Reducibility among languages

Mapping reductions

More undecidable languages

Undecidability by Rice Theorem

Reductions using controlled executions (steppers)

\mathcal{RE}-Completeness

Sipser’s book, Chapter 5, Sections 5.1, 5.3
So Far

- We have established Turing Machines as the **gold standard** of computers and computability . . .
- seen examples of solvable problems . . .
- defined the **universal** TM
- saw two problem, $A_{TM} \& H_{TM}$, that are computationally unsolvable (by a direct diagonalization proof)
- and saw an incomputable function – the busy beaver.

In this lecture, we look at other computationally unsolvable problems, and establish the technique of **mapping reducibilities** for proving that languages are either undecidable or non-enumerable.
Reducibility

Example:
- Finding your way around a new city reduces to . . .
- obtaining a city map.
Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.

Remark: This property says nothing about solving A by itself or B by itself.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Examples

Reductions:
- Traveling from Boshton to Paris . . .
- reduces to buying plane ticket . . .
- which reduces to earning the money for that ticket . . .
- which reduces to finding a job
 (or getting the $s from mom and dad. . .)
Examples

Reductions:
- Measuring area of rectangle . . .
- reduces to measuring lengths of sides.

Also:
- Solving a system of linear equations . . .
- reduces to inverting a matrix.
If A is reducible to B, then

- A cannot be harder than B
- if B is decidable, so is A.
- if A is undecidable and reducible to B, then B is undecidable.
Additional Undecidable Problems

We have already established that A_{TM} is undecidable.

We also saw the original halting problem (of Shoshana and Uri :-), and it was shown (on board) this language is also undecidable.

$$H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$$

Short reminder: How does H_{TM} differ from A_{TM}?
$H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem: H_{TM} is undecidable.

An alternative proof, by reduction from A_{TM}:

- By contradiction.
- Assume H_{TM} is decidable.
- Let R be a TM that decides H_{TM}.
- Use R to construct S, a TM that decides A_{TM}.
- So A_{TM} is reduced to H_{TM}.
- Since A_{TM} is undecidable, so is H_{TM}.
Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w \rangle$,
 - run R on $\langle M, w \rangle$.

- If R rejects, reject.

- If R accepts (meaning M halts on w), simulate M on w until it halts (namely run U on $\langle M, w \rangle$).

- If M accepted, accept; otherwise reject.

TM S decides A_{TM}, a contradiction.
Undecidable Problems

$$H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$$

Theorem: H_{TM} is undecidable.

What we actually did was a reduction from A_{TM} to H_{TM}.

This will be formalized shortly.
Undecidable Problems (2)

Does a TM accept any string at all?

\[\text{EMPTY}_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(\text{EMPTY}_{\text{TM}} \) is undecidable.

Proof structure:

- By contradiction.
- Assume \(\text{EMPTY}_{\text{TM}} \) is decidable.
- Let \(R \) be a TM that decides \(\text{EMPTY}_{\text{TM}} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{\text{TM}} \).
Undecidable Problems (2)

\[\text{EMPTY}_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

First attempt: When \(S \) receives input \(\langle M, w \rangle \), it calls \(R \) with input \(\langle M \rangle \).

- If \(R \) accepts, then reject, because \(M \) does not accept any string, let alone \(w \).
- But what if \(R \) rejects?

Second attempt: Let’s modify \(M \).
Undecidable Problems (2)

\[\text{EMPTY}_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Define \(M_1 \): on input \(x \),

1. if \(x \neq w \), reject.
2. if \(x = w \), run \(M \) on \(w \) and accept if \(M \) does.

\(M_1 \) either

- accepts just \(w \), or
- accepts nothing.
Undecidable Problems (2)

Machine M_1: on input x,

1. if $x \neq w$, reject.
2. if $x = w$, run M on w and accept if M does.

Question:
Can a TM construct M_1 from M?

Answer:
Easily, because we need only hardwire w, and add a few extra states to perform the “$x = w$?” test.
Undecidable Problems (2)

\[\text{EMPTY}_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(\text{EMPTY}_{TM} \) is undecidable.

Define \(S \) as follows:

On input \(\langle M, w \rangle \), where \(M \) is a TM and \(w \) a string,

- Construct \(M_1 \) from \(M \) and \(w \).
- Run \(R \) on input \(\langle M_1 \rangle \),
- if \(R \) accepts, reject; if \(R \) rejects, accept.

\(\text{TM } S \) decides \(A_{TM} \), a contradiction
Undecidable Problems (3)

Does a TM accept a regular language?

\[\text{REG}_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem:
\(\text{REG}_{TM} \) is undecidable.

Skeleton of Proof:
- By contradiction.
- Assume \(\text{REG}_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(\text{REG}_{TM} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).

But how?
Undecidable Problems (3)

$$\text{REG}_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}$$

Intuition: Modify M so that the resulting TM accepts a regular language if and only if M accepts w.

Design M_2 so that
- if M does not accept w, then M_2 accepts the (non-regular) language $\{0^n1^n | n \geq 0\}$
- if M accepts w, then M_2 accepts Σ^* (regular).
Given M and w, construct M_2:

On input x,

1. If x has the form 0^n1^n, accept it.
2. Otherwise, run M on input w and accept x if M accepts w.

Claim:

- If M does not accept w, then M_2 accepts $\{0^n1^n | n \geq 0\}$.
- If M accepts w, then M_2 accepts Σ^*.

The function: On input $\langle M, w \rangle$, output $\langle M_2 \rangle$, is computable.
Undecidable Problems (3)

\[
\text{REG}_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \}
\]

Theorem: \(\text{REG}_{\text{TM}} \) is undecidable.

Define \(S \):

On input \(\langle M, w \rangle \),

1. Construct \(M_2 \) from \(M \) and \(w \).
2. Run \(R \) on input \(\langle M_2 \rangle \).
3. If \(R \) accepts, accept; if \(R \) rejects, reject.

\(\text{TM } S \) decides \(A_{\text{TM}} \), a contradiction ♣
Undecidable Problems (4)

Are two TMs equivalent?

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: EQ_{TM} is undecidable.

We are getting tired of reducing A_{TM} to everything. Let’s try instead a reduction from $EMPTY_{TM}$ to EQ_{TM}.
EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}

Theorem: EQ_{\text{TM}} is undecidable.

Idea:

- \text{EMPTY}_{\text{TM}} is the problem of testing whether a TM language is empty.
- EQ_{\text{TM}} is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to \text{EMPTY}_{\text{TM}}.
- So \text{EMPTY}_{\text{TM}} is a special case of EQ_{\text{TM}}.

The rest is easy.
EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}

Theorem: EQ_{TM} is undecidable.

Let \(M_{NO} \) be this TM: On input \(x \), reject.

Let \(R \) decide EQ_{TM}.

Let \(S \) be: On input \(\langle M \rangle \):

1. Run \(R \) on input \(\langle M, M_{NO} \rangle \).
2. If \(R \) accepts, accept; if \(R \) rejects, reject.

If \(R \) decides EQ_{TM}, then \(S \) decides EMPTY_{TM}.

♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.

- p. 23
Bucket of Undecidable Problems

Same techniques prove undecidability of:

- Does a TM accept a **decidable** language?
- Does a TM accept a **context-free** language?
- Does a TM accept a **finite** language?
- Does a TM halt on all inputs?
- Is there an input string that causes a TM to traverse all its states?
- Does a TM accept a language that contains all prime numbers?

And . . .

- Does a TM accept an **enumerable** language? (really?)
So far, we have seen many examples of reductions from one language to another, but the notion was implicit – it was neither defined nor treated formally.

Reductions play an important role in
- decidability theory (here and now)
- complexity theory (to come)

Time to get formal.
Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

\[A \leq_m B \]

if there is a computable function

\[f : \Sigma^* \rightarrow \Sigma^* \]

such that, for every w,

\[w \in A \iff f(w) \in B. \]

The function f is called the reduction from A to B.
Mapping Reductions

A mapping reduction converts questions about membership in A to membership in B.

Notice that $A \leq_m B$ implies $\overline{A} \leq_m \overline{B}$.
Mapping Reductions: Reminders

Theorem 1:
If $A \leq_{m} B$ and B is decidable, then A is decidable.

Theorem 2:
If $A \leq_{m} B$ and B is recursively enumerable, then A is recursively enumerable.
Corollary 1: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Corollary 2: If $A \leq_m B$ and A is not in \mathcal{RE}, then B is not in \mathcal{RE}.

Corollary 3: If $A \leq_m B$ and A is not in coRE, then B is not in coRE.
Mapping reductions are applicable to wide areas in mathematics, not only computing. For example, consider the following two sets:

1. The set of equations of the form $Ax^2 + By + C$ where the coefficients are integers, that have a root consisting of positive integers.

2. The set of knots that can be untied (without tearing or breaking the rope) leaving at most ℓ loops.

Even though these two sets have very different nature, they are reducible to each other (by mapping reductions).

In this course we concentrate mainly on computing related problems, but reductions are relevant in much wider scopes.
Example: Halting

Recall that

\[A_{TM} = \{ \langle M, w \rangle | \text{TM } M \text{ accepts input } w \} \]
\[H_{TM} = \{ \langle M, w \rangle | \text{TM } M \text{ halts on input } w \} \]

Earlier today we proved that

- \(H_{TM} \) undecidable
- by (de facto) reduction from \(A_{TM} \).

Let’s reformulate this.
Example: Halting

Define a **computable function**, f:

- input of form $\langle M, w \rangle$
- output of form $\langle M', w' \rangle$

where $\langle M, w \rangle \in A_{TM} \iff \langle M', w' \rangle \in H_{TM}$.
Example: Halting

The following machine computes this function f.

$f = \text{on input } \langle M, w \rangle$:

- Construct the following machine M'.
 - M': on input x
 - run M on x
 - If M accepts, accept.
 - If M rejects, enter a loop.

The function f is clearly computable. Let us convince ourselves (on board) it is also a reduction from A_{TM}^* to H_{TM}.

♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Theorem: Both EQ_{TM} and its complement, \overline{EQ}_{TM}, are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

We show that A_{TM} is reducible to EQ_{TM}. The same function is also a mapping reduction from A_{TM} to \overline{EQ}_{TM}, and thus \overline{EQ}_{TM} is not enumerable.

We then show that A_{TM} is reducible to \overline{EQ}_{TM}. The new function is also a mapping reduction from A_{TM} to EQ_{TM}, and thus EQ_{TM} is not enumerable.
TM Equality

Claim: \(A_{TM} \) is reducible to \(\overline{EQ_{TM}} \).

\[f_1 : A_{TM} \rightarrow \overline{EQ_{TM}} \] works as follows:

- \(F_1 \): On input \(\langle M, w \rangle \)
 - Construct machine \(M_1 \): on any input, reject.
 - Construct machine \(M_2 \): on input \(x \), run \(M \) on \(w \). If it accepts, accept.
 - Output \(\langle M_1, M_2 \rangle \).
TM Equality

\[F_1: \] On input \(\langle M, w \rangle \)
- Construct machine \(M_1 \): on any input, reject.
- Construct machine \(M_2 \): on any input \(x \), run \(M \) on \(w \).
 If it accepts, accept \(x \).
- Output \(\langle M_1, M_2 \rangle \).

Note
- \(M_1 \) accepts nothing
- if \(M \) accepts \(w \) then \(M_2 \) accepts everything, and otherwise nothing.
- so \(\langle M, w \rangle \in A_{TM} \iff \langle M_1, M_2 \rangle \in EQ_{TM} \)
- \(f_1 \) is clearly computable. Thus it is a reduction from \(A_{TM} \) to \(EQ_{TM} \).
Claim: A_{TM} is reducible to EQ_{TM}.

$f_2 : A_{TM} \rightarrow EQ_{TM}$ works as follows:

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, accept.
- Construct machine M_2: on any input x, run M on w. If it accepts, accept.
- Output $\langle M_1, M_2 \rangle$.
TM Equality

F_2: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, accept.
- Construct machine M_2: on any input x, run M on w.

 If it accepts, accept.

- Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts everything
- if M accepts w, then M_2 accepts everything, and otherwise nothing.
- $\langle M, w \rangle \in A_{TM} \iff \langle M_1, M_2 \rangle \in EQ_{TM}$.
- f_2 is clearly computable. Thus it is a reduction from A_{TM} to EQ_{TM}.

♣
Non Trivial Properties of \(\mathcal{RE} \) Languages

A few examples

- \(L \) is finite.
- \(L \) is infinite.
- \(L \) contains the empty string.
- \(L \) contains no prime number.
- \(L \) is co-finite.
- . . .

All these are **non-trivial** properties of enumerable languages, since for each of them there is \(L_1, L_2 \in \mathcal{RE} \) such that \(L_1 \) satisfies the property but \(L_2 \) does not.

Are there any **trivial** properties of \(\mathcal{RE} \) languages?
Rice’s Theorem

Theorem Let C be a proper non-empty subset of the set of enumerable languages. Denote by L_C the set of all TMs encodings, $\langle M \rangle$, such that $L(M)$ is in C. Then L_C is undecidable.

(See problem 5.22 in Sipser’s book)

Proof by reduction from A_{TM}.

Given M and w, we will construct M_0 such that:

- If M accepts w, then $\langle M_0 \rangle \in L_C$.
- If M does not accept w, then $\langle M_0 \rangle \notin L_C$.
Rice’s Theorem

- Without loss of generality, $\emptyset \notin C$.
- (Otherwise, look at \overline{C}, also proper and non-empty.)
- Since C is not empty, there exists some language $L \in C$. Let M_L be a TM accepting this language (recall C contains only recursively enumerable languages).

continued . . .
Rice’s Theorem

Given $\langle M, w \rangle$, construct M_0 such that:

- If M accepts w, then $L(M_0) = L \in C$.
- If M does not accept w, then $L(M_0) = \emptyset \notin C$.

M_0 on input y:

1. Run M on w.
2. If M accepts w, run M_L on y.
 a. if M_L accepts, accept, and
 b. if M_L rejects, reject.

Claim: The transformation $\langle M, w \rangle \rightarrow \langle M_0 \rangle$ is a mapping reduction from A_{TM} to L_C.
Rice’s Theorem

Proof: M_0 on input y:

1. Run M on w.
2. If M accepts, run M_L on y.
 a. if M_L accepts, accept, and
 b. if M_L rejects, reject.

- The machine M_0 is simply a concatenation of two known TMs – the universal machine, and M_L.
- Therefore the transformation $\langle M, w \rangle \rightarrow \langle M_0 \rangle$ is a computable function, defined for all strings in Σ^*.
- (But what do we actually do with strings not of the form $\langle M, w \rangle$?)
Rice’s Proof (Concluded)

- If $\langle M, w \rangle \in A_{TM}$ then M_0 gets to step 2, and runs M_L on y.
- In this case, $L(M_0) = L$, so $L(M_0) \in C$.
- On the other hand, if $\langle M, w \rangle \not\in A_{TM}$ then M_0 never gets to step 2.
- In this case, $L(M_0) = \emptyset$, so $L(M_0) \not\in C$.
- This establishes the fact that $\langle M, w \rangle \in A_{TM}$ iff $\langle M_0 \rangle \in L_C$. So we have $A_{TM} \leq_m L_C$, thus L_C is undecidable.
Rice’s theorem can be used to show undecidability of properties like:

- “does $L(M)$ contain infinitely many primes”
- “does $L(M)$ contain an arithmetic progression of length 15”
- “is $L(M)$ empty”

Decidability of properties related to the encoding itself cannot be inferred from Rice. For example “does $\langle M \rangle$ has an even number of states” is decidable.

Properties like “does M reaches state q_6 on the empty input string” are undecidable, but this does not follow from Rice’s theorem. Likewise, Rice does not say anything on membership in \mathcal{RE} of problems like “is $L(M)$ finite”.
Consider the language \(L_{\text{infinite}} = \{ \langle M \rangle \mid L(M) \text{ is infinite} \} \).

By Rice Theorem, this language is not in \(\mathcal{R} \).

We want to show that \(L_{\text{infinite}} \notin RE \).

Idea: Reduction from \(\overline{HTM} \).

So we are after a reduction \(f : \langle M, w \rangle \mapsto \langle M_0 \rangle \) such that

- If \(M \) halts on \(w \) then \(L(M_0) \) is finite.
- If \(M \) does not halt on \(w \) then \(L(M_0) \) is infinite.

This looks a bit tricky...
We are after a reduction \(f : \langle M, w \rangle \mapsto \langle M_0 \rangle \) such that

- If \(M \) halts on \(w \) then \(L(M_0) \) is finite.
- If \(M \) does not halt on \(w \) then \(L(M_0) \) is infinite.

Given \(\langle M, w \rangle \), construct the TM \(M_0 \) as following:

- \(M_0 \) on input \(y \)
- Runs the universal machine \(U \) on \(\langle M, w \rangle \) for \(|y| \) steps.
- If \(U \) did not halt in that many steps, \(M_0 \) accepts \(y \).
- If \(U \) did halt in that many steps, \(M_0 \) rejects \(y \).

\(f(\langle M, w \rangle) = M_0 \). Let us examine \(L(M_0) \).

(Remark: \(M_0 \) halts on all inputs.)
Reductions via Controlled Executions (3)

\[f(\langle M, w \rangle) = M_0. \] Let us examine \(L(M_0) \).

- If \(M \) does not halt on \(w \), then \(M_0 \) accepts all \(y \), so \(L(M_0) = \Sigma^* \), and thus \(\langle M_0 \rangle \in L_{\text{infinite}} \).

- If \(M \) does halt on \(w \) after \(k \) simulation steps, then \(M_0 \) accepts only \(y \)'s of length smaller than \(k \), so \(L(M_0) \) is finite, and thus \(\langle M_0 \rangle \not\in L_{\text{infinite}} \).

We have shown that \(\overline{H}^{TM} \leq_m L_{\text{infinite}} \).

Since \(\overline{H}^{TM} \not\in \mathcal{RE} \), this implies \(L_{\text{infinite}} \not\in \mathcal{RE} \).

\[\diamondsuit \]
Question: Is there a language L that is hardest in the class \mathcal{RE} of enumerable languages (languages accepted by some TM)?

Answer: Well, you have to define what you mean by “hardest language”.

Definition: A language $L_0 \subseteq \Sigma^*$ is called \mathcal{RE}-complete if the following holds

- $L_0 \in \mathcal{RE}$ (membership).
- For every $L \in \mathcal{RE}$, $L \leq_m L_0$ (hardness).
RE-Completeness

Definition A language $L_0 \subseteq \Sigma^*$ is called \(\text{RE-complete} \) if the following holds

- $L_0 \in \text{RE}$ (membership).
- For every $L \in \text{RE}$, $L \leq_m L_0$ (hardness).

The second item means that for every enumerable L there is a mapping reduction f_L from L to L_0. The reduction f_L depends on L and will typically differ from one language to another.
Question: Having defined a reasonable notion, we should make sure it is not vacuous, namely verify there is at least one language satisfying it.

Theorem The language \(A_{TM} \) is \(\mathcal{RE} \)-Complete.

Proof:

- The universal machine \(U \) accepts the language \(A_{TM} \), so \(A_{TM} \in \mathcal{RE} \).
- Suppose \(L \) is in \(\mathcal{RE} \), and let \(M_L \) be a TM accepting it. Then \(f_L(w) = \langle M_L, w \rangle \) is a mapping reduction from \(L \) to \(A_{TM} \) (why?).