Undecidability by Rice Theorem

\mathcal{RE}-Completeness

Reductions by computational histories

Reflections on computability portion of the course

Sipser’s book, Chapter 5, Sections 5.1, 5.3
Rice’s Theorem

Theorem: Suppose C is a proper, non-empty subset of the set of enumerable languages, \mathcal{RE}, then it is undecidable whether for a given encoding of a TM, $\langle M \rangle$, $L(M)$ is in C.

(See problem 5.22 in Sipser’s book)
Rice’s Theorem (Restated)

Theorem: Let C be a proper non-empty subset of the set of enumerable languages. Denote by L_C the set of all TMs encodings, $\langle M \rangle$, such that $L(M)$ is in C. Then L_C is undecidable.

Proof: by reduction from A_{TM}.

Given M and w, we will construct M_0 such that:
- If M accepts w, then $\langle M_0 \rangle \in L_C$.
- If M does not accept w, then $\langle M_0 \rangle \notin L_C$.
Proof of Rice’s Theorem

Without loss of generality, $\emptyset \not\in C$.

(Otherwise, look at $\overline{C} = \mathcal{RE} \setminus C$, also proper and non-empty.)

Since C is not empty, there exists some language $L \in C$. Let M_L be a TM accepting this language (recall $C \subset \mathcal{RE}$ contains only recursively enumerable languages).

continued ...
Proof of Rice’s Theorem (cont.)

Given $\langle M, w \rangle$, construct M_0 such that:

- If M accepts w, then $L(M_0) = L \in C$.
- If M does not accept w, then $L(M_0) = \emptyset \notin C$.

M_0 on input y:

1. Run M on w.
2. If M accepts w, run M_L on y.
 a. if M_L accepts, accept, and
 b. if M_L rejects, reject.

Claim: The transformation $\langle M, w \rangle \rightarrow \langle M_0 \rangle$ is a mapping reduction from A_{TM} to L_C.
Proof of Rice’s Theorem (cont.²)

Proof: M_0 on input y:

1. Run M on w.
2. If M accepts, run M_L on y.
 a. if M_L accepts, accept, and
 b. if M_L rejects, reject.

The machine M_0 is simply a concatenation of two known TMs – the universal machine, and M_L.

Therefore the transformation $\langle M, w \rangle \rightarrow \langle M_0 \rangle$ is a computable function, defined for all strings in Σ^*.

(hey – what do we actually do with strings not of the form $\langle M, w \rangle$?)
Rice’s Proof (Concluded)

- If \(\langle M, w \rangle \in A_{TM} \) then \(M_0 \) gets to step 2, and runs \(M_L \) on \(y \).
- In this case, \(L(M_0) = L \), so \(L(M_0) \in C \).
- On the other hand, if \(\langle M, w \rangle \notin A_{TM} \) then \(M_0 \) never gets to step 2.
- In this case, \(L(M_0) = \emptyset \), so \(L(M_0) \notin C \).
- This establishes the fact that \(\langle M, w \rangle \in A_{TM} \) iff \(\langle M_0 \rangle \in L_C \). So we have \(A_{TM} \leq_m L_C \), thus \(L_C \) is undecidable.
Rice’s Theorem (Reflections)

- Rice’s theorem can be used to show undecidability of properties like
 - “does $L(M)$ contain infinitely many primes”
 - “does $L(M)$ contains a prime number”
 - “is $L(M)$ empty”

- Decidability of properties related to the encoding itself cannot be inferred from Rice. For example “does $\langle M \rangle$ has an even number of states” is decidable.

- Properties like “does M reaches state q_6 on the empty input string” are undecidable, but this does not follow from Rice’s theorem.

- Rice does not say anything on membership in $\overline{\mathbb{RE}}$ of languages like “is $L(M)$ finite”.
Consider the language $L_{\text{infinite}} = \{ \langle M \rangle \mid L(M) \text{ is infinite} \}$.
By Rice Theorem, this language is not in \mathcal{R}.
We want to show that $L_{\text{infinite}} \notin RE$.

Idea: Reduction from H_{TM}.
So we are after a reduction $f : \langle M, w \rangle \mapsto \langle M_0 \rangle$ such that
- If M halts on w then $L(M_0)$ is finite.
- If M does not halts on w then $L(M_0)$ is infinite.

This looks a bit tricky... Shown in recitation using controlled executions.
\mathcal{RE}-Completeness

Question: Is there a language L that is **hardest** in the class \mathcal{RE} of enumerable languages (languages accepted by some TM)?

Answer: Well, you have to **define** what you mean by “hardest language”.

Definition: A language $L_0 \subseteq \Sigma^*$ is called \mathcal{RE}-complete if the following holds

- $L_0 \in \mathcal{RE}$ (membership).
- For every $L \in \mathcal{RE}$, $L \leq_m L_0$ (hardness).
\textbf{RE-Completeness}

\textbf{Definition} A language $L_0 \subseteq \Sigma^*$ is called \textit{RE-complete} if the following holds

- $L_0 \in \mathcal{RE}$ (membership).
- For every $L \in \mathcal{RE}$, $L \leq_m L_0$ (hardness).

The second item means that for every enumerable L there is a mapping reduction f_L from L to L_0. The reduction f_L depends on L and will typically differ from one language to another.
RE-Completeness

Question: Having defined a reasonable notion, we should make sure it is not vacuous, namely verify there is at least one language satisfying it.

Theorem The language A_{TM} is RE-Complete.

Proof:

- The universal machine U accepts the language A_{TM}, so $A_{TM} \in RE$.
- Suppose L is in RE, and let M_L be a TM accepting it. Then $f_L(w) = \langle M_L, w \rangle$ is a mapping reduction from L to A_{TM} (why?).
Reduction via Computation Histories

Important technique for proving undecidability.

- Useful for testing existence of some objects.
- For example, basis for proof of undecidability in Hilbert’s tenth problem,
- where "object" is integral root of polynomial.
- Other examples: Does a linear bounded TM accept the empty language?
- Does a context free grammar generate Σ^*?
Reminder: Configurations

Configuration:

\[1011_{q7}0111 \]

means:

- state is \(q_7 \)
- LHS of tape is 1011
- RHS of tape is 0111
- head is on RHS 0
Configurations

- configuration \(uaq_i bv \) yields \(uq_j acv \) if \(\delta(q_i, b) = (q_j, c, L) \)
- Of course, \(uaq_i bv \) yields \(uacq_j v \) if \(\delta(q_i, b) = (q_j, c, R) \)
- Special case (left end of tape): \(q_i bv \) yields \(q_j cv \) if \(\delta(q_i, b) = (q_j, c, L) \).
Computation Histories

Let M be a TM and w an input string.

- An **accepting** computation history for M on w is a sequence C_1, C_2, \ldots, C_ℓ, where
 - C_1 is the starting configuration of M on w
 - C_ℓ is an accepting configuration of M,
 - each C_i yields C_{i+1} according to the transition function.

- A **rejecting** computation history for M on w is the same, except
 - C_ℓ is a rejecting configuration of M.
Remarks

- Computation sequences are finite.
- If M does not halt on w, no accepting or rejecting computation history exists.
- Notion is useful for both deterministic (one history) and non-deterministic (many histories) TMs.
A CFG Question

SENTENCE

NOUN-PHRASE

ARTICLE

a

NOUN

boy

VERB

sees
Emptiness of CFGs

We have already seen an algorithm to check whether a context-free grammar is empty.

On input $\langle G \rangle$ where G is a CFG:

1. Mark all terminal symbols in G.
2. Repeat until no new variables become marked:
 3. Mark any A where
 $$A \rightarrow U_1 U_2 \ldots U_k$$
 and each U_i has already been marked.
4. If start symbol marked, accept, otherwise reject.
Using Computation Histories for CFGs

So the language $\text{EMPTY}_{\text{CFG}}$ is decidable.

Question: What about the complementary question: Does a CFG generate all strings?

$$\text{All}_{\text{CFG}} = \{ \langle G \rangle | G \text{ is a CFL and } L(G) = \Sigma^* \}$$
Theorem: All_{CFG} is undecidable.

Proof by reduction from A_{TM} to All_{CFG}:

- Given $\langle M, w \rangle$, construct a coding of a CFG, $\langle G \rangle$
- G generates all strings that are not accepting computation histories for M on w
- If M does not accept w, G generates all strings
- If M does accept w, G does not generate the accepting computation history.
Does a CFG Generate All Strings?

An accepting computation history appears as
\#C_1\#C_2\# \ldots \#C_\ell\#, where

- \(C_1 \) is the starting configuration of \(M \) on \(w \),
- \(C_\ell \) is an accepting configuration of \(M \),
- Each \(C_i \) yields \(C_{i+1} \) by transition function of \(M \).

A string is not an accepting computation history if it fails one or more of these conditions.
Does a CFG Generate All Strings?

Instead of the CFG, \(G \), we construct a PDA, \(D \) (recall equivalence).

\(D \) non-deterministically “guesses” which condition is violated.

- then verifies the guessed violation:
 - Is there some \(C_i \) that is not a configuration of \(M \) (number of \(q \) symbols \(\neq 1 \))?
 - Is \(C_1 \) not the starting configuration of \(M \) on \(w \)?
 - Is \(C_\ell \) not an accepting configuration of \(M \)?
 - Does \(C_i \) not yield \(C_{i+1} \) by the transition function of \(M \)?

- The last condition is the tricky one to check.
Does a CFG Generate All Strings?

- Does C_i not yield C_{i+1}?

Idea:
- Scan input. Nondeterministically decide "violating configuration" C_i was reached.
- Push C_i onto the stack till $\#$.
- scan C_{i+1} and pop matching symbols of C_i
 - check if C_i and C_{i+1} match everywhere, except . . .
 - around the head position,
 - where difference dictated by transition function for M.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
When D pops C_i from stack, C_i is in reverse order. Ignoring the local changes around head position, what we were trying to identify the language $x \# y$, with $x \neq y$.

While this can be done in principle by a non deterministic PDA (see problem 2.26 in Sipser’s book), there is a simpler way.

So far, we used a “straight” notion of accepting computation histories

\[
\begin{align*}
\# & \quad \rightarrow \quad \# & \quad \cdots \quad \# & \quad \rightarrow \quad \# \\
&C_1 & & C_2 & & C_3 & & C_4 & & C_\ell
\end{align*}
\]
Does a CFG Generate All Strings?

So far, we used a “straight” notion of accepting computation histories

\[
\# \rightarrow \# \rightarrow \# \rightarrow \# \rightarrow \# \cdots \# \rightarrow \#
\]

But in this modern age, why not employ an alternative notion of accepting computation history, one that will make the life of our PDA much easier? **Solution:** Write the accepting computation history so that every other configuration is in reverse order.

\[
\# \rightarrow \# \leftarrow \# \rightarrow \# \leftarrow \# \cdots \# \leftarrow \#
\]

This takes care of difficulty in the proof.
Wrapping Things Up

Given $\langle M, w \rangle$, we constructed (algorithmically) a PDA, D, which rejects the string z if and only if z equals an accepting computation history of M on w, written in the "alternating format".

Therefore $L(D)$ is either Σ^* or $\Sigma^* \setminus \{z\}$.

This D has an equivalent (and efficiently described) CFG, G, namely $L(D) = L(G)$. So $L(G)$ is either Σ^* or $\Sigma^* \setminus \{z\}$. The mapping $\langle M, w \rangle \mapsto \langle G \rangle$ is thus a reduction from A_{TM} to All CFG.

Since $A_{TM} \not\in R$ we get $\text{All CFG} \not\in R$.

As the class R is closed under complement, we conclude that $\text{All CFG} \not\in R$. ♠
Linear Bounded Automata

- A restricted form of TM.
- Cannot move off portion of tape containing input
- Rejects attempts to move head beyond input
- Size of input determines size of memory

![Diagram showing a Turing machine and a linear bounded automaton]
Linear Bounded Automata

Question: Why linear?

Answer: Using a tape alphabet larger than the input alphabet increases memory by a constant factor.
Linear Bounded Automata

Believe it or not, LBAs are quite powerful. The deciders for

- A_{DFA} (does a DFA accept a string?)
- A_{CFG} (is string in a CFG?)
- EMPTY_{DFA} (is a DFA trivial?)
- EMPTY_{CFG} (is a CFL empty?)

are all LBAs.

Every CFL can be decided by a LBA.

Not too easy to find a natural, decidable language that cannot be decided by an LBA.
Acceptance for LBAs

Define

\[A_{\text{LBA}} = \{ \langle M, w \rangle | M \text{ is an LBA that accepts } w \} \]

Question: Is \(A_{\text{LBA}} \) decidable?

Answer: Unlike \(A_{\text{TM}} \), the language \(A_{\text{LBA}} \) is decidable!
Lemma:

Let M be a LBA with

- q states
- g symbols in tape alphabet

On an input of size n, LBA has exactly qng^n distinct configurations, because a configuration involves:

- control state (q possibilities)
- head position (n possibilities)
- tape contents (g^n possibilities)
Theorem: A_{LBA} is decidable

Idea:

- Simulate M on w (if M tries to “trespass” the leftmost blank, halt and reject).

- But what do we do if M loops?

- Must detect looping and reject.

- M loops if and only if it repeats a configuration.

- Why? And is this also true of “regular” TMs?

- By pigeon hole, if our LBA M runs long enough, it must repeat a configuration!
Theorem: A_{LBA} is decidable

On input $\langle M, w \rangle$, where M is an LBA and $w \in \Sigma^*$,

1. Simulate M on w,

2. while maintaining a counter.

3. Counter incremented by 1 per each simulated step (of M).

4. Keep simulating M for qng^m steps, or until it halts (whichever comes first)

5. If M has halted, accept w if it was accepted by M, and reject w if it was rejected by M.

6. reject w if counter limit reached (M has not halted).
More LBAs

Surprisingly though, LBAs do have undecidable problems too!

Here is a related problem.

\[\text{Non-EMPTY}_{LBA} = \{ \langle M \rangle | M \text{ is an LBA and } L(M) \neq \emptyset \} \]

Question: Is \(\text{Non-EMPTY}_{LBA} \) decidable?
Non-EMPTY_{LBA} = \{ \langle M \rangle | M \text{ is an LBA and } L(M) \neq \emptyset \}

Theorem: Non-EMPTY_{LBA} is undecidable.

Proof by reduction from \(A_{TM} \), using computation histories.
More LBAs

Given M and w, we will construct an LBA, B.

- $L(B)$ will contain exactly all accepting computation histories for M on w.
- M accepts w iff $L(B) \neq \emptyset$.
More LBAs

It is not enough to show that B exists.

We must show that the mapping from $\langle M, w \rangle$ to $\langle B \rangle$ is computable.

We are now going to describe the linear bounded machine, $\langle B \rangle$. It will be clear that indeed $\langle B \rangle$ is computable from $\langle M, w \rangle$.

Assume an accepting computation history is presented as a string:

$$\# \ C_1 \ # \ C_2 \ # \ C_3 \ # \cdots \ # \ C_\ell \ #,$$

with descriptions of configurations separated by $#$ delimiters.
The LBA

The LBA, B, works as follows:

On input x, the LBA B:

- breaks x according to the # delimiters
- identifies strings C_1, C_2, \ldots, C_ℓ.
- then checks that all the following conditions hold:
 - Each C_i are a configuration of M
 - C_1 is the start configuration of M on w
 - Every C_{i+1} follows from C_i according to M
 - C_ℓ is an accepting configuration
The LBA

- Checking that each \(C_i \) is a configuration of \(M \) is easy: All it means is that \(C_i \) includes exactly one \(q \) symbols.

- Checking that \(C_1 \) is the start configuration on \(w \), \(q_0 w_1 w_2 \cdots w_n \), is easy, because the string \(w \) is “wired into” \(B \).

- Checking that \(C_\ell \) is an accepting configuration is easy, because \(C_\ell \) must include the accepting state \(q_a \).

- The only hard part is checking that each \(C_{i+1} \) follows from \(C_i \) by \(M \)’s transition function.
The Hard Part

Checking that for all i, C_{i+1} follows from C_i by M’s transition function:

- C_i and C_{i+1} almost identical, except for positions under head and adjacent to head.

- These positions should updated according to transition function.

Do this verification by

- zig-zagging between corresponding positions of C_i and C_{i+1}.
- use “dots” on tape to mark current position
- all this can be done inside space allocated by input x. Thus B is indeed a LBA.
The LBA, B, accepts the string x if and only if x equals an accepting computation history of M on w. Therefore $L(B)$ is either empty or a singleton $\{x\}$.

We construct B so that $L(B)$ is non-empty iff M accepts w. Thus $\langle M, w \rangle \in A_{TM}$ iff $\langle B \rangle \in \text{Non-EMPTY}_{LBA}$.

Namely $A_{TM} \leq_m A_{LBA}$, so $\text{Non-EMPTY}_{LBA} \notin \mathcal{R}$. ♠

BTW, is $\text{Non-EMPTY}_{LBA} \in \mathcal{RE}$?
Unrestricted Grammars

Unrestricted grammars are similar to context free ones, except left hand side of rules can be strings of variables whose lengths are greater than one.

- To non-deterministically generate a string according to a given unrestricted grammar:
 - Start with the initial symbol
 - While the string contains at least one non-terminal:
 - Find a substring that matches the LHS of some rule
 - Replace that substring with the RHS of the rule

An example of an unrestricted grammar generating the language \(\{0^n1^n2^n\} \) – on board.
Unrestricted Grammars

Let UG be the set of languages that can be described by an Unrestricted Grammar:

$UG = \{ L : \exists \text{ Unrestricted Grammar } G \text{ such that } L[G] = L \}$

Claim: $UG = RE$

To Prove:
- Show $UG \subseteq RE$
- Show $RE \subseteq UG$
Given any Unrestricted Grammar G, we create a Turing Machine M that accepts $L[G]$.

M will be non-deterministic, simulating derivations of G.

$UG \subseteq RE$
Given any language $L \in \mathcal{RE}$, let M be a deterministic Turing Machine that accepts it. We can create an Unrestricted Grammar G such that $L[G] = L$.

Grammar: Generates a string

Turing Machine: Works from string to accept state

Two formalisms work in different directions

Simulating Turing Machine with a Grammar can be difficult.
Simulating Turing Machine with a Grammar can be difficult.

Requires working backwards.

Derivations works from short, accepting configuration, to initial configuration of M, and finally to the bare string, $w \in \Sigma^*$.

$RE \subseteq UG$