Assignment 5
Handed: 20/1/04, Due: 3/2/04

1. Recall than an oracle TM, M^L, is a TM with a special query tape. It can write down any string s on the query tape, and in one additional step get a reply whether $s \in L$ or $s \notin L$. We define the class P^{SAT} as the collection of languages decided by a polynomial time deterministic TM, with access to an oracle for SAT.

Prove the following:
 (a) $NP \subseteq P^{\text{SAT}}$.
 (b) $coNP \subseteq P^{\text{SAT}}$.
 (c) P^{SAT} is closed under complement.
 (d) Show that if $NP = P^{\text{SAT}}$ then $NP = coNP$.
 (e) Define $MaxClique := \{(G, k)\mid$ the size of the largest clique in G equals $k\}$. Prove that $MaxClique \in P^{\text{SAT}}$.

2. Prove that the language $NATM = \{(M, w)\mid M$ is a non-deterministic TM that accepts $w\}$ is NP-Hard.

3. We say that a language L is in $\text{AvTime}(T(n))$ if there is a deterministic Turing machine solving L, whose average running time over all inputs of size n, is at most $T(n)$. When defining the average, assume $\Sigma = \{0, 1\}$, and each string of length n is weighted $\frac{1}{2^n}$. We denote $\text{AvP} = \bigcup_{c>0} \text{AvTime}(n^c)$. We also denote $E = \bigcup_{c>0} \text{Time}(2^{cn})$.

Prove that $P \subseteq \text{AvP} \subseteq E$.

4. We say that a non-deterministic Turing machine is nice if for every input x the following holds:
 - Every computation path returns either 'accept', 'reject' or 'quit'.
 - There is at least one non-quit path.
 - All non-quit paths have the same value.

 Let $NICE$ be the class of all languages L that are accepted by some nice non-deterministic, polynomial time, Turing machine.

 Prove that $NICE = NP \cap coNP$.

5. Given an undirected connected graph $G = (V, E)$, we define a spanning tree of G to be a subset $T \subseteq E$, such that T connects all the vertices of G, and there are no cycles in T (T must be a tree).

Define $k -$ SpanTree problem to be:

Input: An un-weighted connected graph $G = (V, E)$, and a natural number k.

Question: Is there a spanning tree of G, with at most k leaves?

Prove that $k -$ SpanTree problem is NP-Complete.
6. The problem \textit{MaxEx3SAT} problem is the following optimization problem: The input is a CNF formula \(\phi \) with exactly three literals per clause (you can assume that no clause contains both \(x \) and \(\neg x \)). Goal: Find an assignment that satisfies the \textit{maximum} number of clauses.

Suppose \(\phi \) has \(m \) clauses. Finding an assignment satisfying all \(m \) clauses will solve 3SAT, so we do not really expect to do this in polynomial time. But we can try an \textit{approximation algorithm}.

(a) Find a polynomial time algorithm that satisfies at least \(\frac{m}{2} \) of the clauses (hint: you may use randomization).

(b) Argue that (a) is an algorithm with approximation ratio \(\frac{1}{2} \).

(c) Improve the approximation ratio to \(\frac{7}{8} \).

(d) To complete the picture, it has been shown (a couple of years ago) that an efficient algorithm with approximation ratio \(\frac{7}{8} + \varepsilon \) (where \(\varepsilon > 0 \) is a constant) implies \(P=NP \). (No action in this item, unless you want to prove \(P=NP \). ...)

2