The classes NP.
Verifiability.
Poly-Time Reductions
NP completeness
SAT is NP Complete

Sipser, Chapter 7
Comp. Models 04/05 – Lecture 12

- The classes NP.
- Verifiability.
- Poly-Time Reductions
- NP completeness
- SAT is NP Complete

Sipser, Chapter 7
The classes NP.
Verifiability.
Poly-Time Reductions
NP completeness
SAT is NP Complete

Sipser, Chapter 7
The classes NP.
Verifiability.
Poly-Time Reductions
NP completeness
SAT is NP Complete

Sipser, Chapter 7
Comp. Models 04/05 – Lecture 12

- The classes **NP**.
- Verifiability.
- **Poly-Time** Reductions
- **NP** completeness
- SAT is **NP** Complete

- Sipser, Chapter 7
The classes **NP**.

Verifiability.

Poly-Time Reductions

NP completeness

SAT is NP Complete

Sipser, Chapter 7
Comp. Models 04/05 – Lecture 12

- The classes NP.
- Verifiability.
- Poly-Time Reductions
- NP completeness
- SAT is NP Complete

Sipser, Chapter 7
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let $f : \mathcal{N} \rightarrow \mathcal{N}$

We say that N runs in time $f(n)$ if

- For every input x of length n,

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : N \rightarrow N$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : \mathcal{N} \rightarrow \mathcal{N}$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
- on any branch of its computation tree on x,

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : \mathcal{N} \rightarrow \mathcal{N}$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
- on any branch of its computation tree on x,
- is at most $f(n)$.
NTime Classes Definition

Let
\[f : \mathbb{N} \rightarrow \mathbb{N} \]

be a function.

Definition:

\[
\text{NTIME}(f(n)) = \{ L | L \text{ is a language, decided by an } O(f(n))-\text{time NTM} \}
\]
The Class NP

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is
The Class NP

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is
- Invariant for all TMs with any number of tapes.
The Class NP

Definition: NP is the set of languages decidable in polynomial time on **non**-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is
 - Invariant for all TMs with any number of tapes.
 - Insensitive to choice of reasonable **non-deterministic** computational model.
The Class NP

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is
- Invariant for all TMs with any number of tapes.
- Insensitive to choice of reasonable non-deterministic computational model.
- Roughly corresponds to problems whose positive solutions cannot be efficiently generated (\Rightarrow intractable), but can be efficiently checked.
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, *e.g.*

- Hamiltonian path
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, *e.g.*

- Hamiltonian path
- Travelling salesman (*salesperson, that is*)
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, *e.g.*

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, e.g.

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, *e.g.*

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
- Composites (factoring/cryptography)
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, e.g.

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
- Composites (factoring/cryptography)

...
Verifiability

A verifier for a language \mathcal{A} is an algorithm \mathcal{V} where

$\mathcal{A} = \{w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for some string } c\}$

The verifier uses the additional information c to verify $w \in \mathcal{A}$.
Verifiability

A verifier for a language A is an algorithm V where

$A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
Verifiability

A verifier for a language A is an algorithm \mathcal{V} where

$$A = \{ w | \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if \mathcal{V} accepts $\langle w, c \rangle$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Verifiability

A verifier for a language A is an algorithm V where

$$A = \{ w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if V accepts $\langle w, c \rangle$.
- A polynomial verifier runs in polynomial time in $|w|$ (so $|c| \leq |w|^{O(1)}$).
Verifiability

A verifier for a language \(A \) is an algorithm \(\mathcal{V} \) where

\[
A = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for some string } c \}
\]

- The verifier uses the additional information \(c \) to verify \(w \in A \).
- We measure verifier run time by length of \(w \).
- The string \(c \) is called a certificate (or proof) for \(w \) if \(\mathcal{V} \) accepts \(\langle w, c \rangle \).
- A polynomial verifier runs in polynomial time in \(|w| \) (so \(|c| \leq |w|^{O(1)} \)).
- A language \(A \) is polynomially verifiable if it has a polynomial verifier.
NP and Verifiability

Theorem: A language is in \mathcal{NP} if and only if it has a polynomial time verifier.

Proof – Intuition:
NP and Verifiability

Theorem: A language is in \mathcal{NP} if and only if it has a polynomial time verifier.

Proof – Intuition:

- NTM simulates verifier by guessing the certificate.
NP and Verifiability

Theorem: A language is in \mathcal{NP} if and only if it has a polynomial time verifier.

Proof – Intuition:

- NTM simulates verifier by guessing the certificate.
- Verifier simulates NTM by using accepting branch as certificate.
NP

Claim: If A has a poly-time verifier, then it is decided by some polynomial-time NTM.

Let V be poly-time verifier for A.
- single-tape TM
- runs in time n^k

N: on input w of length n
- Nondeterministically select string c of length n^k.
- Run V on $\langle w, c \rangle$
- If V accepts, accept; otherwise reject.
NP

Claim: If A is decided by a polynomial-time NTM N, running in time n^k, then A has a poly-time verifier.

Construct polynomial-time verifier V as follows.

V: on input w of length n, and on a string c of length n^k

- Simulate N on input w, treating each symbol of c as a description of the non-deterministic choice in each step of N.
- If this branch accepts, *accept*, otherwise *reject*. ♣
Examples: Clique

A clique in a graph is a subgraph where every two nodes are connected by an edge.

A \(k \)-clique is a clique of size \(k \).

What is the largest \(k \)-clique in the figure?
Examples: Clique

Define the language

\[\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \} \]
Examples: Clique

Theorem:

\[\text{CLIQUE} \in \mathcal{NP} \]

The clique is the certificate.

Here is a verifier \(\mathcal{V} \): on input \((\langle G, k \rangle, c) \)
Examples: Clique

Theorem:

\[
\text{CLIQUE} \in \mathcal{NP}
\]

The clique is the certificate.

Here is a verifier \(\mathcal{V} \): on input \((G, k, c) \)

- if \(c \) is not a \(k \)-clique, reject
Examples: Clique

Theorem:

\[\text{CLIQUE} \in \mathcal{NP} \]

The clique is the certificate.

Here is a verifier \mathcal{V}: on input $(\langle G, k \rangle, c)$

- if c is not a k-clique, reject
- if G does not contain all vertices of c, reject
Examples: Clique

Theorem:

\[\text{CLIQUE} \in \mathcal{NP} \]

The clique is the certificate.

Here is a verifier \(\mathcal{V} \): on input \((\langle G, k \rangle, c) \)

- if \(c \) is not a \(k \)-clique, reject
- if \(G \) does not contain all vertices of \(c \), reject
- accept
Examples: SUBSET-SUM

An instance of the problem

- A collection of numbers \(x_1, \ldots, x_k\)
- Target number \(t\)
- Question: does some subcollection add up to \(t\)?

\[
\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\} \}
\]

\[
\exists \{y_1, \ldots, y_\ell\} \subseteq \{x_1, \ldots, x_k\}, \quad \sum_{y_j} = t
\]

Collections are multisets: repetitions allowed.
Examples: SUBSET-SUM

We have

\[(\{4, 11, 16, 21, 27\}, 25) \in \text{SUBSET-SUM}\]

because \(4 + 21 = 25\).
Examples: SUBSET-SUM

We have

\[(\{ 4, 11, 16, 21, 27 \} , 25) \in \text{SUBSET-SUM} \]

because \(4 + 21 = 25 \).

\[(\{ 4, 11, 16, 21, 27 \} , 26) \notin \text{SUBSET-SUM} \]

(why?)
Examples: SUBSET-SUM

Theorem:

\[\text{SUBSET-SUM} \in NP \]

The subset is the certificate.

Here is a verifier:

\(\mathcal{V} \): on input \((\langle S, t \rangle, c)\)
- test whether \(c\) is a collection of numbers summing to \(t\).
- test whether \(c\) is a subset of \(S\)
- if either fail, reject, otherwise accept.
Complementary Problems

CLIQUE and **SUBSET-SUM** seem **not** to be members of NP.

It is harder to efficiently verify that something does **not** exist than to efficiently verify that something **does** exist.
Complementary Problems

CLIQUE and **SUBSET-SUM** seem not to be members of NP.
It is harder to efficiently verify that something does not exist than to efficiently verify that something does exist..

Definition: The class **coNP**:
\[L \in \text{coNP} \text{ if } \overline{L} \in \text{NP}. \]
Complementary Problems

CLIQUE and **SUBSET-SUM** seem **not** to be members of **NP**.

It is harder to efficiently verify that something **does not** exist than to efficiently verify that something **does** exist..

Definition: The class **coNP**:

$L \in \text{coNP}$ if $\overline{L} \in \text{NP}$.

So far, no one knows if **coNP** is distinct from **NP**.
The question $P = NP$? is one of the great unsolved mysteries in contemporary mathematics.

- most computer scientists believe the two classes are not equal
- most bogus proofs show them equal (why?)
Observations

If \mathcal{P} differs from NP, then the distinction between \mathcal{P} and $NP - P$ is meaningful and important.

languages in \mathcal{P} tractable
Observations

If \mathcal{P} differs from \mathcal{NP}, then the distinction between \mathcal{P} and $\mathcal{NP} - \mathcal{P}$ is meaningful and important.

- languages in \mathcal{P} tractable
- languages in $\mathcal{NP} - \mathcal{P}$ intractable

Until we can prove that $\mathcal{P} \neq \mathcal{NP}$, there is no hope of proving that a specific language lies in $\mathcal{NP} - \mathcal{P}$.
Observations

If \mathcal{P} differs from \mathcal{NP}, then the distinction between \mathcal{P} and $\mathcal{NP} - \mathcal{P}$ is meaningful and important.

- languages in \mathcal{P} tractable
- languages in $\mathcal{NP} - \mathcal{P}$ intractable

Until we can prove that $\mathcal{P} \neq \mathcal{NP}$, there is no hope of proving that a specific language lies in $\mathcal{NP} - \mathcal{P}$.

Nevertheless, we can prove statements of the form “If $\mathcal{P} \neq \mathcal{NP}$ then $\mathcal{A} \in \mathcal{NP} - \mathcal{P}$.”
The class of **NP-complete** languages are

- “hardest” languages in \(\mathcal{NP} \)
- “least likely” to be in \(\mathcal{P} \)
- If any NP-complete \(A \in \mathcal{P} \), then \(\mathcal{NP} = \mathcal{P} \).
Cook–Levin (1971-1973)

Theorem: There is a language $S \in NP$ such that $S \in P$ if and only if $P = NP$.
Cook–Levin (1971-1973)

Theorem: There is a language $S \in NP$ such that $S \in P$ if and only if $P = NP$.

This theorem establishes the class of NP-complete languages.

Such language, like Frodo Baggins, “carries on its back” the burden of all of NP.
Poly-Time Computable Functions

Definition: A function

\[f : \Sigma^* \rightarrow \Sigma^* \]

is **polynomial-time computable** if there is a poly-time deterministic TM that

- starts with input \(w \), and
- halts with \(f(w) \) on tape.
Poly-Time Reducibility

Definition: We say that a language A is polynomial time mapping reducible to B, written

$$ A \leq_P B, $$

if there is a poly-time computable function

$$ f : \Sigma^* \rightarrow \Sigma^* $$

such that, for every w,

$$ w \in A \iff f(w) \in B. $$

The function f is called a polynomial-time reduction from A to B.
Computable Functions

Converts questions about membership in A to membership in B, and does it efficiently.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let f the reduction from A to B, computed by TM M_f.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
- M be the poly-time decider for B.
Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
- M be the poly-time decider for B.
- On input y of length m, M takes at most $c_2 m^{a_2}$ steps.
Computable Functions

Define N: on input x

1. compute $f(x)$
2. run M on input $f(x)$ and output whatever M outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
Computable Functions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 \cdot a_2}$ steps.
Computable Functions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 a_2}$ steps.
- Summing both stages, we got a polynomial in n.
Computable Functions

Define \mathcal{N}: on input x
1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 \cdot a_2}$ steps.
- Summing both stages, we got a polynomial in n.
- Correctness is clear, so $\mathcal{A} \in P$. ♣
Satisfiability

A boolean variable assumes values
Satisfiability

- A boolean variable assumes values
- true (written 1), and false (written 0).
Satisfiability

- A boolean variable assumes values
 - true (written 1), and false (written 0).
- Boolean operations:
Satisfiability

- A boolean variable assumes values true (written 1), and false (written 0).
- Boolean operations:
 - and: \land
Satisfiability

- A boolean variable assumes values true (written 1), and false (written 0).

- Boolean operations:
 - and: \land
 - or: \lor
Satisfiability

- A boolean variable assumes values true (written \(1\)), and false (written \(0\)).

- Boolean operations:
 - and: \(\land\)
 - or: \(\lor\)
 - not: \(\neg\)
Satisfiability

A boolean variable assumes values true (written 1), and false (written 0).

Boolean operations:

- and: \(\land \)
- or: \(\lor \)
- not: \(\neg \)

Examples:

\[
\begin{align*}
0 \land 1 &= 0 \\
0 \lor 1 &= 1 \\
\overline{0} &= 1
\end{align*}
\]
Satisfiability

A boolean formula is an expression involving boolean variables and operations.

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]
Satisfiability

A boolean formula is an expression involving boolean variables and operations.

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]

Definition: A formula is *satisfiable* if some assignment of 0s and 1s to the variables makes the formula evaluate to 1.
Satisfiability

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]

is satisfiable by

\[
\begin{align*}
 x &= 0 \\
 y &= 1 \\
 z &= 0
\end{align*}
\]

This assignment satisfies \(\phi \).
Satisfiability

Define

\[\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable Boolean formula} \} \]
Satisfiability

It is useful to consider special version:
Satisfiability

It is useful to consider special version:

A literal is a variable or negated variable: \(x \) or \(\overline{x} \).
Satisfiability

It is useful to consider special version:

- A literal is a variable or negated variable: x or \overline{x}.
- A clause is several literals joined by \lor:

$$\left(x_1 \lor \overline{x}_2 \lor \overline{x}_3 \right)$$
Satisfiability

It is useful to consider special version:

- A literal is a variable or negated variable: x or \overline{x}.
- A clause is several literals joined by \lor:
 $$(x_1 \lor \overline{x_2} \lor \overline{x_3})$$
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses, connected with \land's.
Satisfiability

It is useful to consider special version:

- A literal is a variable or negated variable: \(x \) or \(\bar{x} \).
- A clause is several literals joined by \(\lor \)s:
 \[
 (x_1 \lor \bar{x}_2 \lor \bar{x}_3)
 \]
- A Boolean formula is in conjunctive normal form (CNF) if it consists of clauses, connected with \(\land \)s.
- For example
 \[
 (x_1 \lor \bar{x}_2 \lor \bar{x}_3 \lor x_4) \land (x_3 \lor \bar{x}_5 \lor x_6) \land (x_3 \lor \bar{x}_6)
 \]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all clauses have three literals.

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all clauses have three literals.

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]

Define

\[3SAT = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \}\]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all clauses have three literals.

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]

Define

\[3\text{SAT} = \{\langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula}\}\]

Clearly, if \(\phi\) is a satisfiable 3CNF formula, then for any satisfying assignment of \(\phi\), every clause must contain at least one literal assigned 1.
Reductions

Claim: There is a poly time reduction from 3SAT to CLIQUE. In other words,

$$3\text{SAT} \leq_P \text{CLIQUE}.$$
Reductions

Claim: There is a poly time reduction from 3SAT to CLIQUE. In other words,

$$3SAT \leq_P CLIQUE.$$

We’ll construct a poly time reduction f that maps 3CNF formulae ϕ to graphs and numbers, $\langle G, k \rangle$. The function f will have the property that ϕ is satisfiable if and only if G has a clique of size k.

Examples: Clique

Reminder: A **clique** in a graph is a subgraph where every two nodes are connected by an edge.

A k-clique is a clique of size *k*. For example, the graph above has a 5-clique.
3SAT \leq_P CLIQUE

Let ϕ be a 3CNF formula with k clauses.

$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)$$

We define a graph G as follows:
3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
- each triple corresponds to a clause of ϕ.
3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
- each triple corresponds to a clause of ϕ
- each node in a triple corresponds to a literal.
3SAT \leq_P CLIQUE

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})$$
3SAT vs. CLIQUE

\((x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})\)

Add edges between all vertex pairs, except

- within same triple
- between contradictory literals
\textbf{3SAT} \leq_P \text{ CLIQUE}

\textbf{Claim:} If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.

- at least one literal is true in every clause
3SAT \(\leq_P \) CLIQUE

Claim: If \(\phi \) is satisfiable, \(G \) has a \(k \)-clique.

Suppose \(\phi \) is satisfiable.
- at least one literal is true in every clause
- in every tuple, select one true literal
3SAT \leq^P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.

- at least one literal is true in every clause
- in every tuple, select one true literal
- they can be joined by edges
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.
- at least one literal is true in every clause
- in every tuple, select one true literal
- they can be joined by edges
- yielding a k-clique
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})$$
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k clauses, so
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k clauses, so
- each triple has exactly one clique node.
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k clauses, so
- each triple has exactly one clique node.
- Assign 1 to each node in clique
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k clauses, so
- each triple has exactly one clique node.
- Assign 1 to each node in clique
- no contradictions.
3SAT \leq_p CLIQUE

We’ve constructed a poly time computable function f.
3SAT \leq_P CLIQUE

- We’ve constructed a poly time computable function f.
- We saw that the function f has the property that $\phi \in 3SAT$ if and only if $f(\phi) \in$ CLIQUE.
3SAT \leq_P CLIQUE

- We’ve constructed a poly time computable function f.
- We saw that the function f has the property that $\phi \in 3\text{SAT}$ if and only if $f(\phi) \in \text{CLIQUE}$.
- Therefore f is a reduction from 3SAT to CLIQUE, so 3SAT \leq_P CLIQUE.

♣
Independent Set

An **independent** in a graph is a set of vertexes, no two of which are linked by an edge.

The **independent set** problem asks whether there exists an independent set of size k.
Independent Set

Define

INDEPENDENT-SET = \{ \langle G, k \rangle \mid G \text{ contains an independent set of size } k \}
Independent Set

Define

\[
\text{INDEPENDENT-SET} = \{ \langle G, k \rangle \mid G \text{ contains an independent set of size } k \}\]

Claim: \text{INDEPENDENT-SET} is polynomial time reducible to \text{CLIQUE},

\[
\text{INDEPENDENT-SET} \leq_P \text{CLIQUE}
\]

and vice-versa,

\[
\text{CLIQUE} \leq_P \text{INDEPENDENT-SET}
\]
Independent Set

Definition: The complement of a graph $G = (V, E)$ is a graph $G^c = (V, E^c)$, where

$$E^c = \{(v_1, v_2) | v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.$$
Independent Set

Definition: The complement of a graph \(G = (V, E) \) is a graph \(G^c = (V, E^c) \), where
\[
E^c = \{(v_1, v_2) | v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.
\]

Claim: If \(V \) is an independent set in \(G \), then \(V \) is a clique in \(G^c \).

’nuff said.
Independent Set
A Hamiltonian path in a directed G visits each note once.
Hamiltonian Path

$$\text{HAMPATH} = \{ \langle G, s, t \rangle | G \text{ has Hamiltonian path from } s \text{ to } t \}$$
Hamiltonian Circuit

visits each note once.
Hamiltonian Circuit

visits each note once.
ends up where it started
Hamiltonian Circuit

\[\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \]
Hamiltonian Circuit

\[\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \]

Theorem: HAMPATH is polynomial-time reducible to HAMCIRCUIT,

\[\text{HAMPATH} \leq_P \text{HAMCIRCUIT} \]
Reduction

Theorem: HAMPATH is polynomial-time reducible to HAMCIRCUIT.
Reduction

Theorem: HAMCIRCUIT is polynomial-time reducible to HAMPATH.

Proof: Left as an easy (recommended) exercise.
Definition

A language \mathcal{L} is NP-complete if it satisfies
Definition

A language \mathcal{B} is NP-complete if it satisfies

- $\mathcal{B} \in NP$, and
Definition

A language \mathcal{B} is \textbf{NP-complete} if it satisfies

- $\mathcal{B} \in \text{NP}$, and
- Every \mathcal{A} in NP is polynomial time reducible to \mathcal{B}
Compare

A language \mathcal{B} is RE-complete if it satisfies
Compare

A language \mathcal{B} is RE-complete if it satisfies

$\mathcal{B} \in RE$, and
Compare

A language \mathcal{B} is RE-complete if it satisfies

- $\mathcal{B} \in \text{RE}$, and
- Every \mathcal{A} in RE is mapping reducible to \mathcal{B}
Theorem

Theorem: If B is NP-complete and $B \in P$, then $P = NP$.

To show $P = NP$ (and make an instant fortune, see www.claymath.org/millennium/P_vs_NP/), suffices to find a polynomial-time algorithm for some NP-complete problem.
Theorem

Theorem: If \mathcal{B} is NP-complete, $\mathcal{C} \in NP$, and $\mathcal{B} \leq_P \mathcal{C}$, then \mathcal{C} is NP-complete.

We know that $\mathcal{C} \in NP$,
Theorem

Theorem: If \mathcal{B} is NP-complete, $\mathcal{C} \in NP$, and $\mathcal{B} \leq_P \mathcal{C}$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in NP$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
Theorem

Theorem: If \(\mathcal{B} \) is NP-complete, \(\mathcal{C} \in \text{NP} \), and \(\mathcal{B} \leq_P \mathcal{C} \), then \(\mathcal{C} \) is NP-complete.

- We know that \(\mathcal{C} \in \text{NP} \),
- must show that every \(\mathcal{A} \) in NP is poly-time reducible to \(\mathcal{C} \).
- Because \(\mathcal{B} \) is NP-complete,
Theorem

Theorem: If B is NP-complete, $C \in NP$, and $B \leq_P C$, then C is NP-complete.

- We know that $C \in NP$,
- must show that every A in NP is poly-time reducible to C.
- Because B is NP-complete,
- every language in NP is poly-time reducible to B.
Theorem

Theorem: If \mathcal{B} is NP-complete, $\mathcal{C} \in \text{NP}$, and $\mathcal{B} \leq_p \mathcal{C}$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in \text{NP}$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
- Because \mathcal{B} is NP-complete,
- every language in NP is poly-time reducible to \mathcal{B}.
- \mathcal{B} is poly-time reducible to \mathcal{C}.
Theorem

Theorem: If B is NP-complete, $C \in NP$, and $B \leq_P C$, then C is NP-complete.

- We know that $C \in NP$,
- must show that every A in NP is poly-time reducible to C.
- Because B is NP-complete,
- every language in NP is poly-time reducible to B.
- B is poly-time reducible to C
- Can compose poly-time reductions (why?), so
Theorem

Theorem: If B is NP-complete, $C \in NP$, and $B \leq_P C$, then C is NP-complete.

- We know that $C \in NP$,
- must show that every A in NP is poly-time reducible to C.
- Because B is NP-complete,
- every language in NP is poly-time reducible to B.
- B is poly-time reducible to C
- Can compose poly-time reductions (why?), so
- A is poly-time reducible to C. ♣️
Strategy

- Once we have one “structured” NP-complete problem, we can generate more by poly-time reduction.
- Getting the first one requires some work.
- This is what Steve Cook (then in Berkeley, now in Toronto) and Leonid Levin (then in Moscow, now in Boston) did in the early seventies.
Traveling Salesman

Parameters:

- set of cities C
- set of inter-city distances D
- goal k
Traveling Salesman

Define

\[
\text{TRAVELING-SALESMAN} = \{ \langle C, D, k \rangle \mid (C, D) \text{ has a TS tour of total distance } \leq k \}\]

Remark: Can consider two versions – undirected and directed.
Traveling Salesman

Define

\(\text{TRAVELING-SALESMAN} = \{ \langle C, D, k \rangle \mid (C, D) \text{ has a TS tour of total distance } \leq k \} \)

Remark: Can consider two versions – undirected and directed.

Recall

\(\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \)
Traveling Salesman

Define

\[\text{TRAVELING-SALESMAN} = \{ \langle C, D, k \rangle \mid (C, D) \text{ has a TS tour of total distance } \leq k \} \]

Remark: Can consider two versions – undirected and directed.

Recall

\[\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \]

Theorem: \(\text{HAMCIRCUIT} \) is polynomial-time reducible to \(\text{TRAVELING-SALESMAN} \),

\[\text{HAMCIRCUIT} \leq_P \text{TRAVELING-SALESMAN} \]
HAMCIRCUIT$_P$ TSP

The reduction: Given a directed graph $G = (V, E)$ we construct a directed traveling salesman instance.

The cities are identical to the nodes of the original graph, $C = V$.
HAMCIRCUIT \leq_P TSP

The reduction: Given a directed graph \(G = (V, E) \) we construct a directed traveling salesman instance.

- The cities are identical to the nodes of the original graph, \(C = V \).
- The distance of going from \(v_1 \) to \(v_2 \) is 1 if \((v_1, v_2) \in E \), and 2 otherwise.
HAMCIRCUIT \leq_P TSP

The reduction: Given a directed graph $G = (V, E)$ we construct a directed traveling salesman instance.

- The cities are identical to the nodes of the original graph, $C = V$.
- The distance of going from v_1 to v_2 is 1 if $(v_1, v_2) \in E$, and 2 otherwise.
- The bound on the total distance of a tour is $k = |V|$.
HAMCIRCUIT\leq_P TSP

Validity of Reduction
Validity of Reduction

Suppose G has a Hamiltonian circuit. The distance assigned by the reduction to all edges in this circuit is 1. Thus in (C, D) there is a traveling salesman tour of total distance $|V| = k$, namely $(C, D, k) \in \text{TRAVELING-SALESMAN}$.
HAMCIRCUIT \leq_P TSP

Validity of Reduction

\implies Suppose G has a Hamiltonian circuit. The distance assigned by the reduction to all edges in this circuit is 1. Thus in (C, D) there is a traveling salesman tour of total distance $|V| = k$, namely $(C, D, k) \in$ TRAVELING-SALESMAN.

\impliedby Suppose (C, D) has a traveling salesman tour of total distance $|V| = k$. Tour cannot contain any edge of distance 2. Therefore it gives a Hamiltonian circuit in G.
HAMCIRCUIT \leq_P TSP

Validity of Reduction

\[\implies \text{Suppose } G \text{ has a Hamiltonian circuit. The distance assigned by the reduction to all edges in this circuit is 1. Thus in } (C, D) \text{ there is a traveling salesman tour of total distance } |V| = k, \text{ namely } (C, D, k) \in \text{TRAVELING-SALESMAN}. \]

\[\iff \text{Suppose } (C, D) \text{ has a traveling salesman tour of total distance } |V| = k \text{. Tour cannot contain any edge of distance 2. Therefore it gives a Hamiltonian circuit in } G. \]

Efficiency: Reduction in quadratic time (filling up distances for all edges of the complete graph). ♠
3SAT (reminder)

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[(x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor x_6 \lor x_4)\]
3SAT (reminder)

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[
(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_3 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)
\]

Define

\[
3\text{SAT} = \{\langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula}\}
\]
3SAT (reminder)

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[(x_1 \lor x_2 \lor \overline{x_3}) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]

Define

\[3SAT = \{⟨φ⟩ \mid φ \text{ is satisfiable 3CNF formula}\}\]

Clearly, if \(φ\) is a satisfiable 3CNF formula, then for any satisfying assignment of \(φ\), every clause must contain at least one literal assigned 1.
The Language SAT

Definition: A Boolean formula is in **conjunctive normal form** (CNF) if it consists of **terms**, connected with \lands.

For example

$$(x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4) \land (x_3 \lor \neg x_5 \lor x_6) \land (x_3 \lor \neg x_6)$$
The Language SAT

Definition: A Boolean formula is in **conjunctive normal form** (CNF) if it consists of **terms**, connected with \(\land \)s.

For example

\[
(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})
\]

Definition:

\[\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable CNF formula} \}\]
Strategy

- Once we have one structured NP-complete problem, we can generate more by poly-time reductions.
- Getting the first one requires some work.
Cook-Levin (early 70s)

Theorem: SAT is NP complete.

- Must show that every NP problem reduces to SAT in poly-time.
Cook-Levin (early 70s)

Theorem: SAT is NP complete.

- **Must show that every** NP problem reduces to SAT in poly-time.
- **Proof Idea:** Suppose $L \in \mathcal{NP}$, and M is an NTM that accepts L.
Cook-Levin (early 70s)

Theorem: SAT is NP complete.

- Must show that every NP problem reduces to SAT in poly-time.
- **Proof Idea:** Suppose $\mathcal{L} \in \mathcal{NP}$, and M is an NTM that accepts \mathcal{L}.
- On input w of length n, M runs in time $t(n) = n^c$.
Cook-Levin (early 70s)

Theorem: SAT is NP complete.

- Must show that every NP problem reduces to SAT in poly-time.

Proof Idea: Suppose \(\mathcal{L} \in \mathcal{NP} \), and \(\mathcal{M} \) is an NTM that accepts \(\mathcal{L} \).

- On input \(w \) of length \(n \), \(\mathcal{M} \) runs in time \(t(n) = n^c \).

- We consider the \(n^c \)-by-\(n^c \) tableau that describes the computation of \(\mathcal{M} \) on input \(w \).
Cook-Levin (early 70s)

Theorem: SAT is NP complete.

- Must show that every NP problem reduces to SAT in poly-time.
- **Proof Idea:** Suppose \(L \in \mathcal{NP} \), and \(M \) is an NTM that accepts \(L \).
- On input \(w \) of length \(n \), \(M \) runs in time \(t(n) = n^c \).
- We consider the \(n^c \)-by-\(n^c \) tableau that describes the computation of \(M \) on input \(w \).
The Tableau

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>(t(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(cell[1,1]\) cell
- \(cell[1,\(t(n)\)]\) cell

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
The Tableau

cell[1,1]

\[
\begin{array}{ccccccc}
& 1 & 2 & 3 & \ldots & t(n) \\
q_0 & 0 & 0 & 1 & 0 & \ldots & 0 \\
\end{array}
\]
Row 1 in tableau represents initial configuration of M on input w.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
The Tableau

Row 1 in tableau represents initial configuration of M on input w.

Row i in tableau represents i-th configuration in a computation of M on input w.
A Formula Simulating the Tableau

We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.
A Formula Simulating the Tableau

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.

- Given the string w, it takes $O(n^{2c})$ steps to construct ϕ_w.
A Formula Simulating the Tableau

We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.

Given the string w, it takes $O(n^{2c})$ steps to construct ϕ_w.

The following property holds:

$\phi_w \in SAT$ iff M accepts w.
A Formula Simulating the Tableau

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.
- Given the string w, it takes $O(n^{2c})$ steps to construct ϕ_w.
- The following property holds: $\phi_w \in SAT$ iff M accepts w.
- So the mapping $w \mapsto \phi_w$ is a poly time reduction from \mathcal{L} to SAT, establishing $\mathcal{L} \leq_P SAT$.
A Formula Simulating the Tableau

- We construct a Boolean CNF formula \(\phi_w \) that “mimics” the tableau.
- Given the string \(w \), it takes \(O(n^{2c}) \) steps to construct \(\phi_w \).
- The following property holds:
 \[\phi_w \in SAT \text{ iff } M \text{ accepts } w. \]
- So the mapping \(w \mapsto \phi_w \) is a poly time reduction from \(\mathcal{L} \) to \(SAT \), establishing \(\mathcal{L} \leq_P SAT \).
A Formula Simulating the Tableau

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.
- Given the string w, it takes $O(n^{2c})$ steps to construct ϕ_w.
- The following property holds: $\phi_w \in SAT$ iff M accepts w.
- So the mapping $w \mapsto \phi_w$ is a poly time reduction from L to SAT, establishing $L \leq_P SAT$.
- We still got a few small details to take care off...
Details of Formula (Partial List)

We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:
Details of Formula (Partial List)

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:
- ϕ_w uses Boolean variables of three types.
Details of Formula (Partial List)

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:
- ϕ_w uses Boolean variables of three types.
- $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
Details of Formula (Partial List)

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:

- ϕ_w uses Boolean variables of three types.
 - $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
 - $s_{i,q}$ is true iff in i-th configuration, M is in state $q \in Q$.

Details of Formula (Partial List)

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:

- ϕ_w uses Boolean variables of three types.
- $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
- $s_{i,q}$ is true iff in i-th configuration, M is in state $q \in Q$.
- $h_{i,j}$ is true iff in i-th configuration M, has is head in cell j on tape.
We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:

- ϕ_w uses Boolean variables of three types.
 - $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
 - $s_{i,q}$ is true iff in i-th configuration, M is in state $q \in Q$.
 - $h_{i,j}$ is true iff in i-th configuration M, has is head in cell j on tape.

The formula ϕ_w consists of four parts:

$$
\phi_w = \phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{accept}}(M) \land \phi_{\text{compute}}(M)
$$
We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:

- ϕ_w uses Boolean variables of three types.
 - $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
 - $s_{i,q}$ is true iff in i-th configuration, M is in state $q \in Q$.
 - $h_{i,j}$ is true iff in i-th configuration M, has is head in cell j on tape.

The formula ϕ_w consists of four parts:

$$\phi_w = \phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{accept}}(M) \land \phi_{\text{compute}}(M)$$
Details of Formula (cont.)

\[\phi_{\text{unique}}(M) \] guarantees that the variables encode legal configurations. For example, at most one of \(b_{i,j,0} \) and \(b_{i,j,1} \) is true.
Details of Formula (cont.)

- $\phi_{\text{unique}}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{\text{start}}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.
Details of Formula (cont.)

- $\phi_{\text{unique}}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{\text{start}}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.

- $\phi_{\text{accept}}(M)$ guarantees that M reached an accepting configuration.
Details of Formula (cont.)

- $\phi_{\text{unique}}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{\text{start}}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.

- $\phi_{\text{accept}}(M)$ guarantees that M reached an accepting configuration.

- $\phi_{\text{compute}}(M)$ guarantees that the configuration described by the $i + 1$-st row is a legal succession of the configuration described by the i-th row.
Details of Formula (cont.)

- $\phi_{\text{unique}}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{\text{start}}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.

- $\phi_{\text{accept}}(M)$ guarantees that M reached an accepting configuration.

- $\phi_{\text{compute}}(M)$ guarantees that the configuration described by the $i + 1$-st row is a legal succession of the configuration described by the i-th row.
Details of Formula (cont.)

- $\phi_{\text{unique}}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{\text{start}}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.

- $\phi_{\text{accept}}(M)$ guarantees that M reached an accepting configuration.

- $\phi_{\text{compute}}(M)$ guarantees that the configuration described by the $i + 1$-st row is a legal succession of the configuration described by the i-th row.
Details of Formula (cont.)

- \(\phi_{\text{unique}}(M) \) guarantees that the variables encode legal configurations. For example, at most one of \(b_{i,j,0} \) and \(b_{i,j,1} \) is true.

- \(\phi_{\text{start}}(w) \) guarantees that the variables corresponding to the first row \((i = 1)\) encode the initial configuration of \(M \) on \(w \).

- \(\phi_{\text{accept}}(M) \) guarantees that \(M \) reached an accepting configuration.

- \(\phi_{\text{compute}}(M) \) guarantees that the configuration described by the \(i + 1 \)-st row is a legal succession of the configuration described by the \(i \)-th row.
Details of Formula (cont.)

φ_{compute}(M) is the “heart” of φ_w. To construct it, employ locality of computations.
Details of Formula (cont.)

- $\phi_{compute}(M)$ is the “heart” of ϕ_w. To construct it, employ locality of computations.

- To determine contents of tableau entry (i, j) (cell j in configuration i), only the contents of three tableau entries (from configuration $i - 1$), $(i - 1, j - 1)$, $(i - 1, j)$, $(i - 1, j + 1)$, and M’s table, are needed.
Details of Formula (cont.)

- $\phi_{\text{compute}}(M)$ is the “heart” of ϕ_w. To construct it, employ locality of computations.

- To determine contents of tableau entry (i, j) (cell j in configuration i), only the contents of three tableau entries (from configuration $i - 1$), $(i - 1, j - 1), (i - 1, j), (i - 1, j + 1)$, and M’s table, are needed.

- If head not in area, nothing changes. And and if it is, changes are local and determined using M.
The Tableau in Perspective

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>t(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- $\text{cell}[1,1]$}

- $\text{cell}[1,t(n)]$
Correctness of Reduction

All four components of ϕ_w can be put in CNF, so ϕ_w itself (\land of the four) is also in CNF.
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\wedge of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\land of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{compute}}(M)$ corresponds to a valid computation of M on w.
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\land of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{compute}}(M)$ corresponds to a valid computation of M on w.
- An assignment satisfying, in addition $\phi_{\text{accept}}(M)$, corresponds to an accepting computation of M on w.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\wedge of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}}(M) \wedge \phi_{\text{start}}(w) \wedge \phi_{\text{compute}}(M)$ corresponds to a valid computation of M on w.
- An assignment satisfying, in addition $\phi_{\text{accept}}(M)$, corresponds to an accepting computation of M on w.
- Therefore M accepts w iff $\phi_w \in SAT$.
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\wedge of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}}(M) \wedge \phi_{\text{start}}(w) \wedge \phi_{\text{compute}}(M)$ corresponds to a valid computation of M on w.
- An assignment satisfying, in addition $\phi_{\text{accept}}(M)$, corresponds to an accepting computation of M on w.
- Therefore M accepts w iff $\phi_w \in SAT$.
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\land of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{compute}}(M)$ corresponds to a valid computation of M on w.
- An assignment satisfying, in addition $\phi_{\text{accept}}(M)$, corresponds to an accepting computation of M on w.
- Therefore M accepts w iff $\phi_w \in SAT$.

- For complete details, consult Sipser or take the Complexity course.
Strategy

- We have seen that SAT is NP-complete.
Strategy

- We have seen that SAT is NP-complete.
- We now reduce SAT to 3SAT.
Strategy

- We have seen that SAT is NP-complete.
- We now reduce SAT to 3SAT.
- And then will reduce 3SAT to a bunch of other problems in NP.
Strategy

- We have seen that SAT is NP-complete.
- We now reduce SAT to 3SAT.
- And then will reduce 3SAT to a bunch of other problems in NP.
- In class and recitation will give in detail just a few examples.
Strategy

- We have seen that SAT is NP-complete.
- We now reduce SAT to 3SAT.
- And then will reduce 3SAT to a bunch of other problems in NP.
- In class and recitation will give in detail just a few examples.
- Full list contains hundreds or thousands of known NP-complete problems (from combinatorics, operation research, VLSI design, computational geometry, bioinformatics, ...).
Strategy

- We have seen that SAT is NP-complete.
- We now reduce SAT to $3SAT$.
- And then will reduce $3SAT$ to a bunch of other problems in NP.
- In class and recitation will give in detail just a few examples.
- Full list contains hundreds or thousands of known NP-complete problems (from combinatorics, operation research, VLSI design, computational geometry, bioinformatics, ...).
- NP-completeness of new and of old problems is still established these days.
SAT and 3SAT

Recall

SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable CNF formula}\}

3SAT = \{\langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula}\}
SAT and 3SAT

Recall

\[\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable CNF formula} \} \]

\[\text{3SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \} \]

The reduction maps CNF formulae to 3CNF ones “clause by clause”. A clause with \(\ell \) literals is mapped to \(\ell \) clauses, built on the original literals together with \(\ell - 1 \) new ones.
SAT and 3SAT

Recall

\[\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable CNF formula} \} \]

\[\text{3SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \} \]

The reduction maps CNF formulae to 3CNF ones “clause by clause”. A clause with \(\ell \) literals is mapped to \(\ell \) clauses, built on the original literals together with \(\ell - 1 \) new ones.

For example:

\[
(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_8)
\]

\[\mapsto\]

\[
(x_1 \lor y_1) \land (\overline{y_1} \lor \overline{x_2} \lor y_2) \land (\overline{y_2} \lor \overline{x_3} \lor y_3) \land \]

\[
(\overline{y_3} \lor x_4 \lor y_4) \land (\overline{y_4} \lor x_8)
\]
\textbf{SAT} \leq_P 3\text{SAT}

Consider mapping $\phi \mapsto \phi_3$, e.g.,

$$(x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\overline{y}_1 \lor \overline{x}_2 \lor y_2) \land (\overline{y}_2 \lor \overline{x}_3 \lor y_3) \land (\overline{y}_3 \lor x_4 \lor \overline{y}_4) \land (\overline{y}_4 \lor x_8)$$
SAT \leq_P 3SAT

Consider mapping \(\phi \mapsto \phi_3 \), e.g. \((x_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\overline{y}_1 \lor \overline{x}_2 \lor y_2) \land (\overline{y}_2 \lor \overline{x}_3 \lor y_3) \land (\overline{y}_3 \lor x_4 \lor y_4) \land (\overline{y}_4 \lor x_8)\)

Claim: \(\phi \) has a satisfying assignment iff \(\phi_3 \) does.
SAT \leq_P 3SAT

Consider mapping \(\phi \mapsto \phi_3 \), e.g. \((x_1 \lor \bar{x}_2 \lor \bar{x}_3 \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\bar{y}_1 \lor \bar{x}_2 \lor y_2) \land (\bar{y}_2 \lor x_3 \lor \bar{y}_3) \land (\bar{y}_3 \lor \bar{x}_4 \lor \bar{y}_4) \land (\bar{y}_4 \lor x_8)\)

Claim: \(\phi \) has a satisfying assignment iff \(\phi_3 \) does.

Proof sketch: \(\iff \) An assignment satisfying \(\phi_3 \) cannot “rely” on new literals alone – at least one original literal must be satisfied.
SAT \leq_P 3SAT

Consider mapping $\phi \mapsto \phi_3$, e.g., \((x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\neg y_1 \lor \neg x_2 \lor y_2) \land (\neg y_2 \lor \neg x_3 \lor y_3) \land (\neg y_3 \lor x_4 \lor y_4) \land (\neg y_4 \lor x_8)\)

Claim: ϕ has a satisfying assignment iff ϕ_3 does.

Proof sketch: \iff An assignment satisfying ϕ_3 cannot “rely” on new literals alone – at least one original literal must be satisfied.

\iff An assignment satisfying ϕ makes at least one literal per clause happy. In the “ϕ_3 clause” of this literal the new variable is under no constraints. This enables propagation to a satisfying assignment that “relies” on new vars alone in rest of ϕ_3 clauses.
SAT \leq_P 3SAT

Consider mapping \(\phi \mapsto \phi_3 \), e.g. \((x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\overline{y_1} \lor \overline{x_2} \lor y_2) \land (\overline{y_2} \lor \overline{x_3} \lor y_3) \land (\overline{y_3} \lor x_4 \lor y_4) \land (\overline{y_4} \lor x_8)\)

Claim: \(\phi \) has a satisfying assignment iff \(\phi_3 \) does.

Proof sketch: \(\Leftarrow \) An assignment satisfying \(\phi_3 \) cannot “rely” on new literals alone – at least one original literal must be satisfied.

\(\Leftarrow \) An assignment satisfying \(\phi \) makes at least one literal per clause happy. In the “\(\phi_3 \) clause” of this literal the new variable is under no constraints. This enables propagation to a satisfying assignment that “relies” on new vars alone in rest of \(\phi_3 \) clauses.

This establishes validity of the reduction. Since it is in polynomial time (why?), we get **SAT \leq_P 3SAT.**
3SAT – Cousins and Cambrians

We now know that $\text{SAT} \leq_P \text{3SAT}$. Since SAT is NP-complete and $\text{3SAT} \in \text{NP}$, this proves that 3SAT is itself NP-complete.
3SAT – Cousins and Cambrians

We now know that \(\text{SAT} \leq_{P} 3\text{SAT} \). Since SAT is NP-complete and \(3\text{SAT} \in \text{NP} \), this proves that 3SAT is itself NP-complete.

What about the \(3\text{SAT} \leq_{P} \text{SAT} \) direction?
3SAT – Cousins and Cambrians

We now know that \(\text{SAT} \leq_P \text{3SAT} \). Since \(\text{SAT} \) is NP-complete and \(\text{3SAT} \in \text{NP} \), this proves that \(\text{3SAT} \) is itself NP-complete.

What about the \(\text{3SAT} \leq_P \text{SAT} \) direction?

We now want to examine what happens if we further reduce the number of literals per clause in CNF formulae.
3SAT – Cousins and Cambrians

We now know that SAT ≤P 3SAT. Since SAT is NP-complete and 3SAT ∈ NP, this proves that 3SAT is itself NP-complete.

What about the 3SAT ≤P SAT direction?

We now want to examine what happens if we further reduce the number of literals per clause in CNF formulae.

Definition: A Boolean formula is in 2CNF if it is a CNF formula, and all terms have at most two literals. For example

\[(x_1 \lor \overline{x_2}) \land (\overline{x_5} \lor x_6) \land (\overline{x_6} \lor \overline{x_4})\]
3SAT – Cousins and Cambrians

Definition:

\[
2\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 2CNF formula} \}
\]
3SAT – Cousins and Cambrians

Definition:

\[2\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 2CNF formula} \} \]

Betting time: Is \(2\text{SAT} \) \textit{NP-complete}? Is it in \textit{P}? Or maybe we do not know? …
3SAT – Cousins and Cambrians

Definition:

\[2\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 2CNF formula} \} \]

Betting time: Is 2SAT NP-complete? Is it in P? Or maybe we do not know? …

Well, turns out 2SAT is in P. For details, though, you’ll have to refer to the algorithms, ahhhm, efficiency of computations, course.
Chains of Reductions: NPC Problems

- SAT
 - IntegerProg
 - 3SAT
 - Clique
 - IndepSet
 - VertexCover
 - SetCover
 - 3ExactCover
 - Knapsack
 - 3Color
 - Scheduling
 - HamPath
 - HamCircuit
 - TRAVELING-SALESMAN