The classes \textbf{NP}.

Verifiability.

\textbf{Poly-Time} Reductions

\textbf{NP} completeness

\textbf{SAT} is \textbf{NP} Complete

Sipser, Chapter 7
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let $f : \mathcal{N} \rightarrow \mathcal{N}$

We say that N runs in time $f(n)$ if
- For every input x of length n,
- the maximum number of steps that N uses,
- on any branch of its computation tree on x,
- is at most $f(n)$.
NTime Classes Definition

Let

\[f : \mathbb{N} \rightarrow \mathbb{N} \]

be a function.

Definition:

\[
\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language, decided by an } O(f(n))-\text{time NTM} \}
\]
The Class NP

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is
- Invariant for all TMs with any number of tapes.
- Insensitive to choice of reasonable non-deterministic computational model.
- Roughly corresponds to problems whose positive solutions cannot be efficiently generated (\Rightarrow intractable), but can be efficiently checked.
The Class \mathcal{NP}

\mathcal{NP} is important because it includes many problems of practical interest, *e.g.*

- Hamiltonian path
- Travelling salesman (*sales*person, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
- Composites (factoring/cryptography)

 \[
 \vdots
 \]
Verifiability

A verifier for a language A is an algorithm \mathcal{V} where

$$A = \{w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for some string } c\}$$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if \mathcal{V} accepts $\langle w, c \rangle$.
- A polynomial verifier runs in polynomial time in $|w|$ (so $|c| \leq |w|^{O(1)}$).
- A language A is polynomially verifiable if it has a polynomial verifier.
NP and Verifiability

Theorem: A language is in \mathcal{NP} if and only if it has a polynomial time verifier.

Proof – Intuition:

- NTM simulates verifier by guessing the certificate.
- Verifier simulates NTM by using accepting branch as certificate.
NP

Claim: If A has a poly-time verifier, then it is decided by some polynomial-time NTM.

Let V be poly-time verifier for A.

- single-tape TM
- runs in time n^k

N: on input w of length n

- Nondeterministically select string c of length n^k.
- Run V on $\langle w, c \rangle$
- If V accepts, accept; otherwise reject.
NP

Claim: If A is decided by a polynomial-time NTM N, running in time n^k, then A has a poly-time verifier.

Construct polynomial-time verifier V as follows.
V: on input w of length n, and on a string c of length n^k

- Simulate N on input w, treating each symbol of c as a description of the non-deterministic choice in each step of N.
- If this branch accepts, accept, otherwise reject.
Examples: Clique

A **clique** in a graph is a subgraph where every two nodes are connected by an edge.

A **k-clique** is a clique of size k.

What is the **largest k-clique** in the figure?
Examples: Clique

Define the language

\[
\text{CLIQUE} = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \}\]
Examples: Clique

Theorem:

\[\text{CLIQUE} \in \mathcal{NP} \]

The clique is the certificate.

Here is a verifier \(V \): on input \(\langle G, k \rangle, c \)

- if \(c \) is not a \(k \)-clique, reject
- if \(G \) does not contain all vertices of \(c \), reject
- accept
Examples: SUBSET-SUM

An instance of the problem

- A collection of numbers x_1, \ldots, x_k
- Target number t
- Question: does some subcollection add up to t?

$$
\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{x_1, \ldots, x_k\} \exists \{y_1, \ldots, y_\ell\} \subseteq \{x_1, \ldots, x_k\}, \sum_{y_j} = t \}
$$

Collections are multisets: repetitions allowed.
Examples: SUBSET-SUM

We have

\[(\{4, 11, 16, 21, 27\}, 25) \in \text{SUBSET-SUM}\]

because \(4 + 21 = 25\).

\[(\{4, 11, 16, 21, 27\}, 26) \notin \text{SUBSET-SUM}\]
(why?)
Examples: SUBSET-SUM

Theorem:

\[\text{SUBSET-SUM} \in NP \]

The subset is the certificate.

Here is a verifier:
\[\mathcal{V} \text{: on input } (\langle S, t \rangle, c) \]

- test whether \(c \) is a collection of numbers summing to \(t \).
- test whether \(c \) is a subset of \(S \)
- if either fail, reject, otherwise accept.
Complementary Problems

CLIQUE and **SUBSET-SUM** seem not to be members of NP.

It is harder to efficiently verify that something does not exist than to efficiently verify that something does exist..

Definition: The class **coNP**:
$L \in \text{coNP}$ if $\overline{L} \in \text{NP}$.

So far, no one knows if **coNP** is distinct from **NP**.
The question \(P = NP? \) is one of the great unsolved mysteries in contemporary mathematics.

- most computer scientists believe the two classes are not equal
- most bogus proofs show them equal (why?)
Observations

If P differs from NP, then the distinction between P and $NP - P$ is meaningful and important.

- languages in P tractable
- languages in $NP - P$ intractable

Until we can prove that $P \neq NP$, there is no hope of proving that a specific language lies in $NP - P$.

Nevertheless, we can prove statements of the form “If $P \neq NP$ then $A \in NP - P$.”
The class of **NP-complete** languages are

- “hardest” languages in \mathcal{NP}
- “least likely” to be in \mathcal{P}
- If any NP-complete $A \in \mathcal{P}$, then $\mathcal{NP} = \mathcal{P}$.
Cook–Levin (1971-1973)

Theorem: There is a language \(S \in \mathcal{NP} \) such that \(S \in \mathcal{P} \) if and only if \(\mathcal{P} = \mathcal{NP} \).

This theorem establishes the class of NP-complete languages.

Such language, like Frodo Baggins, “carries on its back” the burden of all of \(\mathcal{NP} \).
Poly-Time Computable Functions

Definition: A function

\[f : \Sigma^* \rightarrow \Sigma^* \]

is polynomial-time computable if there is a poly-time deterministic TM that

- starts with input \(w \), and
- halts with \(f(w) \) on tape.
Poly-Time Reducibility

Definition: We say that a language A is **polynomial time mapping reducible** to B, written

$$A \leq_P B,$$

if there is a poly-time computable function

$$f : \Sigma^* \rightarrow \Sigma^*$$

such that, for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called a **polynomial-time reduction** from A to B.
Computable Functions

Converts questions about membership in A to membership in B, and does it efficiently.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
- M be the poly-time decider for B.
- On input y of length m, M takes at most $c_2 m^{a_2}$ steps.
Computable Functions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 \cdot a_2}$ steps.
- Summing both stages, we got a polynomial in n.
- Correctness is clear, so $\mathcal{A} \in P$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Satisfiability

- A boolean variable assumes values true (written 1), and false (written 0).

- Boolean operations:
 - and: \land
 - or: \lor
 - not: \neg

- Examples:

\[
\begin{align*}
0 \land 1 &= 0 \\
0 \lor 1 &= 1 \\
\neg 0 &= 1
\end{align*}
\]
Satisfiability

A boolean formula is an expression involving boolean variables and operations.

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]

Definition: A formula is **satisfiable** if some assignment of 0s and 1s to the variables makes the formula evaluate to 1.
Satisfiability

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]

is satisfiable by

\[
\begin{align*}
x & = 0 \\
y & = 1 \\
z & = 0
\end{align*}
\]

This assignment satisfies \(\phi \).
Satisfiability

Define

\[SAT = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable Boolean formula} \} \]
Satisfiability

It is useful to consider special version:

- A **literal** is a variable or negated variable: x or \overline{x}.
- A **clause** is several literals joined by \lor:
 $$(x_1 \lor \overline{x_2} \lor \overline{x_3})$$
- A Boolean formula is in **conjunctive normal form** (CNF) if it consists of **clauses**, connected with \land.
- For example
 $$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})$$
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all clauses have three literals.

\[(x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_5 \lor x_6) \land (x_3 \lor x_6 \lor x_4)\]

Define

\[3SAT = \{\langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula}\}\]

Clearly, if \(\phi\) is a satisfiable 3CNF formula, then for any satisfying assignment of \(\phi\), every clause must contain at least one literal assigned 1.
Reductions

Claim: There is a poly time reduction from 3SAT to CLIQUE. In other words,

$$3\text{SAT} \leq_P \text{CLIQUE}.$$

We’ll construct a poly time reduction f that maps 3CNF formulae ϕ to graphs and numbers, $\langle G, k \rangle$.

The function f will have the property that ϕ is satisfiable if and only if G has a clique of size k.
Examples: Clique

Reminder: A clique in a graph is a subgraph where every two nodes are connected by an edge.

A k-clique is a clique of size k. For example, the graph above has a 5-clique.
3SAT \leq_P CLIQUE

Let ϕ be a 3CNF formula with k clauses.

$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)$$

We define a graph G as follows:
3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
- each triple corresponds to a clause of ϕ.
- each node in a triple corresponds to a literal.
3SAT \leq_P CLIQUE

$$(x_1 \vee \overline{x_2} \vee x_3) \land (\overline{x_3} \vee x_5 \vee x_6) \land (x_3 \vee x_4 \vee \overline{x_6})$$
3SAT vs. CLIQUE

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})$$

Add edges between all vertex pairs, except
- within same triple
- between contradictory literals
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.
- at least one literal is true in every clause
- in every tuple, select one true literal
- they can be joined by edges
- yielding a k-clique
3SAT \leq_p CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})$$

![Graph diagram](attachment:graph_diagram.png)
3SAT \leq_P CLIQUE

Claim: If \(G \) has a \(k \)-clique, \(\phi \) is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have \(k \) vertexes and \(k \) clauses, so
- each triple has exactly one clique node.
- Assign 1 to each node in clique
- no contradictions.
3SAT \leq_P CLIQUE

- We’ve constructed a poly time computable function f.
- We saw that the function f has the property that $\phi \in 3SAT$ if and only if $f(\phi) \in CLIQUE$.
- Therefore f is a reduction from 3SAT to CLIQUE, so $3SAT \leq_P CLIQUE$. ♣
Independent Set

An **independent** in a graph is a set of vertexes, no two of which are linked by an edge.

The **independent set** problem asks whether there exists an independent set of size k.
Independent Set

Define

\[\text{INDEPENDENT-SET} = \{ \langle G, k \rangle | G \text{ contains an independent set of size } k \} \]

Claim: INDEPENDENT-SET is polynomial time reducible to CLIQUE,

\[\text{INDEPENDENT-SET} \leq_P \text{CLIQUE} \]

and vice-versa,

\[\text{CLIQUE} \leq_P \text{INDEPENDENT-SET} \]
Independent Set

Definition: The complement of a graph \(G = (V, E) \) is a graph \(G^c = (V, E^c) \), where
\[
E^c = \{(v_1, v_2) | v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.
\]

Claim: If \(V \) is an independent set in \(G \), then \(V \) is a clique in \(G^c \).

’nuff said.
Independent Set

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
A Hamiltonian path in a directed G visits each note once.
Hamiltonian Path

\[
\text{HAMPATH} = \{ \langle G, s, t \rangle | G \text{ has Hamiltonian path from } s \text{ to } t \}\]
Hamiltonian Circuit

- visits each note once.
- ends up where it started
Hamiltonian Circuit

HAMCIRCUIT = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \}

Theorem: HAMPATH is polynomial-time reducible to HAMCIRCUIT,

HAMPATH \leq_P HAMCIRCUIT.
Reduction

Theorem: HAMPATH is polynomial-time reducible to HAMCIRCUIT.
Reduction

Theorem: HAMCIRCUIT is polynomial-time reducible to HAMPATH.

Proof: Left as an easy (recommended) exercise.
Definition

A language \mathcal{B} is NP-complete if it satisfies

1. $\mathcal{B} \in \text{NP}$, and
2. Every \mathcal{A} in NP is polynomial time reducible to \mathcal{B}
Compare

A language \mathcal{B} is \textit{RE-complete} if it satisfies

- $\mathcal{B} \in \mathcal{RE}$, and
- Every \mathcal{A} in \mathcal{RE} is mapping reducible to \mathcal{B}
Theorem

Theorem: If B is NP-complete and $B \in P$, then $P = NP$.

To show $P = NP$ (and make an instant fortune, see www.claymath.org/millennium/P_vs_NP), suffices to find a polynomial-time algorithm for some NP-complete problem.
Theorem

Theorem: If \mathcal{B} is NP-complete, $\mathcal{C} \in NP$, and $\mathcal{B} \leq_P \mathcal{C}$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in NP$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
- Because \mathcal{B} is NP-complete,
- every language in NP is poly-time reducible to \mathcal{B}.
- \mathcal{B} is poly-time reducible to \mathcal{C}
- Can compose poly-time reductions (why?), so
- \mathcal{A} is poly-time reducible to \mathcal{C}. ♣
Strategy

- Once we have one “structured” NP-complete problem, we can generate more by poly-time reduction.
- Getting the first one requires some work.
- This is what Steve Cook (then in Berkeley, now in Toronto) and Leonid Levin (then in Moscow, now in Boshton) did in the early seventies.
Traveling Salesman

Parameters:
- set of cities C
- set of inter-city distances D
- goal k

(not drawn to scale)
Traveling Salesman

Define

\[\text{TRAVELING-SALESMAN} = \{\langle C, D, k \rangle \mid (C, D) \text{ has a TS tour of total distance } \leq k \} \]

Remark: Can consider two versions – undirected and directed.

Recall

\[\text{HAMCIRCUIT} = \{\langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \]

Theorem: \(\text{HAMCIRCUIT} \) is polynomial-time reducible to \(\text{TRAVELING-SALESMAN} \),

\[\text{HAMCIRCUIT} \leq_P \text{TRAVELING-SALESMAN} \, . \]
HAMCIRCUIT \leq_P TSP

The reduction: Given a directed graph $G = (V, E)$ we construct a directed traveling salesman instance.

- The cities are identical to the nodes of the original graph, $C = V$.
- The distance of going from v_1 to v_2 is 1 if $(v_1, v_2) \in E$, and 2 otherwise.
- The bound on the total distance of a tour is $k = |V|$.
HAMCIRCUIT \leq_P TSP

Validity of Reduction

\implies Suppose G has a Hamiltonian circuit. The distance assigned by the reduction to all edges in this circuit is 1. Thus in (C, D) there is a traveling salesman tour of total distance $|V| = k$, namely $(C, D, k) \in$ TRAVELING-SALESMAN.

\impliedby Suppose (C, D) has a traveling salesman tour of total distance $|V| = k$. Tour cannot contain any edge of distance 2. Therefore it gives a Hamiltonian circuit in G.

Efficiency: Reduction in quadratic time (filling up distances for all edges of the complete graph). ♣
3SAT (reminder)

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[
(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)
\]

Define

\[
3SAT = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \}
\]

Clearly, if \(\phi \) is a satisfiable 3CNF formula, then for any satisfying assignment of \(\phi \), every clause must contain at least one literal assigned 1.
The Language SAT

Definition: A Boolean formula is in **conjunctive normal form** (CNF) if it consists of **terms**, connected with \lands.

For example

$$(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})$$

Definition:

$\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable CNF formula} \}$
Strategy

- Once we have one *structured* NP-complete problem, we can generate more by *poly-time reductions*.
- Getting the first one requires some work.
Cook-Levin (early 70s)

Theorem: SAT is NP complete.

- Must show that every NP problem reduces to SAT in poly-time.
- **Proof Idea:** Suppose \(\mathcal{L} \in \mathcal{NP} \), and \(M \) is an NTM that accepts \(\mathcal{L} \).
- On input \(w \) of length \(n \), \(M \) runs in time \(t(n) = n^c \).
- We consider the \(n^c \)-by-\(n^c \) tableau that describes the computation of \(M \) on input \(w \).
The Tableau

1 2 3 ... t(n)

\[
\begin{array}{cccccc}
q_0 & 0 & 0 & 1 & 0 & \ldots & 0 \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 0 & 1 & 0 & \ldots & 0 \\
\end{array}
\]
The Tableau

- **Row 1** in tableau represents **initial configuration** of M on input w.

- **Row i** in tableau represents **i-th configuration** in a computation of M on input w.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
A Formula Simulating the Tableau

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau.
- Given the string w, it takes $O(n^{2c})$ steps to construct ϕ_w.
- The following property holds:
 $\phi_w \in SAT$ iff M accepts w.
- So the mapping $w \mapsto \phi_w$ is a poly time reduction from \mathcal{L} to SAT, establishing $\mathcal{L} \leq_P SAT$.

- We still got a few small details to take care off...
Details of Formula (Partial List)

- We construct a Boolean CNF formula ϕ_w that “mimics” the tableau:

 - ϕ_w uses Boolean variables of three types.
 - $b_{i,j,\sigma}$ is true iff the j-th cell in i-th configuration contains the letter $\sigma \in \Gamma$.
 - $s_{i,q}$ is true iff in i-th configuration, M is in state $q \in Q$.
 - $h_{i,j}$ is true iff in i-th configuration M, has is head in cell j on tape.

- The formula ϕ_w consists of four parts:
 $\phi_w = \phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{accept}}(M) \land \phi_{\text{compute}}(M)$
Details of Formula (cont.)

- $\phi_{unique}(M)$ guarantees that the variables encode legal configurations. For example, at most one of $b_{i,j,0}$ and $b_{i,j,1}$ is true.

- $\phi_{start}(w)$ guarantees that the variables corresponding to the first row ($i = 1$) encode the initial configuration of M on w.

- $\phi_{accept}(M)$ guarantees that M reached an accepting configuration.

- $\phi_{compute}(M)$ guarantees that the configuration described by the $i + 1$-st row is a legal succession of the configuration described by the i-th row.
Details of Formula (cont.)

- $\phi_{\text{compute}}(M)$ is the “heart” of ϕ_w. To construct it, employ locality of computations.

- To determine contents of tableau entry (i, j) (cell j in configuration i), only the contents of three tableau entries (from configuration $i - 1$), $(i - 1, j - 1)$, $(i - 1, j)$, $(i - 1, j + 1)$, and M’s table, are needed.

- If head not in area, nothing changes. And and if it is, changes are local and determined using M.
The Tableau in Perspective

\[
\begin{array}{cccccc}
1 & 2 & 3 & \ldots & t(n) \\
q_0 & 0 & 0 & 1 & 0 & \ldots & 1 \\
\end{array}
\]

\(cell[1,1]\)

\(cell[1,t(n)]\)
Correctness of Reduction

- All four components of ϕ_w can be put in CNF, so ϕ_w itself (\wedge of the four) is also in CNF.
- The transformation $w \mapsto \phi_w$ is computable in time $O(n^{2c})$.
- An assignment satisfying $\phi_{\text{unique}}(M) \land \phi_{\text{start}}(w) \land \phi_{\text{compute}}(M)$ corresponds to a valid computation of M on w.
- An assignment satisfying, in addition $\phi_{\text{accept}}(M)$, corresponds to an accepting computation of M on w.
- Therefore M accepts w iff $\phi_w \in SAT$.

For complete details, consult Sipser or take the Complexity course.
Strategy

- We have seen that SAT is NP-complete.
- We now reduce SAT to 3SAT.
- And then will reduce 3SAT to a bunch of other problems in NP.
- In class and recitation will give in detail just a few examples.
- Full list contains hundreds or thousands of known NP-complete problems (from combinatorics, operation research, VLSI design, computational geometry, bioinformatics, ...).
- NP-completeness of new and of old problems is still established these days.
SAT and 3SAT

Recall

\[
\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable CNF formula} \}
\]

\[
\text{3SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \}
\]

The reduction maps CNF formulae to 3CNF ones “clause by clause”. A clause with \(\ell \) literals is mapped to \(\ell \) clauses, built on the original literals together with \(\ell - 1 \) new ones.

For example:

\[
\begin{align*}
(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_8) & \mapsto \\
(x_1 \lor y_1) \land (\overline{y_1} \lor \overline{x_2} \lor y_2) \land (\overline{y_2} \lor \overline{x_3} \lor y_3) \land \\
(\overline{y_3} \lor x_4 \lor y_4) \land (\overline{y_4} \lor x_8)
\end{align*}
\]
SAT \leq_P 3SAT

Consider mapping $\phi \mapsto \phi_3$, e.g. $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_8) \mapsto (x_1 \lor y_1) \land (\overline{y_1} \lor \overline{x_2} \lor y_2) \land (\overline{y_2} \lor \overline{x_3} \lor y_3) \land (\overline{y_3} \lor x_4 \lor y_4) \land (\overline{y_4} \lor x_8)$

Claim: ϕ has a satisfying assignment iff ϕ_3 does.

Proof sketch: \Leftarrow An assignment satisfying ϕ_3 cannot “rely” on new literals alone – at least one original literal must be satisfied.

\Leftarrow An assignment satisfying ϕ makes at least one literal per clause happy. In the “ϕ_3 clause” of this literal the new variable is under no constraints. This enables propagation to a satisfying assignment that “relies” on new vars alone in rest of ϕ_3 clauses.

This establishes validity of the reduction. Since it is in polynomial time (why?), we get SAT $\leq_P 3$SAT. ♣.
3SAT – Cousins and Cambrians

We now know that $\text{SAT} \leq_P \text{3SAT}$. Since SAT is NP-complete and $\text{3SAT} \in \text{NP}$, this proves that 3SAT is itself NP-complete.

What about the $\text{3SAT} \leq_P \text{SAT}$ direction?

We now want to examine what happens if we further reduce the number of literals per clause in CNF formulae.

Definition: A Boolean formula is in 2CNF if it is a CNF formula, and all terms have at most two literals. For example

$$(x_1 \lor \overline{x_2}) \land (\overline{x_5} \lor x_6) \land (\overline{x_6} \lor \overline{x_4})$$
3SAT – Cousins and Cambrians

Definition:

\[2\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 2CNF formula} \} \]

- Betting time: Is 2SAT NP-complete? Is it in P? Or maybe we do not know? …

- Well, turns out 2SAT is in P. For details, though, you’ll have to refer to the algorithms, ahhhm, efficiency of computations, course.
Chains of Reductions: NPC Problems

SAT
 \- IntegerProg
 \- 3SAT
 \- Clique
 \- IndepSet
 \- VertexCover
 \- SetCover
 \- 3ExactCover
 \- Knapsack
 \- 3Color
 \- Scheduling
 \- TRAVELING-SALESMAN
 \- HamPath
 \- HamCircuit

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.