Computational Models– Lecture 5

- **Equivalence** of PDAs and CFLs
- Nondeterminism adds power to PDAs (not in book)
- Closure Properties of CFLs
- CFGs in Chomsky normal form
- Algorithmic Aspects of PDAs and CFLs
- DFAs and PDAs: Perspectives

- Sipser’s book, 2.2 & 2.3
Reminder

Mid-term exam on Tuesday, April 7.
Reminder

- Mid-term exam on Tuesday, April 7.
- Material is first five lectures (i.e. up to and including today).
Reminder

- Mid-term exam on Tuesday, April 7.

- Material is first five lectures (i.e. up to and including today).

- Closed books (no auxiliary material).
Reminder

- Mid-term exam on Tuesday, April 7.
 - Material is first five lectures (i.e. up to and including today).
 - Closed books (no auxiliary material).
 - 10 multiple choice (“closed, American”) questions.
Reminder

- **Mid-term exam on Tuesday, April 7.**

- Material is first five lectures (*i.e.* up to and including today).

- Closed books (no auxiliary material).

- 10 multiple choice (“closed, American”) questions.

- Duration 1:40 hrs.
PDA Languages vs. CFLs

The set of Push-Down Automata Languages, L_{PDA}, is the collection of all languages that are accepted by some PDA:

\[L_{PDA} = \{ L : \exists PDA \ M \land L(M) = L \} . \]

Natural questions:

- $L_{CFG} \subseteq L_{PDA}$?
- $L_{PDA} \subseteq L_{CFG}$?
CFL/PDA Equivalence Theorem

Theorem: A language is context free if and only if some pushdown automaton accepts it.

- Both the “if” part and the “only if” part are non-trivial (unlike the proof of equivalence of regular languages and regular expression, where one part was trivial).
- We will late present a high level view of the proof (not all details).
- We will assume (and use) the theorem right away.
Non-Determinism Adds Power

Theorem: There are context free languages that are accepted only by non-deterministic push down automata.

Comment: Recall that all regular languages are accepted by deterministic finite automata. For finite automata, non-determinism does not add power.
Non-Determinism Adds Power: Proof

Theorem: Let M be a PDA that accepts

$$L = \{ x^n y^n | n \geq 0 \} \cup \{ x^n y^{2n} | n \geq 0 \} .$$

Then M is non-deterministic.

\(^a\) (prf modified from www.cs.may.ie/~jpower/Courses/parsing/node38.html)
Non-Determinism Adds Power: Proof

Theorem: Let M be a PDA that accepts

$$L = \{x^n y^n | n \geq 0\} \cup \{x^n y^{2n} | n \geq 0\}.$$

Then M is non-deterministic.

Proofa: Suppose, by way of contradiction, that M is deterministic.

a (prf modified from www.cs.may.ie/~jpower/Courses/parsing/node38.html)
Non-Determinism Adds Power: Proof

Theorem: Let M be a PDA that accepts

$$L = \{x^n y^n | n \geq 0\} \cup \{x^n y^{2n} | n \geq 0\}.$$

Then M is non-deterministic.

Proofa: Suppose, by way of contradiction, that M is deterministic.

- Create two copies of this PDA, denoted by M_1 and M_2, respectively.

- Two states in M_1 and M_2 are called “cousins” if they are copies of the same state in the original PDA.

a (prf modified from www.cs.may.ie/~jpower/Courses/parsing/node38.html)
Non-Determinism Adds Power (cont.)

We now modify these PDA copies to make them into one PDA, M_0, over the alphabet $\{x, y, z\}$.
Non-Determinism Adds Power (cont.)

- We now modify these PDA copies to make them into one PDA, M_0, over the alphabet \{x, y, z\}.
- The stack alphabet is not changed.
Non-Determinism Adds Power (cont.)

- We now modify these PDA copies to make them into one PDA, M_0, over the alphabet $\{x, y, z\}$.
- The stack alphabet is not changed.
- States of the new M_0 are those of M_1 union M_2.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Non-Determinism Adds Power (cont.)

- We now modify these PDA copies to make them into one PDA, M_0, over the alphabet $\{x, y, z\}$.
- The stack alphabet is not changed.
- States of the new M_0 are those of M_1 union M_2.
- Start state of the new M_0 is the start state of M_1.
Non-Determinism Adds Power (cont.)

- We now modify these PDA copies to make them into one PDA, M_0, over the alphabet \(\{x, y, z\} \).
- The stack alphabet is not changed.
- States of the new M_0 are those of M_1 union M_2.
- Start state of the new M_0 is the start state of M_1.
- The accepting states of the new M_0 are the accepting states of M_2.
Non-Determinism Adds Power (cont.)

- Modifications:
 - **Erase** all x transitions of M_2 (formally, on input letter x and any stack option, M_2 moves to a new “dead end” state).
 - Replace every existing y transition of M_2 by a new z transition (how is this implemented formally?).
 - At this point M_2 got only z transition (so while in M_2, the letters x and y lead immediately to rejection).
 - **Erase** all x transitions out of accept states of M_1.
Non-Determinism Adds Power (cont.)

- The surgery is almost done, but if we don’t connect the two halves of its brain, the patient will not function coherently.
Non-Determinism Adds Power (cont.)

- The surgery is almost done, but if we don’t connect the two halves of its brain, the patient will not function coherently.

- Replace every existing y transition leading out of accept states of M_1 by a new z transition, and redirect it to its “cousin” in M_2.
Non-Determinism Adds Power (cont.)

- The surgery is almost done, but if we don’t connect the two halves of its brain, the patient will not function coherently.

- Replace every existing y transition leading out of accept states of M_1 by a new z transition, and redirect it to its “cousin” in M_2.
Non-Determinism Adds Power (cont.)

- The surgery is almost done, but if we don’t connect the two halves of its brain, the patient will not function coherently.

- Replace every existing y transition leading out of accept states of M_1 by a new z transition, and redirect it to its “cousin” in M_2.

- Surgery over. Patient (a deterministic PDA) still alive. Let us now diagnose what, if anything, it can do.
Non-Determinism Adds Power (cont.)

What language does M_0 recognizes?
Non-Determinism Adds Power (cont.)

- What language does M_0 recognizes?
- If M_0 accepts a string, it must be of the form $(x \cup y)^*z^*$.
Non-Determinism Adds Power (cont.)

What language does M_0 recognizes?

If M_0 accepts a string, it must be of the form $(x \cup y)^* z^*$.

Surely not all strings of that form are accepted by M_0.
Non-Determinism Adds Power (cont.)

- What language does M_0 recognizes?
- If M_0 accepts a string, it must be of the form $(x \cup y)^* z^*$.
- Surely not all strings of that form are accepted by M_0.
- For example, the $(x \cup y)^*$ prefix must be accepted by the original M.
Non-Determinism Adds Power (cont.)

- What language does M_0 recognize?
- If M_0 accepts a string, it must be of the form $(x \cup y)^*z^*$.
- Surely not \textbf{all} strings of that form are accepted by M_0.
- For example, the $(x \cup y)^*$ prefix must be \textbf{accepted} by the original M.
- Otherwise there will be no switch to M_2, and no acceptance by M_0. (think why is $L(M_0) \neq \emptyset$? Would this also be true for \textbf{non deterministic} M?)
What language does M_0 recognizes?
If M_0 accepts a string, it must be of the form $(x \cup y)^* z^*$.
Surely not all strings of that form are accepted by M_0.
For example, the $(x \cup y)^*$ prefix must be accepted by the original M.
Otherwise there will be no switch to M_2, and no acceptance by M_0. (think why is $L(M_0) \neq \emptyset$? Would this also be true for non deterministic M?)
So the prefix of an accepted string is either of the form $x^n y^n$ or $x^n y^{2n}$.
Non-Determinism Adds Power (cont.)

What can we say about the z^i part? First, i must be greater than 0 for a transition to take place.
What can we say about the z^i part? First, i must be greater than 0 for a transition to take place.

By construction, M_2 on z^i imitates the actions of M on y^i from the same starting point.
Non-Determinism Adds Power (cont.)

- What can we say about the z^i part? First, i must be greater than 0 for a transition to take place.

- By construction, M_2 on z^i imitates the actions of M on y^i from the same starting point.

- This means that if M_0 accepts $x^n y^n z^i$ then M accepts $x^n y^{n+i}$.
What can we say about the \(z^i \) part? First, \(i \) must be greater than 0 for a transition to take place.

By construction, \(M_2 \) on \(z^i \) imitates the actions of \(M \) on \(y^i \) from the same starting point.

This means that if \(M_0 \) accepts \(x^n y^n z^i \) then \(M \) accepts \(x^n y^{n+i} \).

Which is only possible if \(i = n \), so \(M_0 \) accepts \(x^n y^n z^n \), \(n > 0 \).
What can we say about the z^i part? First, i must be greater than 0 for a transition to take place.

By construction, M_2 on z^i imitates the actions of M on y^i from the same starting point.

This means that if M_0 accepts $x^n y^n z^i$ then M accepts $x^n y^{n+i}$.

Which is only possible if $i = n$, so M_0 accepts $x^n y^n z^n$, $n > 0$.

Notice that M_0 cannot accepts $x^n y^{2n} z^j$, because M does not accepts any string of the form $x^n y^{2n+j}$, $j > 0$.
Conclusion of Proof

We just showed that the PDA M_0 accepts the language $\{x^n y^n z^n | n \geq 1\}$.
Conclusion of Proof

- We just showed that the PDA M_0 accepts the language $\{x^n y^n z^n | n \geq 1\}$.

- By the equivalence theorem, the language that a PDA accepts is a context free language. By the so-called $uvwxyz$ pumping lemma, $\{x^n y^n z^n | n \geq 1\}$ is not a CFL. Contradiction.
Conclusion of Proof

- We just showed that the PDA M_0 accepts the language $\{x^ny^n z^n | n \geq 1\}$.

- By the equivalence theorem, the language that a PDA accepts is a context free language. By the so-called $uvxyz$ pumping lemma, $\{x^ny^n z^n | n \geq 1\}$ is not a CFL. Contradiction.
Conclusion of Proof

- We just showed that the PDA M_0 accepts the language $\{x^n y^n z^n | n \geq 1\}$.

- By the equivalence theorem, the language that a PDA accepts is a context free language. By the so called $uvwxy$ pumping lemma, $\{x^n y^n z^n | n \geq 1\}$ is not a CFL. Contradiction.

- This means that our initial supposition that the language $\{x^n y^n\} \cup \{x^n y^{2n}\}$ is accepted by a deterministic PDA, does not hold.
Conclusion of Proof

- We just showed that the PDA M_0 accepts the language $\{x^n y^n z^n | n \geq 1\}$.

- By the equivalence theorem, the language that a PDA accepts is a context free language. By the so-called $uvxyz$ pumping lemma, $\{x^n y^n z^n | n \geq 1\}$ is not a CFL. Contradiction.

- This means that our initial supposition that the language $\{x^n y^n\} \cup \{x^n y^{2n}\}$ is accepted by a deterministic PDA, does not hold.

- While thinking about the proof, where would it fail if the original M were non-deterministic?
Chomsky Normal Form

A simplified, canonical form of context free grammars. Elegant by itself, useful (but not crucial) in proving equivalence theorem. Can also be used to slightly simplify proof of pumping lemma.

All rules are of the form

\[(1) A \rightarrow BC \]
\[(2) A \rightarrow a \]
\[(3) S \rightarrow \varepsilon \]

where \(S\) is the start symbol, \(A, B\) and \(C\) are any variable, except \(B\) and \(C\) not the start symbol, and \(A\) can be the start symbol.

A “conversion recipe”, and a detailed example, will be given later.
CFL Closure Properties

- We saw that Context-Free Languages are closed under union, concatenation, and star?
- It is time we resolve closure with respect to complementation and intersection.
CFL Closure Properties

Are the context free languages closed under intersection?
CFL Closure Properties

- Are the context free languages closed under intersection?

- Suggested approach: Can we intersect two context free languages to get $0^n1^n2^n$?
CFL Closure Properties

Are the context free languages closed under intersection?
CFL Closure Properties

Are the context free languages closed under intersection?

\[S_1 \rightarrow A_1 B_1 \quad S_2 \rightarrow A_2 B_2 \]
\[A_1 \rightarrow 0A_1 | 01 \quad A_2 \rightarrow 0A_2 | \varepsilon \]
\[B_1 \rightarrow 2B_1 | \varepsilon \quad B_2 \rightarrow 1B_2 | 12 \]

\[L_1 = 0^n 1^n 2^* \quad L_2 = 0^* 1^n 2^n \]
CFL Closure Properties

Are the context free languages closed under intersection?

\[S_1 \rightarrow A_1 B_1 \]
\[A_1 \rightarrow 0A_1 1|01 \]
\[B_1 \rightarrow 2B_1|\varepsilon \]

\[S_2 \rightarrow A_2 B_2 \]
\[A_2 \rightarrow 0A_2|\varepsilon \]
\[B_2 \rightarrow 1B_2 2|12 \]

\[L_1 = 0^n1^n2^* \]
\[L_2 = 0^*1^n2^n \]

\[L_1 \cap L_2 = 0^n1^n2^n \]
CFL Closure Properties

- Are the context free languages closed under intersection?

\[
\begin{align*}
S_1 &\rightarrow A_1 B_1 & S_2 &\rightarrow A_2 B_2 \\
A_1 &\rightarrow 0A_1 1|01 & A_2 &\rightarrow 0A_2 |\varepsilon \\
B_1 &\rightarrow 2B_1 |\varepsilon & B_2 &\rightarrow 1B_2 2|12
\end{align*}
\]

\[L_1 = 0^n1^n2^* \]
\[L_2 = 0^*1^n2^n\]

\[L_1 \cap L_2 = 0^n1^n2^n\]

- \(L_1\) is a context free language, \(L_2\) is a context free language, but \(L_1 \cap L_2\) is not a context free languages
CFL Closure Properties

- Are the context free languages closed under intersection?

\[S_1 \rightarrow A_1 B_1 \quad S_2 \rightarrow A_2 B_2 \]
\[A_1 \rightarrow 0A_1 1|01 \quad A_2 \rightarrow 0A_2 |\varepsilon \]
\[B_1 \rightarrow 2B_1 |\varepsilon \quad B_2 \rightarrow 1B_2 2|12 \]

\[L_1 = 0^n 1^n 2^* \quad L_2 = 0^* 1^n 2^n \]

\[L_1 \cap L_2 = 0^n 1^n 2^n \]

\[L_1 \text{ is a context free language, } L_2 \text{ is a context free language, but } L_1 \cap L_2 \text{ is not a context free languages} \]
CFL Closure Properties

The fact that CFLs are not closed under intersection but are closed under union implies they are not closed under complementation, as $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.
CFL Closure Properties

Can we give a simple, specific example, where L is not CFL but \overline{L} is?

Take $L = \{ww \mid w \in \{0, 1\}^*\}$.
CFL Closure Properties

Can we give a simple, specific example, where L is not CFL but \overline{L} is?

- Take $L = \{ww \mid w \in \{0, 1\}^*\}$.

- For any $y \in \overline{L}$, either
 - y's length is odd.
 - y's length is even, 2ℓ, and there is an $i \geq 1$ such that $y_i \neq y_{\ell+i}$.
CFL Closure Properties

Can we give a simple, specific example, where \(L \) is not CFL but \(\overline{L} \) is?

- Take \(L = \{ww \mid w \in \{0, 1\}^*\} \).
- For any \(y \in \overline{L} \), either
 - \(y \)'s length is odd.
 - \(y \)'s length is even, \(2\ell \), and there is an \(i \geq 1 \) such that \(y_i \neq y_{\ell+i} \).
- PDA non-deterministically tries to verify one of the options. Employs stack for "matching locations". Accepts only on a successful branch (voluntary home assignment: fill in the details!).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
CFL Closure Properties

Can we give a simple, specific example, where L is not CFL but \overline{L} is?

- Take $L = \{ww \mid w \in \{0, 1\}^*\}$.
- For any $y \in \overline{L}$, either
 - y’s length is odd.
 - y’s length is even, 2ℓ, and there is an $i \geq 1$ such that $y_i \neq y_{\ell+i}$.

PDA non-deterministically tries to verify one of the options. Employs stack for “matching locations”. Accepts only on a successful branch (voluntary home assignment: fill in the details!).
CFL Closure Properties

Can we give a simple, specific example, where L is not CFL but \overline{L} is?

- Take $L = \{ww \mid w \in \{0, 1\}^*\}$.
- For any $y \in \overline{L}$, either
 - y’s length is odd.
 - y’s length is even, 2ℓ, and there is an $i \geq 1$ such that $y_i \neq y_{\ell+i}$.
- PDA non-deterministically tries to verify one of the options. Employs stack for “matching locations”. Accepts only on a successful branch (voluntary home assignment: fill in the details!).
CFL Closure Properties

Can we give a simple, specific example, where \(L \) is not CFL but \(\overline{L} \) is?

- Take \(L = \{ww \mid w \in \{0, 1\}^*\} \).
- For any \(y \in \overline{L} \), either
 - \(y \)'s length is odd.
 - \(y \)'s length is even, \(2\ell \), and there is an \(i \geq 1 \) such that \(y_i \neq y_{\ell+i} \).
- PDA non-deterministically tries to verify one of the options. Employs stack for “matching locations”. Accepts only on a successful branch (voluntary home assignment: fill in the details!).
CFL Closure Properties

Are the context free languages context free languages closed under intersection with a regular language?
CFL Closure Properties

• Are the context free languages context free languages closed under intersection with a regular language?

• That is, if L_1 is context free languages, and L_2 is regular, must $L_1 \cap L_2$ be context free languages?
CFL Closure Properties

- Are the context free languages context free languages closed under intersection with a regular language?

- That is, if L_1 is context free languages, and L_2 is regular, must $L_1 \cap L_2$ be context free languages?

- Run PDA L_1 and DFA L_2 “in parallel” (just like the intersection of two regular languages).
CFL Closure Properties

- Are the context free languages context free languages closed under intersection with a regular language?

- That is, if \(L_1 \) is context free languages, and \(L_2 \) is regular, must \(L_1 \cap L_2 \) be context free languages?

- Run PDA \(L_1 \) and DFA \(L_2 \) “in parallel” (just like the intersection of two regular languages).

- This is doable since DFA does not use the stack, so it does not “get in the way” of the PDA.
CFL Closure Properties

- Are the context free languages context free languages closed under intersection with a regular language?

- That is, if L_1 is context free languages, and L_2 is regular, must $L_1 \cap L_2$ be context free languages?

- Run PDA L_1 and DFA L_2 “in parallel” (just like the intersection of two regular languages).

- This is doable since DFA does not use the stack, so it does not “get in the way” of the PDA.

- Formal details omitted (but you should be able to figure them out).
CFL Closure Properties: Example

Is $L = \{(0 \cup 1 \cup 2)^* : \# \text{ of } 0\text{'s} = \# \text{ of } 1\text{'s} = \# \text{ of } 2\text{'s}\}$ context free?
CFL Closure Properties

\[L \triangleq \{(0 \cup 1 \cup 2)^* : \# 0's = \# 1's = \# 2's \} \]
CFL Closure Properties

\[L \triangleq \{(0 \cup 1 \cup 2)^* : \# 0's = \# 1's = \# 2's \} \]

Is \(L \) context free?

\[L \cap 00^{*}11^{*}22^{*} = \{0^n1^n2^n : n > 0\} \] which is not context free.

Context free languages intersected with a regular languages are context free.

\(00^{*}11^{*}22^{*} \) is regular.

So \(L \) is not a context free language!
CFL Closure Properties

- \(L \triangleq \{(0 \cup 1 \cup 2)^* : \text{# 0’s = \# 1’s = \# 2’s}\}\)

Is \(L \) context free?
- \(L \cap 00^*11^*22^* = \{0^n1^n2^n : n > 0\} \), which is not context free.
- Context free languages intersected with a regular languages are context free.
- \(00^*11^*22^* \) is regular.
- So \(L \) is not a context free language!

Could this be proven directly, using pumping?
CFL Closure Properties

- \(L \triangleq \{(0 \cup 1 \cup 2)^* : \# 0's = \# 1's = \# 2's \} \)

Is \(L \) context free?
- \(L \cap 00^*11^*22^* = \{0^n1^n2^n : n > 0\} \) which is not context free.
- Context free languages intersected with a regular languages are context free.
- \(00^*11^*22^* \) is regular.
- So \(L \) is not a context free language!

Could this be proven directly, using pumping?
- Probably, but we prefer to work less (provided the proofs are correct :-).
Algorithmic Questions Regarding DFAs

Given a regular expression, R, find the smallest DFA (minimum number of states) that accepts $L(R)$.

Initial Idea: Use the algorithm described in class to transform R into an NFA. Then transform this NFA into a DFA, M.
Algorithmic Questions Regarding DFAs

Given a regular expression, R, find the smallest DFA (minimum number of states) that accepts $L(R)$.

- **Initial Idea:** Use the algorithm describe in class to transform R into an NFA. Then transform this NFA into a DFA, M.

- That’s very nice, but how do we know M is minimal?
Algorithmic Questions Regarding DFAs

Given a regular expression, R, find the smallest DFA (minimum number of states) that accepts $L(R)$.

- **Initial Idea:** Use the algorithm describe in class to transform R into an NFA. Then transform this NFA into a DFA, M.

- That’s very nice, but how do we know M is minimal?

- It need not be!
Algorithmic Questions for DFAs (2)

Given a regular expression, R, find the smallest DFA that accepts $L(R)$ (minimum number of states).

We can enumerate all DFAs that are strictly smaller than M.
Algorithmic Questions for DFAs (2)

Given a regular expression, R, find the smallest DFA that accepts $L(R)$ (minimum number of states).

- We can enumerate all DFAs that are strictly smaller than M.
- For each such M_i, test if $L(M_i) = L(M)$ (we saw an algorithm for this).
Algorithmic Questions for DFAs (2)

Given a regular expression, R, find the smallest DFA that accepts $L(R)$ (minimum number of states).

- We can enumerate all DFAs that are strictly smaller than M.
- For each such M_i, test if $L(M_i) = L(M)$ (we saw an algorithm for this).
- Take the smallest such M_i.
Algorithmic Questions for DFAs (2)

Given a regular expression, R, find the smallest DFA that accepts $L(R)$ (minimum number of states).

- We can enumerate all DFAs that are strictly smaller than M.
- For each such M_i, test if $L(M_i) = L(M)$ (we saw an algorithm for this).
- Take the smallest such M_i.
- Algorithm is very inefficient. If smallest M has n states, algorithm will take time that is exponential in n.
Algorithmic Questions for DFAs (2)

Given a regular expression, R, find the smallest DFA that accepts $L(R)$ (minimum number of states).

1. We can enumerate all DFAs that are strictly smaller than M.
2. For each such M_i, test if $L(M_i) = L(M)$ (we saw an algorithm for this).
3. Take the smallest such M_i.
4. Algorithm is very inefficient. If smallest M has n states, algorithm will take time that is exponential in n.
5. More efficient algorithm is known, using the Myhill-Nerode theorem.
Algorithmic Questions Regarding CFGs

Given a CFG, G, and a string w, does G generate w?
Algorithmic Questions Regarding CFGs

Given a CFG, G, and a string w, does G generate w?

Initial Idea: Design an algorithm that tries all derivations.
Algorithmic Questions Regarding CFGs

Given a CFG, G, and a string w, does G generate w?

Initial Idea: Design an algorithm that tries all derivations.

Problem: If G does not generate w, we’ll never stop.
Algorithmic Questions for CFGs (2)

Lemma: If G is in Chomsky normal form, $|w| = n$, and w is generated by G, then w has a derivation of length $2n - 1$ or less.

We won’t prove this (but you will — in case you solve the second home assignment!).
Algorithmic Questions for CFGs (2)

Lemma: If G is in Chomsky normal form, $|w| = n$, and w is generated by G, then w has a derivation of length $2n - 1$ or less.

We won’t prove this (but you will — in case you solve the second home assignment!).

Algorithm’s idea:

- First, convert G to Chomsky normal form.
Algorithmic Questions for CFGs (2)

Lemma: If G is in Chomsky normal form, $|w| = n$, and w is generated by G, then w has a derivation of length $2n - 1$ or less.

We won’t prove this (but **you** will — in case **you** solve the second home assignment!).

Algorithm’s idea:

- First, convert G to Chomsky normal form.
- Now need only consider a **finite number** of derivations – those of length $2n - 1$ or less.
Algorithmic Questions for CFGs (2)

Lemma: If G is in Chomsky normal form, $|w| = n$, and w is generated by G, then w has a derivation of length $2n - 1$ or less.

We won’t prove this (but you will — in case you solve the second home assignment!).

Algorithm’s idea:

- First, convert G to Chomsky normal form.
- Now need only consider a finite number of derivations – those of length $2n - 1$ or less.
Algorithmic Questions for CFGs (3)

Theorem: There is an algorithm (that halts on every input) A, that on inputs G and w, decides if G generates w.

On input $⟨G, w⟩$, where G is a grammar and w a string,

1. Convert G to Chomsky normal form.
2. List all derivations with $2n - 1$ steps, were $n = |w|$.
3. If any generates w, accept, otherwise reject.
Algorithmic Questions for CFGs (4)
Algorithmic Questions for CFGs (4)

Theorem: There is an algorithm (that halts on every inputs) A, that on inputs G and w, decides if G generates w.

Remarks:

- Related to problem of compiling prog. languages.
Algorithmic Questions for CFGs (4)

Theorem: There is an algorithm (that halts on every inputs) A, that on inputs G and w, decides if G generates w.

Remarks:
- Related to problem of compiling prog. languages.
- Would you want to use this algorithm at work?
Algorithmic Questions for CFGs (4)

Theorem: There is an algorithm (that halts on every inputs) A, that on inputs G and w, decides if G generates w.

Remarks:
- Related to problem of compiling prog. languages.
- Would you want to use this algorithm at work?
- Recall that every theorem about CFLs is also about PDAs.
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?

In other words, is there any string w, such that G generate w?
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?

In other words, is there any string w, such that G generate w?

Theorem: There is an algorithm that solves this problem (and always halts).
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?

In other words, is there any string w, such that G generate w?

Theorem: There is an algorithm that solves this problem (and always halts).

Possible approaches for a proof:
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?

In other words, is there any string w, such that G generate w?

Theorem: There is an algorithm that solves this problem (and always halts).

Possible approaches for a proof:

Bad Idea: We know how to test whether $w \in L(G)$ for any string w, so just try it for each w. (criticize this...)
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?

In other words, is there any string w, such that G generate w?

Theorem: There is an algorithm that solves this problem (and always halts).

Possible approaches for a proof:

Bad Idea: We know how to test whether $w \in L(G)$ for any string w, so just try it for each w. (criticize this...)

Better Idea: Can the start variable generate a string of terminals?
Emptiness of CFGs

Given a CFG, G, is $L(G) = \emptyset$?

In other words, is there any string w, such that G generate w?

Theorem: There is an algorithm that solves this problem (and always halts).

Possible approaches for a proof:

Bad Idea: We know how to test whether $w \in L(G)$ for any string w, so just try it for each w. (criticize this...)

Better Idea: Can the start variable generate a string of terminals?

Even Better Idea: Can a particular variable generate a string of terminals?
CFG Emptiness (2)

Algorithm: On input G (a CFG),
CFG Emptiness (2)

Algorithm: On input \(G \) (a CFG),

1. Mark all terminal symbols in \(G \).
CFG Emptiness (2)

Algorithm: On input G (a CFG),

1. Mark all terminal symbols in G.
2. Repeat until no new variables become marked.
CFG Emptiness (2)

Algorithm: On input G (a CFG),

1. Mark all terminal symbols in G.
2. Repeat until no new variables become marked.
3. Mark any A where $A \rightarrow U_1 U_2 \ldots U_k$ and all U_i have already been marked.
CFG Emptiness (2)

Algorithm: On input G (a CFG),

1. Mark all terminal symbols in G.
2. Repeat until no new variables become marked.
3. Mark any A where $A \rightarrow U_1 U_2 \ldots U_k$ and all U_i have already been marked.
4. If start symbol marked, accept, else reject.
CFGs “Fullness”

Given a CFG, G, is $L(G) = \Sigma^*$?
CFGs “Fullness”

Given a CFG, G, is $L(G) = \Sigma^*$?

We just saw an algorithm to determine, given a CFG, G, if $L(G) = \emptyset$
CFGs “Fullness”

Given a CFG, G, is $L(G) = \Sigma^*$?

We just saw an algorithm to determine, given a CFG, G, if $L(G) = \emptyset$

$L(G) = \Sigma^*$ iff $\overline{L(G)} = \emptyset$. Why not modify the algorithm so it determines emptiness of the complement?
CFGs “Fullness”

Given a CFG, G, is $L(G) = \Sigma^*$?

We just saw an algorithm to determine, given a CFG, G, if $L(G) = \emptyset$

$L(G) = \Sigma^*$ iff $\overline{L(G)} = \emptyset$. Why not modify the algorithm so it determines emptiness of the complement?

Unfortunately, CFGs are not closed under complement.
CFGs “Fullness”

Given a CFG, G, is $L(G) = \Sigma^*$?

We just saw an algorithm to determine, given a CFG, G, if $L(G) = \emptyset$

$L(G) = \Sigma^*$ iff $\overline{L(G)} = \emptyset$. Why not modify the algorithm so it determines emptiness of the complement?

Unfortunately, CFGs are not closed under complement.

Fact: There is no algorithm to solve this problem.
CFGs “Fullness”

Given a CFG, G, is $L(G) = \Sigma^*$?

We just saw an algorithm to determine, given a CFG, G, if $L(G) = \emptyset$

$L(G) = \Sigma^*$ iff $\overline{L(G)} = \emptyset$. Why not modify the algorithm so it determines emptiness of the complement?

Unfortunately, CFGs are not closed under complement.

Fact: There is no algorithm to solve this problem.

We are not prepared to prove this remarkable fact (yet).
When Are Two CFGs equivalent?

Given two CFGs, G, H, is $L(G) = L(H)$?
When Are Two CFGs equivalent?

Given two CFGs, G, H, is $L(G) = L(H)$?

Hey, we did this already for equivalence of DFAs!

We constructed C from A and B:

$$L(C) = \left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right).$$

and tested whether $L(C)$ is empty.
When Are Two CFGs equivalent?

Given two CFGs, G, H, is $L(G) = L(H)$?

Hey, we did this already for equivalence of DFAs!

We constructed C from A and B:

$$L(C') = \left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right).$$

and tested whether $L(C')$ is empty.

Stop! Danger! Abyss ahead!
When Are Two CFGs equivalent?

This approach was fine for DFAs, but not for CFLs!
When Are Two CFGs equivalent?

This approach was fine for DFAs, but **not** for CFLs!

The class of context-free languages is **not** closed under complementation or intersection.
When Are Two CFGs equivalent?

This approach was fine for DFAs, but not for CFLs!

The class of context-free languages is not closed under complementation or intersection.

Fact: There is no algorithm to solve this problem.
When Are Two CFGs equivalent?

This approach was fine for DFAs, but not for CFLs!

The class of context-free languages is not closed under complementation or intersection.

Fact: There is no algorithm to solve this problem.

We are not prepared to prove this remarkable fact (yet).
Chomsky Normal Form

A simplified, canonical form of context free grammars. Elegant by itself, useful (but not crucial) in proving equivalence theorem. Can also be used to slightly simplify proof of pumping lemma. Every rule has the form

\[
A \rightarrow BC
\]

\[
A \rightarrow a
\]

\[
S \rightarrow \varepsilon
\]

where \(S \) is the start symbol, \(A, B \) and \(C \) are any variable, except \(B \) and \(C \) not the start symbol, and \(A \) can be the start symbol.
Theorem:

Any context-free language is generated by a context-free grammar in Chomsky normal form. Basic idea:

- Add new start symbol S_0.
Theorem:

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Basic idea:

1. Add new start symbol S_0.
2. Eliminate all ε rules of the form $A \rightarrow \varepsilon$.
Theorem:

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Basic idea:

- Add new start symbol S_0.
- Eliminate all ε rules of the form $A \rightarrow \varepsilon$.
- Eliminate all “unit” rules of the form $A \rightarrow B$.
Theorem:

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Basic idea:

- Add new start symbol S_0.
- Eliminate all ε rules of the form $A \rightarrow \varepsilon$.
- Eliminate all “unit” rules of the form $A \rightarrow B$.
- At each step, “patch up” rules so that grammar generates the same language.
Theorem:

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Basic idea:

- Add new start symbol S_0.
- Eliminate all ε rules of the form $A \rightarrow \varepsilon$.
- Eliminate all “unit” rules of the form $A \rightarrow B$.
- At each step, “patch up” rules so that grammar generates the same language.
- Convert remaining “long rules” to proper form.
Proof

Add new start symbol S_0 and rule $S_0 \rightarrow S$. Guarantees that new start symbol does not appear on right-hand-side of a rule.
Proof

Eliminating ε rules.

Repeat:

- remove some $A \rightarrow \varepsilon$.
Proof

Eliminating ε rules.

Repeat:
- remove some $A \rightarrow \varepsilon$.
- for each $R \rightarrow uAv$, add rule $R \rightarrow uv$.
Proof

Eliminating ε rules.

Repeat:

- remove some $A \rightarrow \varepsilon$.
- for each $R \rightarrow uAv$, add rule $R \rightarrow uv$.
- and so on: for $R \rightarrow uAvAw$ add $R \rightarrow uvAw$, $R \rightarrow uAvw$, and $R \rightarrow uvw$.
Proof

Eliminating \(\varepsilon \) rules.

Repeat:

- remove some \(A \rightarrow \varepsilon \).
- for each \(R \rightarrow uAv \), add rule \(R \rightarrow uv \).
- and so on: for \(R \rightarrow uAvAw \) add \(R \rightarrow uvAw \), \(R \rightarrow uAvw \), and \(R \rightarrow uvw \).
- for \(R \rightarrow A \) add \(R \rightarrow \varepsilon \), except if \(R \rightarrow \varepsilon \) has already been removed.
Proof

Eliminating ε rules.

Repeat:

- remove some $A \rightarrow \varepsilon$.
- for each $R \rightarrow uAv$, add rule $R \rightarrow uv$.
- and so on: for $R \rightarrow uAvAw$ add $R \rightarrow uvAw$, $R \rightarrow uAvw$, and $R \rightarrow uvw$.
- for $R \rightarrow A$ add $R \rightarrow \varepsilon$, except if $R \rightarrow \varepsilon$ has already been removed.

until all ε-rules not involving the original start variable have been removed.
Proof

Eliminate unit rules.

Repeat:

- remove some $A \rightarrow B$.
Proof

Eliminate unit rules.

Repeat:

- remove some $A \rightarrow B$.
- for each $B \rightarrow u$, add rule $A \rightarrow u$, unless this is previously removed unit rule. (u is a string of variables and terminals.)
Proof

Eliminate unit rules.

Repeat:

- remove some $A \rightarrow B$.
- for each $B \rightarrow u$, add rule $A \rightarrow u$, unless this is previously removed unit rule. (u is a string of variables and terminals.)

until all unit rules have been removed.
Proof

Finally, convert long rules.
To replace each $A \rightarrow u_1 u_2 \ldots u_k$ (for $k \geq 3$),
introduce new non-terminals

$N_1, N_2, \ldots, N_{k-1}$

and rules
Proof

Finally, convert long rules.
To replace each $A \rightarrow u_1 u_2 \ldots u_k$ (for $k \geq 3$),
introduce new non-terminals

$$N_1, N_2, \ldots, N_{k-1}$$

and rules

\[
\begin{align*}
A & \rightarrow u_1 N_1 \\
N_1 & \rightarrow u_2 N_2 \\
& \quad \vdots \\
N_{k-3} & \rightarrow u_{k-2} N_{k-2} \\
N_{k-2} & \rightarrow u_{k-1} u_k
\end{align*}
\]
Conversion Example

Initial Grammar:

\[S \rightarrow ASA \mid aB \]
\[A \rightarrow B \mid S \]
\[B \rightarrow b \mid \epsilon \]

(1) Add new start state:

\[S_0 \rightarrow S \]
\[S \rightarrow ASA \mid aB \]
\[A \rightarrow B \mid S \]
\[B \rightarrow b \mid \epsilon \]
Conversion Example (2)

\[S_0 \rightarrow S \]
\[S \rightarrow ASA \mid aB \]
\[A \rightarrow B \mid S \]
\[B \rightarrow b \mid \varepsilon \]

(2) Remove \(\varepsilon \)-rule \(B \rightarrow \varepsilon \):

\[S_0 \rightarrow S \]
\[S \rightarrow ASA \mid aB \mid a \]
\[A \rightarrow B \mid S \mid \varepsilon \]
\[B \rightarrow b \mid \varepsilon \]
Conversion Example (3)

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA \mid aB \mid a \\
A & \rightarrow B \mid S \mid \varepsilon \\
B & \rightarrow b \\
\end{align*}
\]

(3) Remove \(\varepsilon\)-rule \(A \rightarrow \varepsilon\):

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \mid S \\
A & \rightarrow B \mid S \mid \varepsilon \\
B & \rightarrow b \\
\end{align*}
\]
Conversion Example (4)

\[S_0 \rightarrow S \]
\[S \rightarrow ASA | aB | a | AS | SA | S \]
\[A \rightarrow B | S \]
\[B \rightarrow b \]

(4) Remove unit rule \(S \rightarrow S \)

\[S_0 \rightarrow S \]
\[S \rightarrow ASA | aB | a | AS | SA | S' \]
\[A \rightarrow B | S \]
\[B \rightarrow b \]
Conversion Example (5)

\[
\begin{align*}
S_0 & \rightarrow S \\
S & \rightarrow ASA | aB | a | AS | SA \\
A & \rightarrow B | S \\
B & \rightarrow b
\end{align*}
\]

(5) Remove unit rule \(S_0 \rightarrow S\):

\[
\begin{align*}
S_0 & \rightarrow S | ASA | aB | a | AS | SA \\
S & \rightarrow ASA | aB | a | AS | SA \\
A & \rightarrow B | S \\
B & \rightarrow b
\end{align*}
\]
Conversion Example (6)

\[
\begin{align*}
S_0 & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
S & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
A & \rightarrow B \mid S \\
B & \rightarrow b
\end{align*}
\]

(6) Remove unit rule \(A \rightarrow B \):

\[
\begin{align*}
S_0 & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
S & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
A & \rightarrow B \mid S \mid b \\
B & \rightarrow b
\end{align*}
\]
Conversion Example (7)

\[
\begin{align*}
S_0 & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
S & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
A & \rightarrow S \mid b \\
B & \rightarrow b
\end{align*}
\]

Remove unit rule \(A \rightarrow S \):

\[
\begin{align*}
S_0 & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
S & \rightarrow ASA \mid aB \mid a \mid AS \mid SA \\
A & \rightarrow S \mid b \mid ASA \mid aB \mid a \mid AS \mid SA \\
B & \rightarrow b
\end{align*}
\]
Conversion Example (8)

\[
S_0 \rightarrow ASA | aB | a | AS | SA \\
S \rightarrow ASA | aB | a | AS | SA \\
A \rightarrow b | ASA | aB | a | AS | SA \\
B \rightarrow b
\]

(8) Final simplification – treat long rules:

\[
S_0 \rightarrow AA_1 | UB | a | SA | AS \\
S \rightarrow AA_1 | UB | a | SA | AS \\
A \rightarrow b | AA_1 | UB | a | SA | AS \\
A_1 \rightarrow SA \\
U \rightarrow a \\
B \rightarrow b
\]

√

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
A Short Summary

- Regular Languages \equiv Finite Automata.
A Short Summary

- Regular Languages ≡ Finite Automata.
- Context Free Languages ≡ Push Down Automata.
A Short Summary

- Regular Languages \equiv Finite Automata.
- Context Free Languages \equiv Push Down Automata.
- Closure properties of regular languages and of CFLs.
A Short Summary

- Regular Languages \equiv Finite Automata.
- Context Free Languages \equiv Push Down Automata.
- Closure properties of regular languages and of CFLs.
- Most algorithmic problems for finite automata are solvable.
A Short Summary

- Regular Languages \equiv Finite Automata.
- Context Free Languages \equiv Push Down Automata.
- Closure properties of regular languages and of CFLs.
- Most algorithmic problems for finite automata are solvable.
- Some algorithmic problems for finite automata are not solvable.
A Short Summary

- Regular Languages \equiv Finite Automata.
- Context Free Languages \equiv Push Down Automata.
- Closure properties of regular languages and of CFLs.
- Most algorithmic problems for finite automata are solvable.
- Some algorithmic problems for finite automata are not solvable.
- Pumping lemmata for both classes of languages.
A Short Summary

- Regular Languages ≡ Finite Automata.
- Context Free Languages ≡ Push Down Automata.
- Closure properties of regular languages and of CFLs.
- Most algorithmic problems for finite automata are solvable.
- Some algorithmic problems for finite automata are not solvable.
- Pumping lemmata for both classes of languages.
- There are additional languages out there.
The View Over The Horizon

- regular
- context free
- decidable
- enumerable
The View Over The Horizon

Happy passover (& kosher for legumes eaters)!
Equivalence Theorem

Theorem: A language is context free if and only if some pushdown automata accepts it.
Equivalence Theorem

Theorem: A language is context free if and only if some pushdown automata accepts it.

This time (unlike the regular expression vs. regular languages theorem), the proofs of both the “if” part and the “only if” part are non trivial.
If Part

Theorem: If a language is context free, then some pushdown automaton accepts it.

- Let A be a context-free language.
- By definition, A has a context-free grammar G generating it.
- On input w, the PDA P should figure out if there is a derivation of w using G.
CFL Implies PDA (cont.)

Where do we keep the intermediate string?

intermediate string: \(01A1A0\)
CFL Implies PDA (cont.)

Where do we keep the intermediate string?

intermediate string: 01A1A0

- can’t put it all on the stack
CFL Implies PDA (cont.)

Where do we keep the intermediate string?

- can’t put it all on the stack
- only strings whose first letter is a variable are kept on stack
CFL Implies PDA

Will be more convenient to use grammar in Chomsky normal form, due to compact derivation rules.
CFL Implies PDA

Will be more convenient to use grammar in Chomsky normal form, due to compact derivation rules.

Informally, on input string $w \in \Sigma^*$:

- P pushes start variable S on stack
- keeps making substitutions
CFL Implies PDA

Will be more convenient to use grammar in **Chomsky normal form**, due to compact derivation rules.

Informally, on input string \(w \in \Sigma^* \):

- \(P \) pushes start variable \(S \) on stack
- keeps making substitutions
- when popping a terminal, \(P \) checks equality with current input string
CFL Implies PDA

Will be more convenient to use grammar in Chomsky normal form, due to compact derivation rules.

Informally, on input string \(w \in \Sigma^* \):

- \(P \) pushes start variable \(S \) on stack
- keeps making substitutions
- when popping a terminal, \(P \) checks equality with current input string
- rejects if not equal
CFL Implies PDA

Will be more convenient to use grammar in **Chomsky normal form**, due to compact derivation rules.

Informally, on input string \(w \in \Sigma^* \):

- \(P \) pushes start variable \(S \) on stack
- keeps making substitutions
- when popping a terminal, \(P \) checks equality with current input string
- rejects if not equal
- when popping a variable, \(P \) pushes to top of stack a right hand side of some rule corresponding to variable (zero, one, or two symbols).
CFL Implies PDA

Will be more convenient to use grammar in Chomsky normal form, due to compact derivation rules.

Informally, on input string $w \in \Sigma^*$:

- P pushes start variable S on stack
- keeps making substitutions
- when popping a terminal, P checks equality with current input string
- rejects if not equal
- when popping a variable, P pushes to top of stack a right hand side of some rule corresponding to variable (zero, one, or two symbols).
- if EOI reached when stack is empty, accept.
CFL Implies PDA (cont.)

Informal description:

- push S on stack
- if top of stack is variable A, non-deterministically select rule and substitute.
- if top of stack is terminal a, read next input and compare. If they differ, reject.
- if top of stack and input symbol are both $\$, enter accept state. (Namely accepts only if input has all been read and stack is empty!).
CFL Implies PDA (cont.)

Need shorthand to push strings of length 2 onto stack. For example, suppose

$$A \rightarrow BC$$

is a derivation of the CFG. Then we add a “shorthand state”, q_e, and the two transitions

$$(q_e, C') \in \delta(q_\ell, A, \varepsilon), \quad \delta(q_e, \varepsilon, \varepsilon) = \{(q_\ell, B)\}$$

Notice that the second transition is deterministic (the first one may or may not be). Also notice order: Push C first, then B. These intermediate states are different for different derivations.
CFL Implies PDA (cont.)

States of P are

- start state q_s
- accept state q_a
- loop state q_ℓ
- q_e states, needed for shorthand of right hand sides of rules
Transition Function

Initialize stack

\[\delta(q_s, \varepsilon, \varepsilon) = \{q_\ell, S\$\} \]

Top of stack is variable (shorthand for two transitions)

\[\delta(q_\ell, \varepsilon, A) = \{(q_\ell, w) | \text{ where } A \rightarrow w \text{ is a rule}\} \]

Top of stack is terminal

\[\delta(q_\ell, a, a) = \{(q_\ell, \varepsilon)\} \]

End of Stack and End of Input

\[\delta(q_\ell, \$, \$) = \{(q_a, \varepsilon)\} \]
Example

\[S \rightarrow AT | \varepsilon \]
\[A \rightarrow AB | AA | a \]
\[B \rightarrow b \]
\[T \rightarrow TT | t \]

Transition rules for **PDA**: On black/white board.
Only If Part

Theorem: If a PDA accepts a language, \(L \), then \(L \) is context-free.

For each pair of states \(p \) and \(q \) in \(P \), we will have a variable \(A_{pq} \) in the grammar \(G \).
Only If Part

Theorem: If a PDA accepts a language, L, then L is context-free.

- For each pair of states p and q in P, we will have a variable A_{pq} in the grammar G.
- This variable, A_{pq}, generates all strings that take P from p with an empty stack to q with empty stack.
Only If Part

Theorem: If a PDA accepts a language, L, then L is context-free.

- For each pair of states p and q in P, we will have a variable A_{pq} in the grammar G.
- This variable, A_{pq}, generates all strings that take P from p with an empty stack to q with empty stack.
- Same string also takes p with any stack to q with same stack!
Only If Part

Theorem: If a PDA accepts a language, L, then L is context-free.

- For each pair of states p and q in P, we will have a variable A_{pq} in the grammar G.
- This variable, A_{pq}, generates all strings that take P from p with an empty stack to q with empty stack.
- Same string also takes p with any stack to q with same stack!
- Start variable is A_{q_0,q_a} (assuming a single accept state q_a).
PDA Implies CFL

To make things easier, we slightly modify P

- Has single accept state q_a.
PDA Implies CFL

To make things easier, we slightly modify \(P \)

- Has \textbf{single} accept state \(q_a \).
- It \textbf{empties} stack before accepting.
PDA Implies CFL

To make things easier, we slightly modify P

- Has single accept state q_a.
- It empties stack before accepting.
- Each transition either pushes a symbol on stack, or pops a symbol from stack, but not both.
PDA Implies CFL (2)

Modify P to make things easier

- single accept state q_a
PDA Implies CFL (2)

Modify P to make things easier

- single accept state q_a

- empties stack before accepting
PDA Implies CFL (2)

Modify P to make things easier

- single accept state q_a

 - empties stack before accepting
 - each transition pushes or pops, but not both.
PDA Implies CFL (3)

Modify P to make things easier

- single accept state q_a ✓
PDA Implies CFL (3)

Modify P to make things easier

- single accept state q_a
 ✓
- empties stack before accepting

![Diagram of PDA modifications](image)
PDA Implies CFL (4)

Modify P to make things easier

- single accept state q_a ✓
PDA Implies CFL (4)

Modify P to make things easier

- single accept state q_a ✓
- empties stack before accepting ✓
PDA Implies CFL (4)

Modify P to make things easier

- single accept state q_a ✓
- empties stack before accepting ✓
- transition either pushes or pops, but not both

![Diagram showing transitions and states in a pushdown automaton]
Proof Idea

Suppose string x takes P from p with empty stack to q with empty stack.
Proof Idea

Suppose string x takes P from p with empty stack to q with empty stack.

First move that touches the stack must be a push, last must be a pop.

In between, two possibilities:
Proof Idea

Suppose string x takes P from p with empty stack to q with empty stack.

First move that touches the stack must be a push, last must be a pop.

In between, two possibilities:

- Stack is empty only at start and finish, but not in middle.
- Stack was also empty at some point in between.
Proof Idea (2)

Suppose string x takes P from p with empty stack to q with empty stack.
First move that touches the stack must be a push, last must be a pop.
In between, two possibilities:
Proof Idea (2)

Suppose string x takes P from p with empty stack to q with empty stack. First move that touches the stack must be a push, last must be a pop.

In between, two possibilities:

- Stack is empty only at start and finish, but not in middle.

Simulate by: $A_{pq} \rightarrow aA_{rs} b$, where a, b are first and last symbols in x (shorter x will be taken care of too), r follows p, and s precedes q.
Proof Idea (2)

Suppose string x takes P from p with empty stack to q with empty stack.
First move that touches the stack must be a **push**, last must be a **pop**.
In between, two possibilities:

- Stack is empty **only** at start and finish, but not in middle.
 Simulate by: $A_{pq} \rightarrow aA_r s b$, where a, b are first and last symbols in x (shorter x will be taken care of too), r follows p, and s precedes q.

- Stack was also empty at some point **in between**.
 Simulate by: $A_{pq} \rightarrow A_{pr} A_r q$, r is intermediate state where P has empty stack.
Details of Simulating Grammar

Given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$, construct grammar G. Variables are $\{A_{pq} \mid p, q \in Q\}$. Start variable is $A_{q_0q_a}$.

Rules:

For $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma$, if $(r, t) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, t)$, add rule $A_{pq} \rightarrow aA_{rs}b$.
Details of Simulating Grammar

Given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$, construct grammar G. Variables are $\{A_{pq} \mid p, q \in Q\}$.

Start variable is $A_{q_0q_a}$.

Rules:

- For $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma$, if $(r, t) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, t)$, add rule $A_{pq} \rightarrow aA_{rs}b$.
- For every $p, q, r \in Q$, add rule $A_{pq} \rightarrow A_{pr}A_{rq}$.
Details of Simulating Grammar

Given PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_a\})$, construct grammar G. Variables are $\{A_{pq} \mid p, q \in Q\}$.

Start variable is $A_{q_0q_a}$.

Rules:

- For $p, q, r, s \in Q$, $t \in \Gamma$, and $a, b \in \Sigma$, if $(r, t) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, t)$, add rule $A_{pq} \rightarrow aA_{rs}b$.
- for every $p, q, r \in Q$, add rule $A_{pq} \rightarrow A_{pr}A_{rq}$.
- for each $p \in Q$, add rule $A_{pp} \rightarrow \varepsilon$.
Overall Structure

Should now prove

Claim: A_{pq} generates x if and only if x brings P from p with empty stack to q with empty stack.
Only If Part

Theorem: If a PDA accepts a language, L, then L is context-free.

Proof: After constructing the grammar G, should prove it generates exactly the same language accepted by the PDA. This is done by induction on the length of any computation of P on any input string x. The induction argument is a bit lengthy and tedious, and we’ll skip it.

Diehards are welcome to consult pp. 106–114 in Sipser’s book, and/or slides from fall 2003/4.