The classes \textbf{NP} (reminder), and \textbf{coNP}.

More Problems in \textbf{NP}.

Poly-Time Reductions

\textbf{NP} completeness

\textbf{SAT} is \textbf{NP} Complete

Sipser, Chapter 7, Sections 7.3, 7.4, 7.5
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : \mathcal{N} \rightarrow \mathcal{N}$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
- on any branch of its computation tree on x,
- is at most $f(n)$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function.

Definition:

\[
\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language, decided by an } O(f(n))-\text{time NTM} \}\]
The Class NP (reminder)

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$\text{NP} = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is invariant for all TMs with any number of tapes.
- Insensitive to choice of reasonable non-deterministic computational model.
- Roughly corresponds to problems whose positive solutions cannot be efficiently generated (\Rightarrow intractable), but can be efficiently checked.
The Class \textbf{NP}

\textbf{NP} is important because it includes many problems of practical interest, \textit{e.g.}

- Hamiltonian path
- Travelling salesman (sales\textit{person}, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
- Composites (factoring/cryptography)

\ldots
A verifier for a language \mathcal{A} is an algorithm V where

$$\mathcal{A} = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in \mathcal{A}$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if V accepts $\langle w, c \rangle$.
- A polynomial verifier runs in polynomial time in $|w|$ (so $|c| \leq |w|^{O(1)}$).
- A language \mathcal{A} is polynomially verifiable if it has a polynomial verifier.
Theorem: A language is in NP if and only if it has a polynomial time verifier.

Proof – Intuition:

- NTM simulates verifier by guessing the certificate.
- Verifier simulates NTM by using accepting branch as certificate.
Example: SUBSET-SUM

An instance of the problem

- A collection of numbers x_1, \ldots, x_k
- Target number t
- Question: does some subcollection add up to t?

\[
\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\}, \exists \{y_1, \ldots, y_\ell\} \subseteq \{x_1, \ldots, x_k\}, \sum_{y_j} y_j = t \}\]

Collections are sets: repetitions not allowed.
Example: SUBSET-SUM

We have

\[(\{4, 11, 16, 21, 27\}, 25) \in \text{SUBSET-SUM}\]

because \(4 + 21 = 25\).

\[(\{4, 11, 16, 21, 27\}, 26) \notin \text{SUBSET-SUM}\]

(why?)
Example: SUBSET-SUM

Theorem:

\[\text{SUBSET-SUM} \in NP \]

The subset is the certificate.

Here is a verifier:
\[\mathcal{V} : \text{on input } (\langle S, t \rangle, c) \]
- test whether \(c \) is a collection of numbers summing to \(t \).
- test whether \(c \) is a subset of \(S \).
- if either fail, reject, otherwise accept.
Complementary Problems

CLIQUE and **SUBSET-SUM** seem not to be members of NP. It is harder to efficiently verify that something does not exist than to efficiently verify that something does exist.

Definition: The class coNP:

$L \in \text{coNP}$ if $\overline{L} \in \text{NP}$.

So far, no one knows if coNP is distinct from NP (recall second slide in lecture 11).
The question $P = NP$? is one of the great unsolved mysteries in contemporary mathematics.

- most computer scientists believe the two classes are not equal
- most bogus proofs show them equal (why?)
Observations

If \mathcal{P} differs from \mathcal{NP}, then the distinction between \mathcal{P} and $\mathcal{NP} - \mathcal{P}$ is meaningful and important.

- languages in \mathcal{P} tractable
- languages in $\mathcal{NP} - \mathcal{P}$ intractable

Until we can prove that $\mathcal{P} \neq \mathcal{NP}$, there is no hope of proving that a specific language lies in $\mathcal{NP} - \mathcal{P}$. Nevertheless, we can prove statements of the form “If $\mathcal{P} \neq \mathcal{NP}$ then $A \in \mathcal{NP} - \mathcal{P}$.”
The class of NP-complete languages are

- “hardest” languages in \mathcal{NP}
- “least likely” to be in \mathcal{P}
- If any NP-complete $A \in \mathcal{P}$, then $\mathcal{NP} = \mathcal{P}$.
Theorem: There is a language $S \in NP$ such that $S \in P$ if and only if $P = NP$.

This theorem establishes the class of NP-complete languages. Such languages, like Frodo Baggins, “carry on their backs” the burden of all of NP.
Poly-Time Computable Functions

Definition: A function

\[f : \Sigma^* \rightarrow \Sigma^* \]

is **polynomial-time computable** if there is a poly-time deterministic TM that

- starts with input \(w \), and
- halts with \(f(w) \) on tape.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Poly-Time Reducibility

Definition: We say that a language A is polynomial time mapping reducible to B, written

$$A \leq_P B,$$

if there is a poly-time computable function

$$f : \Sigma^* \rightarrow \Sigma^*$$

such that, for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called a polynomial-time reduction from A to B.
Poly-Time Reductions

Convert questions about membership in A to membership in B, and do it efficiently.
Poly-Time Reductions

Theorem: If \(A \leq_P B \) and \(B \in P \) then \(A \in P \).

Proof: Let

- \(f \) the reduction from \(A \) to \(B \), computed by TM \(M_f \).
- On input \(x \) of length \(n \), \(M_f \) takes at most \(c_1 n^{a_1} \) steps.
- \(M \) be the poly-time decider for \(B \).
- On input \(y \) of length \(m \), \(M \) takes at most \(c_2 m^{a_2} \) steps.
Poly-Time Reductions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 a_2}$ steps.
- Summing both stages, we got a polynomial in n.
- Correctness is clear, so $\mathcal{A} \in P$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Satisfiability

- A boolean variable assumes values true (written 1), and false (written 0).

Boolean operations:
- and: \land
- or: \lor
- not: \neg

Examples:

\[
\begin{align*}
0 \land 1 &= 0 \\
0 \lor 1 &= 1 \\
\overline{0} &= 1
\end{align*}
\]
Satisfiability

A boolean formula is an expression involving boolean variables and operations.

$$\phi = (\overline{x} \land y) \lor (x \land \overline{z})$$

Definition: A formula is satisfiable if some assignment of 0s and 1s to the variables makes the formula evaluate to 1.
Satisfiability

\[\phi = (\bar{x} \land y) \lor (x \land \bar{z}) \]

is satisfiable by

\[
\begin{align*}
x & = 0 \\
y & = 1 \\
z & = 0
\end{align*}
\]

This assignment satisfies \(\phi \).
Define

\[\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable Boolean formula} \} \]
Satisfiability

It is useful to consider a special version:

- A literal is a variable or negated variable: \(x \) or \(\overline{x} \).
- A clause is several literals joined by \(\lor \)s: \((x_1 \lor \overline{x}_2 \lor \overline{x}_3)\)
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses, connected with \(\land \)s.
- For example

\[
(x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor x_4) \land (x_3 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6)
\]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all clauses have three literals.

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]

Define

\[3SAT = \{\langle \phi \rangle | \phi \text{ is satisfiable 3CNF formula}\}\]

Clearly, if \(\phi\) is a satisfiable 3CNF formula, then for any satisfying assignment of \(\phi\), every clause must contain at least one literal assigned 1.
Claim: There is a poly time reduction from 3SAT to CLIQUE. In other words,

$$3SAT \leq_P CLIQUE.$$

We’ll construct a poly time reduction f that maps 3CNF formulae ϕ to graphs and numbers, $\langle G, k \rangle$.

The function f will have the property that ϕ is satisfiable if and only if G has a clique of size k.
Examples: Clique

Reminder: A \textbf{clique} in a graph is a subgraph where every two nodes are connected by an edge. A \textit{k-clique} is a clique of size \(k \). For example, the graph above has a \textbf{5-clique}.
3SAT \leq_P CLIQUE

Let ϕ be a 3CNF formula with k clauses.

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)$$

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
- each triple corresponds to a clause of ϕ
- each node in a triple corresponds to a literal in corresponding clause.
$3\text{SAT} \leq_P \text{CLIQUE}$

$\left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(x_3 \lor x_5 \lor x_6 \right) \land \left(x_3 \lor x_4 \lor \overline{x_6} \right)$
Now add edges between all vertex pairs, except:

- within same triple
- between contradictory literals
Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.

- at least one literal is true in every clause
- in every tuple, select one true literal
- they can be joined by edges
- yielding a k-clique
Claim: If ϕ is satisfiable, G has a k-clique.

$$(x_1 \lor x_2 \lor \overline{x_3}) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor x_6)$$
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k clauses, so each triple has exactly one clique node.
- Assign 1 to each node in clique
- no contradictions.
3SAT \leq_P CLIQUE

- We’ve constructed a poly time computable function f.
- We saw that the function f has the property that $\phi \in 3$SAT if and only if $f(\phi) \in$ CLIQUE.
- Therefore f is a reduction from 3SAT to CLIQUE, so 3SAT \leq_P CLIQUE.
An independent set in a graph is a set of vertexes, no two of which are linked by an edge.

The independent set problem asks whether there exists an independent set of size k.
Independent Set

Define

\[\text{INDEPENDENT-SET} = \{ \langle G, k \rangle | G \text{ contains an independent set of size } k \} \]

Claim: INDEPENDENT-SET is polynomial time reducible to CLIQUE,

\[\text{INDEPENDENT-SET} \leq_P \text{CLIQUE} \]

and vice-versa,

\[\text{CLIQUE} \leq_P \text{INDEPENDENT-SET} \]
Independent Set

Definition: The complement of a graph $G = (V, E)$ is a graph $G^c = (V, E^c)$, where

$$E^c = \{(v_1, v_2) | v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.$$

Claim: If V is an independent set in G, then V is a clique in G^c.

’nuff said.
Independent Set
A Hamiltonian path in a (directed or undirected) graph, G, visits each note once.

$$\text{HAMPATH} = \{ \langle G, s, t \rangle | G \text{ has a Hamiltonian path from } s \text{ to } t \}$$
Hamiltonian Circuit

- visits each note once.
- ends up \textit{where it started}
Hamiltonian Circuit

\[\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \]

Theorem: \text{HAMPATH} is polynomial-time reducible to \text{HAMCIRCUIT},

\[\text{HAMPATH} \leq_P \text{HAMCIRCUIT} \]
Theorem: \textsc{HAMPATH} is polynomial-time reducible to \textsc{HAMCIRCUIT}.

Hey, is the new vertex really needed? Why not just add an edge from t to s?
Theorem: HAMCIRCUIT is polynomial-time reducible to HAMPATH.

Proof: Left as an easy (recommended) exercise.
Definition

A language \(B \) is \textit{NP-complete} if it satisfies

- \(B \in \text{NP} \), and
- Every \(A \) in NP is polynomial time reducible to \(B \)
Compare

A language B is RE-complete if it satisfies

- $B \in RE$, and
- Every A in RE is mapping reducible to B
Theorem: If B is NP-complete and $B \in P$, then $\mathcal{P} = \mathcal{NP}$.

To show $\mathcal{P} = \mathcal{NP}$ (and make an instant fortune, see www.claymath.org/millennium/P_vs_NP/), suffices to find a polynomial-time algorithm for any NP-complete problem.
Theorem

Theorem: If B is NP-complete, $C \in \mathit{NP}$, and $B \leq_P C$, then C is NP-complete.

- We know that $C \in \mathit{NP}$,
- must show that every A in NP is poly-time reducible to C.
- Because B is NP-complete,
- every language in NP is poly-time reducible to B.
- B is poly-time reducible to C
- Can compose poly-time reductions (why?), so A is poly-time reducible to C. ♣
Strategy

- Once we have one "structured" NP-complete problem, we can generate more by poly-time reduction.
- Getting the first one requires some work.
- This is what Steve Cook (then in Berkeley, now in Toronto) and Leonid Levin (then in Moscow, now in Boston) did in the early seventies.
Traveling Salesman

Parameters:

- set of cities C
- set of inter-city distances D
- goal k
Traveling Salesman

Define \textsc{Traveling-Salesman} = \{ \langle C, D, k \rangle \mid (C, D) \text{ has a TS tour of total distance } \leq k \}\}

Remark: Can consider two versions – undirected and directed.

Recall
\textsc{HamCircuit} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \}\}

Theorem: \textsc{HamCircuit} is polynomial-time reducible to \textsc{Traveling-Salesman},

\textsc{HamCircuit} \leq_P \textsc{Traveling-Salesman}.
HAMCIRCUIT \leq_P TSP

The reduction: Given a directed graph $G = (V, E)$ we construct a directed traveling salesman instance.

- The cities are identical to the nodes of the original graph, $C = V$.
- The distance of going from v_1 to v_2 is 1 if $(v_1, v_2) \in E$, and 2 otherwise.
- The bound on the total distance of a tour is $k = |V|$.
Validity of Reduction

⇒ Suppose \(G \) has a Hamiltonian circuit. The distance assigned by the reduction to all edges in this circuit is 1. Thus in \((C, D)\) there is a traveling salesman tour of total distance \(|V| = k\), namely \((C, D, k) \in \text{TRAVELING-SALESMAN}\).

⇐ Suppose \((C, D)\) has a traveling salesman tour of total distance \(|V| = k\). Tour cannot contain any edge of distance 2. Therefore it gives a Hamiltonian circuit in \(G \).

Efficiency: Reduction in quadratic time (filling up distances for all edges of the complete graph).
3SAT (reminder)

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)$$

Define

$$3SAT = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \}$$

Clearly, if ϕ is a satisfiable 3CNF formula, then for any satisfying assignment of ϕ, every clause must contain at least one literal assigned 1.
The Language SAT

Definition: A Boolean formula is in **conjunctive normal form (CNF)** if it consists of **terms**, connected with **∧**s.

For example \((x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})\)

Definition: \(\text{SAT} = \{\langle \phi \rangle \mid \phi \text{ is satisfiable CNF formula}\} \)
Strategy

- Once we have one structured NP-complete problem, we can generate more by poly-time reductions.
- Getting the first one requires some work.
Theorem: SAT is NP complete.

- Must show that every NP problem reduces to SAT in poly-time.
- **Proof Idea:** Suppose $L \in \mathcal{NP}$, and M is an NTM that accepts L.
- On input w of length n, M runs in time $t(n) = n^c$.
- We consider the n^c-by-n^c tableau that describes the computation of M on input w.
The Tableau

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>t(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

cell[1,1]

cell[1,t(n)]
The Tableau

- Row 1 in tableau represents initial configuration of M on input w.
- Row i in tableau represents i-th configuration in a computation of M on input w.
We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.

Given the string w, it takes $O(n^{2c})$ steps to construct ϕ_w.

The following property holds:

$$\phi_w \in SAT \text{ iff } M \text{ accepts } w.$$

So the mapping $w \mapsto \phi_w$ is a poly time reduction from L to SAT, establishing $L \leq_P SAT$.

We still got a few small details to take care of...
We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:

- ϕ_w uses Boolean variables of three types.
 - $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
 - $s_{i,q}$ is true iff in i-th configuration, M is in state $q \in Q$.
 - $h_{i,j}$ is true iff in i-th configuration M, has is head in cell j on tape.

The formula ϕ_w consists of four parts:

$$\phi_w = \phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{accept}}(M) \land \phi_{\text{compute}}(M)$$
Details of Formula (cont.)

- $\phi_{\text{unique}}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{\text{start}}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.

- $\phi_{\text{accept}}(M)$ guarantees that M reached an accepting configuration.

- $\phi_{\text{compute}}(M)$ guarantees that the configuration described by the $i + 1$-st row is a legal succession of the configuration described by the i-th row.
Details of Formula (cont.)

- $\phi_{\text{compute}}(M)$ is the “heart” of ϕ_w. To construct it, we employ locality of computations.

- To determine contents of tableau entry (i, j) (cell j in configuration i), only the contents of three tableau entries (from configuration $i - 1$), $(i - 1, j - 1), (i - 1, j), (i - 1, j + 1)$, and M’s table, are needed.

- If head not in area, nothing changes. And and if it is, changes are local and are determined using M.

![Diagram](https://example.com/diagram.png)
The Tableau in Perspective

![Tableau Diagram]

- **cell[1,1]**
- **cell[1,t(n)]**
Correctness of Reduction

- All four components of ϕ_w can be put in CNF form, so ϕ_w itself (\land of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}(M)} \land \phi_{\text{start}(w)} \land \phi_{\text{compute}(M)}$ corresponds to a valid computation of M on w.
- An assignment satisfying, in addition $\phi_{\text{accept}(M)}$, corresponds to an accepting computation of M on w.
- Therefore M accepts w iff $\phi_w \in SAT$.

For complete details, consult Sipser or take the Complexity course.
We have seen that SAT is NP-complete.

We now reduce SAT to 3SAT.

And then will reduce 3SAT to a bunch of other problems in NP.

In class and recitation will give in detail just a few examples.

Full list contains hundreds or thousands of known NP-complete problems (from combinatorics, operation research, VLSI design, computational geometry, bioinformatics, . . .).

NP-completeness of new and of old problems is still established these days.
Recall

\[
\text{SAT} = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable CNF formula}\}
\]

\[
\text{3SAT} = \{\langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula}\}
\]

The reduction maps CNF formulae to 3CNF ones “clause by clause”. A clause with \(\ell \) literals is mapped to \(\ell \) clauses, built on the original literals together with \(\ell - 1 \) new ones.

For example:

\[
(x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor x_4 \lor x_8)
\]

\[
\mapsto (x_1 \lor y_1) \land (\overline{y}_1 \lor \overline{x}_2 \lor y_2) \land (\overline{y}_2 \lor \overline{x}_3 \lor y_3) \land \\
(\overline{y}_3 \lor x_4 \lor y_4) \land (\overline{y}_4 \lor x_8)
\]
Consider mapping $\phi \mapsto \phi_3$, e.g.

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\overline{y_1} \lor \overline{x_2} \lor y_2) \land (\overline{y_2} \lor \overline{x_3} \lor y_3) \land (\overline{y_3} \lor x_4 \lor y_4) \land (\overline{y_4} \lor x_8)$$

Claim: ϕ has a satisfying assignment iff ϕ_3 does.

Proof sketch: \Leftarrow An assignment satisfying ϕ_3 cannot “rely” on new literals alone – at least one original literal must be satisfied.

\Rightarrow An assignment satisfying ϕ makes at least one literal per clause happy. In the “ϕ_3 clause” of this literal the new variable is under no constraints. This enables propagation to a satisfying assignment that “relies” on new vars alone in rest of ϕ_3 clauses.

This establishes validity of the reduction. Since it is in polynomial time (why?), we get $\text{SAT} \leq_P \text{3SAT}$. ♣
3SAT and Its Poor Cousin

We now know that $\text{SAT} \leq_P \text{3SAT}$. Since SAT is NP-complete and $\text{3SAT} \in \text{NP}$, this proves that 3SAT is itself NP-complete.

What about the $\text{3SAT} \leq_P \text{SAT}$ direction?

We now want to examine what happens if we further reduce the number of literals per clause in CNF formulae.

Definition: A Boolean formula is in 2CNF if it is a CNF formula, and all terms have at most two literals. For example

$$(x_1 \lor \overline{x_2}) \land (\overline{x_5} \lor x_6) \land (\overline{x_6} \lor \overline{x_4})$$
3SAT and Its Poor Cousin

Definition:

\[2\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 2CNF formula} \} \]

Betting time: Is 2SAT NP-complete? Is it in P? Or maybe we do not know? …

Well, turns out 2SAT is in P. For details, though, you’ll have to refer to the algorithms (formerly, efficiency of computations) course.
Chains of Reductions: NPC Problems

SAT

IntegerProg

Clique

3SAT

3Color

HamPath

IndepSet

Scheduling

HamCircuit

VertexCover

TRAVELING-SALESMAN

SetCover

3ExactCover

Knapsack