Critical CS Questions

What is a computer?
And What is a Computation?

- real computers too complex for any theory
- need manageable mathematical abstraction
- idealized models: accurate in some ways, but not in all details
Finite Automata

- formal definition of finite automata
- deterministic vs. non-deterministic finite automata
- regular languages
- operations on regular languages
- regular expressions
- pumping lemma

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Example: A One-Way Automatic Door

- open when person approaches
- hold open until person clears
- don’t open when someone standing behind door
The Automatic Door as DFA

- States:
 - OPEN
 - CLOSED

- Sensor:
 - FRONT: someone on front pad
 - REAR: someone on rear pad
 - BOTH: someone(s) on both pads
 - NEITHER no one on either pad.
The Automatic Door as DFA

DFA is Deterministic Finite Automata

<table>
<thead>
<tr>
<th></th>
<th>neither</th>
<th>front</th>
<th>rear</th>
<th>both</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed</td>
<td>closed</td>
<td>open</td>
<td>closed</td>
<td>closed</td>
</tr>
<tr>
<td>open</td>
<td>closed</td>
<td>open</td>
<td>open</td>
<td>open</td>
</tr>
</tbody>
</table>
DFA: Informal Definition

The machine

\(M_1:\)

- **states**: \(q_1, q_2, \) and \(q_3. \)
- **start state**: \(q_1 \) (arrow from “outside”).
- **accept state**: \(q_2 \) (double circle).
- **state transitions**: arrows.
DFA: Informal Definition (cont.)

- On an input string
 - DFA begins in start state q_1
 - after reading each symbol, DFA makes state transition with matching label.
- After reading last symbol, DFA produces output:
 - accept if DFA is an accepting state.
 - reject otherwise.
Informal Definition - Example

What happens on input strings

- 1101
- 0010
- 01100
Informal Definition

This DFA accepts
- all input strings that end with a 1
- all input strings that contain at least one 1, and end with an even number of 0’s
- no other strings
Languages and Alphabets

An alphabet Σ is a finite set of letters.

- $\Sigma = \{a, b, c, \ldots, z\}$ – the English alphabet.
- $\Sigma = \{\alpha, \beta, \gamma, \ldots, \zeta\}$ – the Greek alphabet.
- $\Sigma = \{0, 1\}$ – the binary alphabet.
- $\Sigma = \{0, 1, \ldots, 9\}$ – the digital alphabet.

The collection of all strings over Σ is denoted by Σ^*. For the binary alphabet, $\varepsilon, 1, 0, 000000000, 1111111000$ are all members of Σ^*.
Languages and Examples

A language over Σ is a subset $L \subseteq \Sigma^*$. For example

- Modern English.
- Ancient Greek.
- All prime numbers, written using digits.
- $A = \{ w | w \text{ has at most seventeen 0's} \}$.
- $B = \{ 0^n1^n | n \geq 0 \}$.
- $C = \{ w | w \text{ has an equal number of 0's and 1's} \}$.
Languages and DFA

Definition: $L(M)$, the language of a DFA M, is the set of strings L that M accepts, $L(M) = L$.

Note that
- M may accept many strings, but
- M accepts only one language.

What language does M accept if it accepts no strings?

A language is called regular if some deterministic finite automaton accepts it.
Formal Definitions

A deterministic finite automaton (DFA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\), where

- \(Q\) is a finite set called the states,
- \(\Sigma\) is a finite set called the alphabet,
- \(\delta : Q \times \Sigma \rightarrow Q\) is the transition function,
- \(q_0 \in Q\) is the start state, and
- \(F \subseteq Q\) is the set of accept states.
Back to M_1

\[M_1 = (Q, \Sigma, \delta, q_1, F) \]

where

- $Q = \{q_1, q_2, q_3\}$, $\Sigma = \{0, 1\}$,

- the transition function δ is

 \[
 \begin{array}{c|cc}
 & 0 & 1 \\
 \hline
 q_1 & q_1 & q_2 \\
 q_2 & q_3 & q_2 \\
 q_3 & q_2 & q_2 \\
 \end{array}
 \]

- q_1 is the start state, and $F = \{q_2\}$.
Another Example

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
And Yet Another Example
A Formal Model of Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA, and let $w = w_1w_2\cdots w_n$ be a string over Σ.

We say that M accepts w if there is a sequence of states r_0, \ldots, r_n ($r_i \in Q$) such that:

- $r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1}, 0 \leq i < n$
- $r_n \in F$
The Regular Operations

Let A and B be languages.

The union operation:

$$A \cup B = \{x | x \in A \text{ or } x \in B\}$$

The concatenation operation:

$$A \circ B = \{xy | x \in A \text{ and } y \in B\}$$

The star operation:

$$A^* = \{x_1x_2\ldots x_k | k \geq 0 \text{ and each } x_i \in A\}$$
The Regular Operations – Examples

Let $A = \{\text{good, bad}\}$ and $B = \{\text{boy, girl}\}$.

Union

$A \cup B = \{\text{good, bad, boy, girl}\}$

Concatenation

$A \circ B = \{\text{goodboy, goodgirl, badboy, badgirl}\}$

Star

$A^* = \{\varepsilon, \text{good, bad, goodgood, goodbad, badbad, badgood,} \ldots\}$
Claim: Closure Under Union

If A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Approach to Proof:
- some M_1 accepts A_1
- some M_2 accepts A_2
- construct M that accepts $A_1 \cup A_2$.

Attempted Proof Idea:
- first simulate M_1, and
- if M_1 doesn’t accept, then simulate M_2.

What’s wrong with this?

Fix: Simulate both machines simultaneously.
Closure Under Union: Correct Proof

Suppose $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ accepts L_1,
and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ accepts L_2.

Define M as follows (M will accept $L_1 \cup L_2$):
- $Q = Q_1 \times Q_2$.
- Σ is the same.
- For each $(r_1, r_2) \in Q$ and $a \in \Sigma$,
 $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
- $q_0 = (q_1, q_2)$
- $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$.

(hey, why not choose $F = F_1 \times F_2$?)
What About Concatenation?

Thm: If L_1, L_2 are regular languages, so is $L_1 \circ L_2$.

Example: $L_1 = \{\text{good, bad}\}$ and $L_2 = \{\text{boy, girl}\}$.

$L_1 \circ L_2 = \{\text{goodboy, goodgirl, badboy, badgirl}\}$

This is much harder to prove.

Idea: Simulate M_1 for a while, then switch to M_2.

Problem: But when do you switch?

This leads us into non-determinism.