

Real Cipher Streams

- Most pre-WWII machines
- German Enigma
- Linear Feedback Shift Register
- A5 encrypting GSM handset to base station communication
- RC-4 (Ron's Code)

Stream cipher is called synchronous if keystream does not depend on the plaintext (depends on key alone).

Otherwise cipher is called asynchronous.

Current Example: RC-4

- Part of the RC family
- Claimed by RSA as their IP
- Between 1987 and 1994 its internal was not revealed little analytic scrutiny
- Preferred export status
- Code released anonymously on the Internet
- Used in many systems: Lotus Notes, SSL, etc.

RC4 Properties

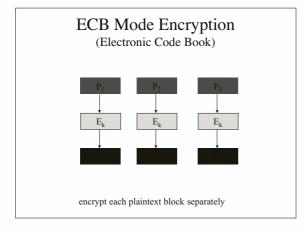
- Variable key size stream cipher with byte oriented operations.
- Based on using a random looking permutation.
- 8-16 machine operations per output byte.
- Very long cipher period (over 10¹⁰⁰).
- Widely believed to be secure. Used for encryption in SSL web protocol.

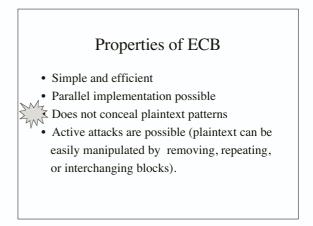
RC-4 Initialization

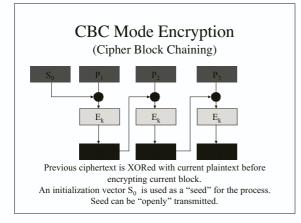
- 1. j=0
- 2. S₀=0, S₁=1, ..., S₂₅₅=255
- Let the key be k₀,...,k₂₅₅ (repeating bits if necessary)
- 4. For i=0 to 255
 - $j = (j + S_i + k_i) \mod 256$
 - Swap S_i and S_i

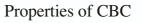
RC-4 Key-stream Creation

Generate an output byte B by:

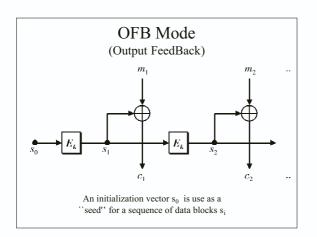

- i = (i+1) mod 256
- $j = (j + S_i) \mod 256$
- Swap S_i and S_i
- $t = (S_i + S_i) \mod 256$
- $B = S_t$
- B is XORed with next plaintext byte


Block Ciphers

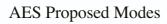

- Encrypt a block of input to a block of output
- Typically, the two blocks are of the same length
- Most symmetric key systems block size is 64
- In AES block size is 128
- Different modes for encrypting plaintext longer than a block


Real World Block Ciphers

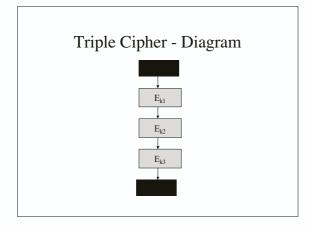
- DES, 3-DES
- AES (Rijndael)
- RC-2
- RC-5
- IDEA
- Blowfish, Cast
- Gost







- Asynchronous stream cipher
- Errors in one ciphertext block propagate
- Conceals plaintext patterns
- No parallel implementation known
- Plaintext cannot be easily manipulated.
- Standard in most systems: SSL, IPSec etc.


- Synchronous stream cipher
- Errors in ciphertext do not propagate
- Pre-processing is possible
- Conceals plaintext patterns
- No parallel implementation known
- Active attacks by manipulating plaintext are possible

- CTR (Counter) mode (OFB modification): Parallel implementation, offline preprocessing, provable security, simple and efficient
- OCB (Offset Codebook) mode parallel implementation, offline preprocessing, provable security (under specific assumptions), authenticity

Strengthening a Given Cipher

- Design multiple key lengths AES
- Whitening the DESX idea
- Iterated ciphers Triple DES (3-DES), triple IDEA and so on

Iterated Ciphers

- Plaintext undergoes encryption repeatedly by underlying cipher
- Ideally, aach stage uses a different key
- In practice triple cipher is usually C= E_{k1}(E_{k2}(E_{k1}(P))) [EEE mode] or C= E_{k1}(D_{k2}(E_{k1}(P))) [EDE mode] EDE is more common in practice

Necessary Condition

- For some block ciphers iteration does not enhance security
- Example substitution cipher
- Consider a block cipher: blocks of size *b* bits, and key of size *k*
- The number of all possible functions mapping b bits to b bits is (2^b)^{2^b}

Necessary Condition (cont.)

- The number of all **possible** encryption functions (bijections) is 2^b!
- The number of encryption functions in our cipher is at most 2^k.
- Claim: The bijections are a group *G* under the ° operation (composition)
- Claim: If the encryptions of a cipher form a subgroup of G then iterated cipher does not increases security.

Meet in the Middle Attack

- Double ciphers are rarely used due to this attack
- · Attack requires
 - Known plaintext
 - -2^{k+1} encryptions and decryptions
 - $-|k|2^{|k|}$ storage space
- A square root of trivial attacking time at the expense of storage

Meet in the Middle (cont.)

- Given a plaintext-ciphertext pair (p,c)
 - Compute & store the table of $D_{k2}(c)$ for all k_2
 - takes 2^k decryptions, lkl2^{lkl} storage.
 - For every k_1 , test if $E_{k1}(p)$ is in table - Every hit gives a possible k_1, k_2 pair
 - Every fitt gives a possible k₁,k₂ p
 May have to repeat several times
 - May have to repeat several times
- Meet in the middle is applicable to any iterated cipher, reducing the trivial processing time by 2^k encryptions

Two or Three Keys

- Sometimes only two keys are used in 3-DES
- Identical key must be at beginning and end
- Legal advantage (export license) due to smaller overall key size
- Used as a KEK in the BPI protocol which secures the DOCSIS cable modem standard

Some Group Theory

Sub-groups

- Let (G,⊕) be a group. (H,⊕) is a sub-group of (G,⊕) if it is a group, and H⊆G
- Claim: If G is finite and (H,⊕) is closed, then (H,⊕) is a sub-group of (G,⊕).
- Examples
- Lagrange theorem: if G is finite and (*H*,⊕) is a sub-group of (*G*,⊕) then |H| divides |G|

Order of Elements

- Let a^n denote $a \oplus, \dots, \oplus a$ n times
- We say that a is of order n if aⁿ=1, and for any m<n, a^m≠1
- Examples
- Euler theorem: in the multiplicative group of Z_n any element is of order at most $\phi(n)$

Adversary's Goals

- Final goal: recover key
- Intermediate goals:
 - Reduce key space
 - Discover plaintext patterns
 Rec
 - over portions of plaintext
 Change ciphertext to produce meaningful plaintext, without breaking the system (active attack)

Generic Attacks

• Exhaustive search

- Type: ciphertext only
 Time: 2^{|k|} decryptions per ciphertext
 Storage: constant
- Table lookup

 - Type: choskup
 Type: choskup
 Time: offline 2^{lkl} decryptions, online constant
 Storage: 2^{lkl} ciphertexts