1. Prove or disprove:
 (a) The class \mathcal{RE} is closed under union and intersection
 (b) The class $\text{co-}\mathcal{RE}$ is closed under union and intersection

2. For the following languages determine whether they belong to \mathcal{R}, $\mathcal{RE} \backslash \mathcal{R}$, $\text{co-}\mathcal{RE} \backslash \mathcal{R}$ or none of the above. Prove your claims.
 (a) Input: Turing machine M
 Question: is there an x for which M halts?
 (b) Input: Turing machine M
 Question: is every even number a sum of two primes (Goldbach’s conjecture, to which the answer is unknown) ?
 (c) Input: Turing machine M and inputs x and y
 Question: does M halt on exactly one of the inputs?
 (d) Input: Turing machine M
 Question: is $|L(M)| > 3$ ($L(M) = \{\omega | M \text{ accepts } \omega \}$) ?
 (e) Input: Turing machine M
 Question: is $|L(M)| \leq 3$?
 (f) Input: Turing machine M
 Question: is $L(M) \in \mathcal{R}$?
 (g) Input: Turing machine M
 Question: is $L(M) \in \mathcal{RE}$?
 (h) Input: Turing machine M such that $|\langle M \rangle| < 10^{100}$
 Question: does M halt on all inputs?

3. (a) Let A be a decidable language. Show a mapping reduction: $A \leq_m H_{TM}$
 (The halting problem).
(b) Let \mathcal{M} be the set of Turing machines that always halt. Let $L = \{M \in \mathcal{M}|M$ accepts the empty string$\}$ (that is, the input is always a Turing machine that halts). Let $EVEN$ be the languages of even numbers over the binary alphabet. Show a mapping reduction $L \leq_m EVEN$. Why would this not work for Turing machines that don’t necessarily halt?

4. Prove or disprove: if the language L is not decidable and $L \leq_m \overline{L}$, then $L \notin \mathcal{RE}, L \notin \text{co-RE}$.

5. Let $L_1, L_2 \in \mathcal{RE}\backslash\mathcal{R}$. Prove whether the following is possible:

(a) $L_1 \cup L_2 \in \mathcal{R}$

(b) $L_1 \cap L_2 \in \mathcal{R}$

(c) $L_1 \cup L_2 \in \mathcal{R}$ and $L_1 \cap L_2 \in \mathcal{R}$