Computational Models - Lecture 6, Spring 2007

- Turing Machines
- Turing Machines
- Turing Machines
- Alternative Models of Computers
- Multitape TMs, RAMs, Non Deterministic TMs
- The Church-Turing Thesis
- The language classes $R = RE \cap coRE$
- David Hilbert’s Tenth Problem

- Sipser’s book, 3.1, 3.2, & 3.3
A Finite Automaton
A Pushdown Automaton
A Turing Machine

— p. 4

Slides modified by Benny Chor, based on original slides by David Galles, Univ. of San Francisco, and Maurice Herlihy, Brown Univ.
Turing Machines

- Machines so far (DFA, PDA) read input only once
- Turing Machines
 - Can back up over the input
 - Can overwrite the input
 - Can write information on tape and come back to it later
Turing Machines

- Input string is written on a tape:

![Image of Turing machine with input string and infinite blank tape]

- At each step, machine reads a symbol, and then
 - writes a new symbol, and
 - either moves read/write head to right,
 - or moves read/write head to left
TM vs. DFA: Differences

- A Turing machine can both write on the tape and read from it.
- The read-write head can move both to the left and to the right.
- The tape is infinite to the right.
- Special accepting/rejecting states take immediate effect (so the head need not be at special position).
Local Effects of One Step

One step of computation changes

- current state,
- current head position,
- and tape contents at current position.
Formal Definition

We start with the transition function

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \]

\[\delta(q, a) = (r, b, L) \] means:

- in state \(q \) where head reads tape symbol \(a \),
- the machine writes \(b \), replacing the \(a \),
- enters state \(r \),
- and moves the head left (this is what the \(L \) stands for).
Now the transition function, with a move to the right

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \]

\(\delta(q, a) = (r, b, R) \) means:

- in state \(q \) where head reads tape symbol \(a \),
- the machine writes \(b \), replacing the \(a \),
- enters state \(r \),
- and moves the head right
 (this is what the \(R \) stands for).
A Turing machine (TM) is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)\), where

- \(Q\) is a finite set of states,
- \(\Sigma\) is the input alphabet not containing the blank symbol,
- \(\Gamma\) is the tape alphabet, where \(\bot \in \Gamma\) and \(\Sigma \subset \Gamma\).
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function,
- \(q_0 \in Q\) is the start state,
- \(q_a \in Q\) is the accept state, and
- \(q_r \in Q\) is the reject state.
Formal Definition (4)

\[M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r) \] computes as follows

- an input of length \(n \), \(w = w_1w_2 \ldots w_n \in \Sigma^* \)
- is on \(n \) leftmost tape squares
- rest of tape contains blanks
- read/write head is on leftmost square of tape
- since \(_ \not\in \Sigma \), leftmost blank indicates end of input.
Formal Definition (5)

Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r) \).

When computation starts,

- \(M \) proceeds according to transition function \(\delta \).
- If \(M \) tries to move head beyond left-hand-end of tape, it doesn’t move (still \(M \) does not crash).
- Computation continues until \(q_a \) or \(q_r \) is reached,
- otherwise \(M \) runs forever.
A TM configuration is a convenient notation for recording the state and tape contents of a TM in a given instant. Think of it as a snapshot.

- For example, configuration $1011q_70111$ means:
 - Current state is q_7,
 - left hand side of tape is 1011,
 - right hand side of tape is 0111,
 - and head is on 0 (leftmost entry of right hand side).
Configurations: The Yield Relation

- If $\delta(q_i, b) = (q_j, c, L)$ then configuration $u_{aq_i}bv$ yields configuration $u_{qj}acv$.
- If $\delta(q_i, b) = (q_j, c, R)$, then configuration $u_{aq_i}bv$ yields configuration $u_{acq_j}v$.

Special case (1): When head is at left end and tries to move left, it changes state and writes on tape but does not move, so if $\delta(q_i, b) = (q_j, c, L)$, configuration $q_i bv$ yields $q_j cv$.

Special case (2): What happens when head is at right end? We let w_{qi} and $w_{qi\leftarrow}$ denote the same configuration, so moves to the right can now be accommodated.
More Configurations

We have

- starting configuration q_0w
- accepting configuration $w_0qa w_1$
- rejecting configuration $w_0qr w_1$
- halting configurations $w_0 qa w_1$ and $w_0qr w_1$
Accepting a Language

A Turing machine M accepts an input w if there is a sequence of configurations C_1, C_2, \ldots, C_k such that

- C_1 is start configuration of M on w,
- each C_i yields C_{i+1},
- C_k is an accepting configuration.

The collection of strings accepted by M is called the language of M, and is denoted $L(M)$.
Enumerable Languages

Definition: A language is (recursively) enumerable (RE) if some Turing machine accepts it.
Enumerable Languages (2)

On an input, w, a TM may

- accept
- reject
- loop (run forever)

Major concern: In general, we never know if TM will halt.
Decidable Languages

Definition: A TM decides a language if for every input $w \in \Sigma^*$, the TM halts.

Namely the TM either reaches state q_a (in case $w \in L(M)$) or it reaches state q_r (in case $w \notin L(M)$), but it does not loop.

Definition: A language is **decidable** if some Turing machine decides it.
Example

Here is a TM that decides

\[\{ a^i b^j c^k \mid i \times j = k \text{ where } i, j, k \geq 1 \} \]

- scan from left to right to check that input is \(a^* b^* c^* \)
- return to start of tape
- cross off one \(a \) and scan right until \(b \) occurs. Shuttle between \(b \)'s and \(c \)'s, crossing off one of each, until all \(b \)'s are gone.
- Restore the crossed-off \(b \)'s and repeat previous step if more \(a \)'s exist. If all \(a \)'s crossed off, check if all \(c \)'s crossed off. If yes, accept, otherwise reject.
Question: To implement algorithm, should be able to tell when a TM is at the left end of the tape.
Answer: Mark it with a special symbol.

An alternative, trickier way:
- remember current symbol
- replace current symbol with special symbol
- move left
- if special symbol still there, head is at start
- otherwise restore previous symbol and move left
Example

Consider the **element distinctness** problem

\[E = \{ \#x_1\#x_2\# \ldots \#x_\ell \mid \]
\[\text{each } x_i \in \{0, 1\}^* \text{ and for each } i \neq j, x_i \neq x_j \} \, . \]

Verbally,

- List of strings in \(\{0, 1\}^* \) separated by \#’s.
- List is in language (& machine **should** accept) if all strings are different.
Element Distinctness – Solution

On input w

- place a mark on leftmost tape symbol. If symbol not #, reject.
scan right to next # and place mark on top. If none encountered, reject
Element Distinctness – Solution (3)

By zig-zagging, compare the two strings to the right of the marked #’s. If equal, reject.

#011#00#1111

Ok
Element Distinctness – Solution (4)

- Move rightmost mark to next # on right, if any.
- Otherwise move leftmost mark to next # on right and rightmost mark to # after that.
- If not possible, accept.
Question: How do we “mark” a symbol?

Answer: For each tape symbol $\#$, add tape symbol $\#\#$ to the tape alphabet Γ.
Alternative Turing machine definitions abound.

For example, suppose the Turing machine head is allowed to stay put.

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\} \]

Question: Does this add any power?

Answer: No. Replace each \(S \) transition with two transitions: \(R \) then \(L \). (Why not vice-versa?)

Important notion here: Two-way simulation (model A capable of simulating model B; model B capable of simulating model A).
Multitape Turing Machines

- each tape has its own head
- initially, input string on tape 1 and rest blank

For the transition function: \(\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k \),

the expression \(\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, L, R, \ldots, L) \)

means

- machine starts in state \(q_i \)
- if heads 1 through \(k \) reading \(a_1, \ldots, a_k \),
- then machine goes to state \(q_j \),
- heads 1 thought \(k \) write \(b_1, \ldots, b_k \),
- and moves each head right or left as specified.
Equivalence

Theorem: A language is enumerable if and only if there is some **multitape** Turing machine that accepts it.

One direction is trivial.

To prove the other direction, we will show how to convert a **multitape** TM, M, into an equivalent **single-tape** TM, S.
Simulation

- S simulates k tapes of M by storing them all on a single tape with delimiter $\#$.
- S marks the current positions of the k heads by placing • “above” the letters in current positions. It “knows” which tape the mark belongs to by counting (up to k) from the $\#$’s to the left.
On input $w = w_1 \cdots w_n$, S:

- writes on its tape $\# w_1 w_2 \cdots w_n \# \bullet \# \bullet \# \cdots \#$
- scans its tape from first $\#$ to $k + 1$-st $\#$ to read symbols under “virtual” heads.
- rescans to write new symbols and move heads
- S tries to move virtual head onto $\#$ when M is trying to move head onto unused blank square. S writes blank \square on tape, and shifts rest of the tape one square to the right.
RAM

- CPU
- 3 Registers (Instruction Register (IR), Program Counter (PC), Accumulator (ACC))
- Memory
- Operation:
 - Set IR → MEM[PC]
 - Increment PC
 - Execute instruction in IR
 - Repeat
RAM

![Diagram of CPU and Memory]

Registers
- Instruction Register
- Program Counter
- Accumulator

Memory

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

...
RAM

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 HALT</td>
<td>Stop Computation</td>
</tr>
<tr>
<td>01 LOAD x</td>
<td>ACC ← MEM[x]</td>
</tr>
<tr>
<td>02 LOADI x</td>
<td>ACC ← x</td>
</tr>
<tr>
<td>03 STORE x</td>
<td>MEM[x] ← AC</td>
</tr>
<tr>
<td>04 ADD x</td>
<td>ACC ← ACC + MEM[x]</td>
</tr>
<tr>
<td>05 ADDI x</td>
<td>ACC ← ACC + x</td>
</tr>
<tr>
<td>06 SUB x</td>
<td>ACC ← ACC - MEM[x]</td>
</tr>
<tr>
<td>07 SUBI x</td>
<td>ACC ← ACC - x</td>
</tr>
<tr>
<td>08 JUMP x</td>
<td>IP ← x</td>
</tr>
<tr>
<td>09 JZERO x</td>
<td>IP ← x if ACC = 0</td>
</tr>
<tr>
<td>10 JGT x</td>
<td>IP ← x if ACC > 0</td>
</tr>
</tbody>
</table>
Theorem: A multi-tape Turing machine can simulate this RAM model.

Idea:

- One tape for each register (IR, IP, ACC)
- One tape for the Memory
- Memory tape will be entries of the form `<address>` `<contents>

We omit further details of proof (due to a severe time shortage).
A *RAM* can be modeled (simulated) by a Turing Machine.

Any current machine (architecture, manufacturer, operating system, power supply, etc.) can be modeled by a Turing Machine.

If there is an algorithm for it, a Turning Machine can do it.

Note that at this point, we don’t care *how long* it might take, just that it can be done.
A computation model is called “Turing Complete” if it can simulate a (general) Turing Machine.

Turing Complete ⇒ can compute anything

Of course it might not be convenient ...
Non-Deterministic Turing Machines

Transition function:

\[\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}) \]

- Computation is a tree.
- Accepts if there is (\exists) an accepting branch.
Equivalence

Theorem: A language is enumerable (RE) if and only if there is some non-deterministic Turing machine that accepts it.

One direction is trivial.

To prove the other direction, we will show how to convert a non-deterministic TM, N, into an equivalent deterministic TM, D.
Simulating Non-Determinism

Basic idea:
- \(D \) tries all possible branches
- If \(D \) finds any accepting branch, it accepts.
- If all branches reject, \(D \) rejects.
- If all branches reject or loop, \(D \) loops.
Simulating Non-Determinism (2)

N’s computation is a tree.

- each tree branch is branch of N’s non-deterministic computation
- each tree node is a configuration of N
- root is starting configuration
- the number of children of each node, denoted by b, is at most the number of N’s states, times the size of Γ, times 2 (left/right).
- depth-first search doesn’t work (why?)
- breadth-first search does work, as we’ll show.
Simulating Non-Determinism (3)

\[D\] has three tapes

- the input tape is never altered
- the simulation tape is a copy of \(N\)’s tape
- the address tape keeps track of \(D\)’s location in \(N\)’s computation tree.

Slides modified by Benny Chor, based on original slides by David Galles, Univ. of San Francisco, and Maurice Herlihy, Brown Univ.
Simulating Non-Determinism (4)

The address tape:

- every node in the tree has at most \(b \) children
- every node in the tree is assigned an address that is a string over the alphabet \(\Sigma_b = \{1, 2, \ldots, b\} \)
- to get to node with address 231:
 - start at root
 - take second child of root
 - take third child of current node
 - take first child of current node
- ignore meaningless addresses (choices not available for configuration along branch)

Slides modified by Benny Chor, based on original slides by David Galles, Univ. of San Francisco, and Maurice Herlihy, Brown Univ.
Initially, the input tape contains w, and the other two tapes are empty.

Copy input tape to simulation tape.

Use simulation tape to simulate N on input w on a finite portion of one non-deterministic branch. On each choice, consult the next symbol on address tape. Accept if accepting configuration reached. Skip to next step if

- symbols on address tape exhausted
- non-deterministic choice invalid
- rejecting configuration reached

Replace string on address tape with the lexicographically next string. Jump to Step 2 to simulate this branch of N’s computation.
Decidability vs. Enumerability

- Decidability is a stronger notion than enumerability.

- If a language \(L \) is decidable then clearly it is enumerable (the other direction does not hold, as we’ll show in a couple of lectures).

- It is also clear that if \(L \) is decidable then so is \(\overline{L} \), and thus \(\overline{L} \) is also enumerable.

- Let \(\text{RE} \) denote the class of enumerable languages, and let \(\text{coRE} \) denote the class of languages whose complement is enumerable.

- Let \(\text{R} \) denote the class of decidable languages. Then what we just saw is \(\text{R} \subseteq \text{RE} \cap \text{coRE} \).
Decidability vs. Enumerability (2)

Theorem: \(\mathcal{R} = \mathcal{RE} \cap \text{coRE} \).

Proof: We should prove the \(\supseteq \) direction. Namely if \(L \in \mathcal{RE} \cap \text{coRE} \), then \(L \in \mathcal{R} \).

In other words, if both \(L \) and its complement are enumerable, then \(L \) is decidable.

Let \(M_1 \) be a TM that accepts \(L \).

Let \(M_2 \) be a TM that accepts \(\overline{L} \).

We describe a TM, \(M \), that decides \(L \).

On input \(x \), \(M \) runs \(M_1 \) and \(M_2 \) in parallel.

If \(M_1 \) accepts, \(M \) accepts.

If \(M_2 \) accepts, \(M \) rejects.

Should now show that indeed \(M \) decides \(L \).
Reformulation

Theorem: A language is decidable if and only if it is both enumerable and co-enumerable.

Proof: We must prove two directions:

- If \(L \) is decidable, then both \(L \) and \(\overline{L} \) are enumerable.
- If \(L \) and \(\overline{L} \) are both enumerable, then \(L \) is decidable,
Claim: If L is decidable, then both L and \overline{L} are enumerable.

Proof: Saw this a few minutes ago!
Other Direction

Claim: If \(L \) and \(\overline{L} \) are both enumerable, then \(L \) is decidable,

Let \(M_1 \) be the acceptor for \(L \), and \(M_2 \) the acceptor for \(\overline{L} \).

\(M = \) On input \(w \)

1. Run both \(M_1 \) and \(M_2 \) in parallel.
2. If \(M_1 \) accepts, accept; if \(M_2 \) accepts, reject.
Parallel?

Question: What does it mean to run M_1 and M_2 in parallel?

- M has two tapes
- M alternates taking steps between M_1 and M_2.

Slides modified by Benny Chor, based on original slides by David Galles, Univ. of San Francisco, and Maurice Herlihy, Brown Univ.
We claim that M decides L.

- Every string is in L or \overline{L}.
- Either M_1 or M_2 accepts input w.
- Consequently, M halts whenever M_1 or M_2 accepts. So M always halts, and hence is a decider.
- Moreover, M accepts strings in L and rejects strings in \overline{L}.

Therefore, M decides L, so L is decidable. ♣
Revised View of the World of Languages

- Enumerable
- Decidable
- Context Free
- Regular
Enumerators

We said a language is **enumerable** if it is accepted by some Turing machine.
But why **enumerable**?

Definition: An **enumerator** is a TM with a printer.

- TM sends strings to printer
- may create infinite list of strings
- TM enumerates a language – **all** strings produced.
Theorem

\textbf{Theorem:} A language is \textit{accepted} by some Turing machine if and only if some enumerator \textit{enumerates} it.

Will show

\begin{itemize}
 \item If \(E \) enumerates language \(A \), then some TM \(M \) accepts \(A \).
 \item If \(M \) accepts \(A \), then some enumerator \(E \) enumerates it.
\end{itemize}
Theorem

Claim: If E enumerates language A, then some TM M accepts A.

On input w, TM M

- Runs E. Every time E outputs a string v, M compares it to w.
- If $v = w$, M accept.
- If $v \neq w$, M continues running E.
Theorem

Claim: If M accepts A, then some enumerator E enumerates it.

Let s_1, s_2, s_3, \ldots is a list of all strings in Σ^* (e.g. strings in lexicographic order).

The enumerator, E

- repeat the following for $i = 1, 2, 3, \ldots$
- run M for i steps on each input s_1, s_2, \ldots, s_i.
- if any computation accepts, print out the corresponding s.

Note that with this procedure, each output is **duplicated** infinitely often.

How can this duplication be **avoided**?
What is an Algorithm???????
Indeed, What is an Algorithm?

- Informally
 - a recipe
 - a procedure
 - a computer program
 - who cares? I know it when I see it

- Historically,
 - notion has long history in Mathematics (starting with Euclid’s gcd algorithm), but
 - not precisely defined until 20th century
 - informal notions rarely questioned,
 - still, they were insufficient
Remarks

- Many models have been proposed for general-purpose computation.
- Remarkably, all “reasonable” models are equivalent to Turing machines.
- All “reasonable” programming languages (e.g. Java, Pascal, C, Scheme, Mathematica, Maple, Cobol, ...) are equivalent.
- The notion of an algorithm is model-independent!
- We don’t really care about Turing machines *per se*, we care about understanding computation.
Church-Turing Thesis

Formal notions appeared in 1936:

- \(\lambda\)-calculus of Alonzo Church
- Turing machines of Alan Turing
- Recursive functions of Godel and Kleene
- Counter machines
- Unrestricted grammars
- Two stack automata
- Random access machines (RAMs)

These definitions look very different, but are provably equivalent.
Church-Turing Thesis

These definitions look very different, but are provably equivalent.

The Church-Turing Thesis:

“The intuitive notion of reasonable models of computation equals Turing machine algorithms”.
Wild Models

What about “wild” models of computation?

Consider MUnTel’s ℵ-AXP²© processor (to be released XMAS 2009).

- Like a Turing machine, except
- Takes first step in 1 second.
- Takes second step in 1/2 second.
- Takes i-th step in 2^{-i} seconds . . .

After 2 seconds, the ℵ-AXP© decides any enumerable language!

Question: Does the ℵ-AXP© invalidate the Church-Turing Thesis?
Hilbert’s 10th Problem

In 1900, David Hilbert delivered a now-famous address at the International Congress of Mathematicians in Paris, France.

- Presented **23 central mathematical problems**
- challenge for the next (20th) century
- the **10th problem** directly concerned algorithms

November 2003: significant progress on the 6th problem.

But for us, start with some background on the 10th . . .
Too much beer last night? We are supposed to talk about D. Hilbert’s problems, not ’bout Dilbert’s problems, ...
Polynomials

- A term is a product of variables and a constant coefficient, e.g. $6x^3yz^2$.

- A polynomial is a sum of terms, e.g. $6x^3yz^2 + 3xy^2 - x^3 - 10$.

- A root of a polynomial is an assignment of values to variables so that the polynomial equals zero.

- For example, $x = 5$, $y = 3$, and $z = 0$ is a root of the polynomial above.

- Here, we are interested in integral roots, namely an assignment of integers to all variables.

- Some polynomials have integral roots, some don’t (e.g. $x^2 - 2$).
Hilbert’s Tenth Problem

The Problem: Devise an algorithm that tests whether a polynomial has an integral root.

Actually, what he said (translated from German) was

“to devise a process according to which it can be determined by a finite number of operations”.

Note that

- Hilbert explicitly asks that algorithm be “devised”
- apparently Hilbert assumes that such an algorithm must exist, and someone “only” need find it.
Hilbert’s Tenth Problem

- We now know no algorithm exists for this task.
- Mathematicians of 1900 could not have proved this, because they didn’t have a formal notion of an algorithm.
- Intuitive notions work fine for constructing algorithms (we know one when we see it).
- Formal notions are required to show that no algorithm exists.
Hilbert’s Tenth Problem

In 1970, 23 years old Yuri Matijasevič, building on work of Martin Davis, Hilary Putnam, and Julia Robinson, proved that no algorithm exists for testing whether a polynomial has integral roots (a survey of the proof)
Consider the language:

\[D = \{ p \mid p \text{ is a polynomial with an integral root} \} \]

Hilbert’s tenth problem asks whether this language is **decidable**.

We now know it is **not decidable**, but it is **enumerable**!
Univariate Polynomials

Consider the simpler language:

\[D_1 = \{ p \mid p \text{ is a polynomial over } x \text{ with an integral root} \} \]

Here is a Turing machine that accepts \(D_1 \).
On input \(p \),

- evaluate \(p \) with \(x \) set successively to \(0, 1, -1, 2, -2, \ldots \).
- if \(p \) evaluates to zero, accept.
Univariate Polynomials (2)

\[D_1 = \{ p \mid p \text{ is a polynomial over } x \text{ with an integral root} \} \]

Note that

- If \(p \) has an integral root, the machine accepts.
- If not, \(M_1 \) loops.
- \(M_1 \) is an acceptor, but not a decider.
Univariate Polynomials (3)

\[f := \text{x} \rightarrow x^3 - 300x^2 + 10000x + 1000000; \]
\[g := \text{x} \rightarrow 200x^2 - 2000x - 1000000; \]
\[\text{plot([f(x), g(x)], x=-100..300, color=[red, blue], thickness=3);} \]
In fact, D_1 is decidable.

Can show that all real roots of $p[x]$ lie inside interval

$$
\left(-|k c_{max}/c_1|, |k c_{max}/c_1| \right),
$$

where k is number of terms, c_{max} is max coefficient, and c_1 is high-order coefficient.

By Matijasevič theorem, such effective bounds on range of real roots cannot be computed for multivariable polynomials.