Hamiltonian Path

Each variable is represented by the following graph:
Hamiltonian Path

Each clause of ϕ is a single node.

c_1
Hamiltonian Path

Global structure of graph (missing edges)

\(x_1 \)

\(x_2 \)

\(\ldots \)

\(x_k \)
Hamiltonian Path

Center of each diamond has $2k$ nodes, one for each clause.

clause c_1

clause c_2
If variable x_i appears in clause c_j, add this "detour"
If $\overline{x_i}$ appears in clause c_j, add this "detour"
Hamiltonian Path

After adding edges from “diamonds” to clause vertexes, G is complete.

Claim: If ϕ is satisfiable, then G has a hamiltonian path.

Strategy:
- ignore clause nodes for now
- traverse diamonds
If x_i is true in the assignment, then zig-zag.
If x_i is false in the assignment, then zag-zig.
Add clause nodes.

- Each c_j is assigned one true literal.
- For each clause, pick one.

If we select x_i in c_i, add “detour”
Hamiltonian Path

Add clause nodes.
- Each c_j is assigned one true literal.
- For each clause, pick one.

If we select $\overline{x_i}$ in c_i, add “detour”

This completes one direction of the reduction.
Hamiltonian Path

Claim: If G has a hamiltonian path from s to t, then ϕ has a satisfying assignment.

Definition: A normal hamiltonian path is one that traverses the diamonds in order.
- if x_i diamond zig-zags, assign true.
- if x_i diamond zags-zig, assign false.
- each clause vertex appears once
- source of detour determines which literal is assigned true.
Hamiltonian Path

Claim: Every hamiltonian path in G is normal.
Hamiltonian Path

- only arrows to a_2 from a_1, a_3, c
- paths from a_1 or c go elsewhere
- path from a_2 would leave no exit

Any hamiltonian path is normal, Q.E.D.