</td>
<td>$A_{2,3}$</td>
<td>$A_{2,0}$</td>
<td>$A_{2,1}$</td>
</tr>
<tr>
<td>$A_{3,1}$</td>
<td>$A_{3,2}$</td>
<td>$A_{3,3}$</td>
<td>$A_{3,0}$</td>
</tr>
</tbody>
</table>

- no shift
- shift 1 position
- shift 2 positions
- shift 3 positions

Clearly, the shift is invertible.
More AES Specifications

- Expanding key to round keys
- Mixing columns

These items are intentionally left blank.

But details are not complicated - see Rijndael document (available on the course site) if curious.
Breaking AES

Breaking 1 or 2 rounds is easy.

It is not known how to break 5 rounds.

Breaking the full 10 rounds AES efficiently (say 1 year on existing hardware, or in less than 2^{128} operations) is considered impossible! (a good, tough challenge...