Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability ...
Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability . . .
- seen examples of solvable problems . . .
Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability . . .
- seen examples of solvable problems . . .
- and saw one problem, A_{TM}, that is computationally unsolvable.
Lecture 9

We have already

- Established Turing Machines as the gold standard of computers and computability . . .
- seen examples of solvable problems . . .
- and saw one problem, \(A_{TM} \), that is computationally unsolvable.

In this lecture, we look at other computationally unsolvable problems, and establish the technique of mapping reducibilities for prove that languages are undecidable/non-enumerable.
Reducibility

Example:

- Finding your way around a new city
Reducibility

Example:
- Finding your way around a new city
- reduces to . . .
Reducibility

Example:
- Finding your way around a new city
- reduces to . . .
- obtaining a city map.
Reducibility, In Our Context

Always involves two problems, A and B.
Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.
Reducibility, In Our Context

Always involves two problems, A and B.

Desired Property: If A reduces to B, then any solution of B can be used to find a solution of A.

Remark: This property says nothing about solving A by itself or B by itself.
Examples

Reductions:

- Traveling from Boshton to Paris …
Examples

Reductions:

- Traveling from Boshton to Paris . . .
- buying plane ticket . . .
Examples

Reductions:
- Traveling from Boshton to Paris . . .
- buying plane ticket . . .
- earning the money for that ticket . . .
Examples

Reductions:

- Traveling from Boshton to Paris . . .
- buying plane ticket . . .
- earning the money for that ticket . . .
- finding a job
 (or getting the $s from mom and dad. . .)
Examples

Reductions:

- Measuring area of rectangle . . .
Examples

Reductions:

- Measuring area of rectangle . . .
- measuring lengths of sides.
Examples

Reductions:

- Measuring area of rectangle . . .
- measuring lengths of sides.

Also:
Examples

Reductions:
- Measuring area of rectangle . . .
- measuring lengths of sides.

Also:
- Solving a system of linear equations . . .
- inverting a matrix.
Reducibility

If A is reducible to B, then

- A cannot be harder than B
Reducibility

If A is reducible to B, then

- A cannot be harder than B
- if B is decidable, so is A.
Reducibility

If \(A \) is reducible to \(B \), then

- \(A \) cannot be harder than \(B \)
- if \(B \) is decidable, so is \(A \).
- if \(A \) is undecidable and reducible to \(B \), then \(B \) is undecidable.
Undecidable Problems

We have already established that A_{TM} is undecidable.

Here is a related problem.

$H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Clarification: How does H_{TM} differ from A_{TM}?
Undecidable Problems

\[H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Theorem: \(H_{TM} \) is undecidable.

Proof idea:
- By contradiction.
Undecidable Problems

\[H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Theorem: \(H_{TM} \) is undecidable.

Proof idea:
- By contradiction.
- Assume \(H_{TM} \) is decidable.
Undecidable Problems

\[H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Theorem: \(H_{TM} \) is undecidable.

Proof idea:
- By contradiction.
- Assume \(H_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(H_{TM} \).
Undecidable Problems

\[H_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

Theorem: \(H_{TM} \) is undecidable.

Proof idea:
- By contradiction.
- Assume \(H_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(H_{TM} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).
Undecidable Problems

\[H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \]

Theorem: \(H_{TM} \) is undecidable.

Proof idea:

- By contradiction.
- Assume \(H_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(H_{TM} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).
- So \(A_{TM} \) is reduced to \(H_{TM} \).
Undecidable Problems

\(H_{\text{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \} \)

Theorem: \(H_{\text{TM}} \) is undecidable.

Proof idea:
- By contradiction.
- Assume \(H_{\text{TM}} \) is decidable.
- Let \(R \) be a TM that decides \(H_{\text{TM}} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{\text{TM}} \).
- So \(A_{\text{TM}} \) is reduced to \(H_{\text{TM}} \).
- Since \(A_{\text{TM}} \) is undecidable, so is \(H_{\text{TM}} \).
Undecidable Problems

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w \rangle$, ...
Undecidable Problems

Theorem: \(H_{\text{TM}} \) is undecidable.

Proof: Assume, by way of contradiction, that TM \(R \) decides \(H_{\text{TM}} \). Define a new TM, \(S \), as follows:

1. On input \(\langle M, w \rangle \),
2. run \(R \) on \(\langle M, w \rangle \).
Undecidable Problems

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w \rangle$,
- run R on $\langle M, w \rangle$.
- If R rejects, reject.
Undecidable Problems

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

1. On input $\langle M, w \rangle$,
2. run R on $\langle M, w \rangle$.
3. If R rejects, reject.
4. If R accepts (meaning M halts on w), simulate M on w until it halts.
Undecidable Problems

Theorem: H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM}. Define a new TM, S, as follows:

- On input $\langle M, w \rangle$,
- run R on $\langle M, w \rangle$.
- If R rejects, reject.
- If R accepts (meaning M halts on w), simulate M on w until it halts.
- If M accepted, accept; otherwise reject.
Undecidable Problems (2)

Does a TM accept any string at all?

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]
Undecidable Problems (2)

Does a TM accept any string at all?

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable.
Undecidable Problems (2)

Does a TM accept any string at all?

\[E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{\text{TM}} \) is undecidable.

Proof structure:
Undecidable Problems (2)

Does a TM accept any string at all?

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable.

Proof structure:

- By contradiction.
- Assume \(E_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(E_{TM} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).
Undecidable Problems (2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]
Undecidable Problems (2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

First attempt: When \(S \) receives input \(\langle M, w \rangle \), it calls \(R \) with input \(\langle M \rangle \).

- If \(R \) accepts, then reject, because \(M \) does not accept any string, let alone \(w \).
- But what if \(R \) rejects?
Undecidable Problems (2)

\[E_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

First attempt: When \(S \) receives input \(\langle M, w \rangle \), it calls \(R \) with input \(\langle M \rangle \).

- If \(R \) accepts, then reject, because \(M \) does not accept any string, let alone \(w \).
- But what if \(R \) rejects?

Second attempt: Let’s modify \(M \).
Undecidable Problems (2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Define \(M_1 \): on input \(x \),
1. if \(x \neq w \), reject.
2. if \(x = w \), run \(M \) on \(w \) and accept if \(M \) does.
Undecidable Problems (2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Define \(M_1 \): on input \(x \),

1. if \(x \neq w \), reject.
2. if \(x = w \), run \(M \) on \(w \) and accept if \(M \) does.

\(M_1 \) either

- accepts just \(w \), or
- accepts nothing.
Undecidable Problems (2)

Machine M_1: on input x,

1. if $x \neq w$, reject.
2. if $x = w$, run M on w and accept if M does.
Undecidable Problems (2)

Machine M_1: on input x,

1. if $x \neq w$, reject.
2. if $x = w$, run M on w and accept if M does.

Question: Can a TM construct M_1 from M?
Undecidable Problems (2)

Machine M_1: on input x,

1. if $x \neq w$, reject.
2. if $x = w$, run M on w and accept if M does.

Question: Can a TM construct M_1 from M?

Answer: Yes, because we need only hardwire w, and add a few extra states to perform the “$x = w$?” test.
Undecidable Problems (2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable.
Undecidable Problems (2)

$$E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \}$$

Theorem: E_{TM} is undecidable.

Define S as follows:
On input $\langle M, w \rangle$, where M is a TM and w a string,
Undecidable Problems (2)

\[E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem: \(E_{TM} \) is undecidable.

Define \(S \) as follows:

On input \(\langle M, w \rangle \), where \(M \) is a TM and \(w \) a string,

- Construct \(M_1 \) from \(M \) and \(w \).
- Run \(R \) on input \(\langle M_1 \rangle \),
- if \(R \) accepts, reject; if \(R \) rejects, accept.
Undecidable Problems (3)

Does a TM accept a regular language?

\[R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]
Undecidable Problems (3)

Does a TM accept a regular language?

\[R_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(R_{TM} \) is undecidable.
Undecidable Problems (3)

Does a TM accept a regular language?

\[R_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(R_{TM} \) is undecidable.

Skeleton of Proof:
- By contradiction.
- Assume \(R_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(R_{TM} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).
Undecidable Problems (3)

Does a TM accept a regular language?

\[R_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(R_{TM} \) is undecidable.

Skeleton of Proof:

- By contradiction.
- Assume \(R_{TM} \) is decidable.
- Let \(R \) be a TM that decides \(R_{TM} \).
- Use \(R \) to construct \(S \), a TM that decides \(A_{TM} \).

But how?
Undecidable Problems (3)

\[R_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Modify \(M \) so that the resulting TM accepts a regular language if and only if \(M \) accepts \(w \).
 Undecidable Problems (3)

\[R_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Modify \(M \) so that the resulting TM accepts a regular language if and only if \(M \) accepts \(w \).

Design \(M_2 \) so that

- if \(M \) does not accept \(w \), then \(M_2 \) accepts \(\{0^n1^n | n \geq 0\} \) (non-regular)
- if \(M \) accepts \(w \), then \(M_2 \) accepts \(\Sigma^* \) (regular).
Undecidable Problems (3)

From M and w, define M_2:

1. If x has the form 0^n1^n, accept it.
2. Otherwise, run M on input w and accept x if M accepts w.

Claim: If M does not accept w, then M_2 accepts \{$0^n1^n | n \geq 0$\}.

If M accepts w, then M_2 accepts Σ^\ast.

Undecidable Problems (3)

From M and w, define M_2:

On input x,

1. If x has the form 0^n1^n, accept it.
2. Otherwise, run M on input w and accept x if M accepts w.

Claim: If M does not accept w, then M_2 accepts $\{0^n1^n \mid n \geq 0\}$. If M accepts w, then M_2 accepts Σ^*.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.17
Undecidable Problems (3)

From M and w, define M_2:

On input x,

1. If x has the form 0^n1^n, accept it.
2. Otherwise, run M on input w and accept x if M accepts w.

Claim:

- If M does not accept w, then M_2 accepts $\{0^n1^n | n \geq 0\}$.
- If M accepts w, then M_2 accepts Σ^*.
Undecidable Problems (3)

\[R_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(R_{TM} \) is undecidable.
Undecidable Problems (3)

\[R_{\text{TM}} = \{ \langle M \rangle | M \text{ is a TM and } L(M) \text{ is regular} \} \]

Theorem: \(R_{\text{TM}} \) is undecidable.

Define \(S \):

On input \(\langle M, w \rangle \),

1. Construct \(M_2 \) from \(M \) and \(w \).
2. Run \(R \) on input \(\langle M_2 \rangle \).
3. If \(R \) accepts, accept; if \(R \) rejects, reject.
Undecidable Problems (4)

Are two TMs equivalent?

\[
\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}
\]

Theorem: \(\text{EQ}_{\text{TM}} \) is undecidable.
Undecidable Problems (4)

Are two TMs equivalent?

\[EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(EQ_{TM} \) is undecidable.

We are getting tired of reducing \(A_{TM} \) to everything.
Undecidable Problems (4)

Are two TMs equivalent?

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \text{EQ}_{\text{TM}} \text{ is undecidable.}

We are getting tired of reducing \(A_{\text{TM}} \) to everything.

Let’s try instead a reduction from \(E_{\text{TM}} \) to \(\text{EQ}_{\text{TM}} \).
Undecidable Problems (4)

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(\text{EQ}_{\text{TM}} \) is undecidable.

Idea:

- \(\text{E}_{\text{TM}} \) is the problem of testing whether a TM language is empty.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Undecidable Problems (4)

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \} \]

Theorem: \(\text{EQ}_{\text{TM}} \) is undecidable.

Idea:

- \(E_{\text{TM}} \) is the problem of testing whether a TM language is empty.
- \(\text{EQ}_{\text{TM}} \) is the problem of testing whether two TM languages are the same.
Undecidable Problems (4)

\[
\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}\]

Theorem: \(\text{EQ}_{\text{TM}} \) is undecidable.

Idea:

- \(E_{\text{TM}} \) is the problem of testing whether a TM language is empty.
- \(\text{EQ}_{\text{TM}} \) is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to \(E_{\text{TM}} \).
Undecidable Problems (4)

$$\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: EQ_{TM} is undecidable.

Idea:

- E_{TM} is the problem of testing whether a TM language is empty.
- EQ_{TM} is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to E_{TM}.
- So E_{TM} is a special case of EQ_{TM}.

The rest is easy.
Undecidable Problems (4)

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$$

Theorem: EQ_{TM} is undecidable.

Let M_{NO} be the TM: On input x, reject.

Let R decide EQ_{TM}.
Undecidable Problems (4)

\[\text{EQ}_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and} \]
\[L(M_1) = L(M_2) \} \]

Theorem: \(\text{EQ}_{\text{TM}} \) is undecidable.

Let \(M_{\text{NO}} \) be the TM: On input \(x \), reject.
Let \(R \) decide \(\text{EQ}_{\text{TM}} \).

Let \(S \) be: On input \(\langle M \rangle \):
1. Run \(R \) on input \(\langle M, M_{\text{NO}} \rangle \).
2. If \(R \) accepts, accept; if \(R \) rejects, reject.
Undecidable Problems (4)

EQ\textsubscript{TM} = \{⟨M\textsubscript{1}, M\textsubscript{2}⟩ | M\textsubscript{1}, M\textsubscript{2} are TMs and \(L(M\textsubscript{1}) = L(M\textsubscript{2})\)\}

Theorem: EQ\textsubscript{TM} is undecidable.

Let \(M\textsubscript{NO}\) be the TM: On input \(x\), reject.

Let \(R\) decide \(E\textsubscript{TM}\).

Let \(S\) be: On input \(⟨M⟩\):

1. Run \(R\) on input \(⟨M, M\textsubscript{NO}⟩\).
2. If \(R\) accepts, accept; if \(R\) rejects, reject.

If \(R\) decides \(E\textsubscript{TM}\), then \(S\) decides \(E\textsubscript{TM}\).
Bucket of Undecidable Problems

Same techniques prove undecidability of

Does a TM accept a **decidable** language?
Bucket of Undecidable Problems

Same techniques prove undecidability of

- Does a TM accept a **decidable** language?
- Does a TM accept a **enumerable** language?
Bucket of Undecidable Problems

Same techniques prove undecidability of

- Does a TM accept a **decidable** language?
- Does a TM accept a **enumerable** language?
- Does a TM accept a **context-free** language?
Bucket of Undecidable Problems

Same techniques prove undecidability of

- Does a TM accept a **decidable** language?
- Does a TM accept a **enumerable** language?
- Does a TM accept a **context-free** language?
- Does a TM accept a **finite** language?
Bucket of Undecidable Problems

Same techniques prove undecidability of

- Does a TM accept a **decidable** language?
- Does a TM accept a **enumerable** language?
- Does a TM accept a **context-free** language?
- Does a TM accept a **finite** language?
- Does a TM halt on **all inputs**?
Bucket of Undecidable Problems

Same techniques prove undecidability of

- Does a TM accept a **decidable** language?
- Does a TM accept a **enumerable** language?
- Does a TM accept a **context-free** language?
- Does a TM accept a **finite** language?
- Does a TM halt on all inputs?
- Is there an input string that causes a TM to traverse all its states?
Rice’s Theorem

By now, some of you may have become cynical and embittered.

Like, been there, done that, bought the T-shirt.
Rice’s Theorem

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.
- Looks like any non-trivial property of TMs is undecidable.
Rice’s Theorem

By now, some of you may have become cynical and embittered.

- Like, been there, done that, bought the T-shirt.
- Looks like any non-trivial property of TMs is undecidable.

That is correct.
Rice’s Theorem

Theorem: If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, M, $L(M)$ is in C.
Rice’s Theorem

Theorem: If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, M, $L(M)$ is in C.

Proof by reduction from H_{TM} (does M halt on input x?).
Rice’s Theorem

Theorem: If C is a proper non-empty subset of the set of enumerable languages, then it is undecidable whether for a given TM, M, $L(M)$ is in C.

Proof by reduction from H_{TM} (does M halt on input x?).

- Assume R decides if $L(M) \in C$.
- Use R to implement S, which decides H_{TM}.

Further details of proof not given at the moment . . .
Reducibility

So far, we have seen many examples of reductions from one language to another, but the notion was neither defined nor treated formally.

Reductions play an important role in

- decidability theory
- complexity theory (to come)

Time to get formal.
Computable Functions

A TM computes a function

\[f : \Sigma^* \rightarrow \Sigma^* \]

if the TM
Computable Functions

A TM computes a function

\[f : \Sigma^* \rightarrow \Sigma^* \]

if the TM

starts with input \(w \), and
Computable Functions

A TM computes a function

\[f : \Sigma^* \longrightarrow \Sigma^* \]

if the TM

- starts with input \(w \), and
- halts with only \(f(w) \) on tape.
Computable Functions

Claim: All the usual arithmetic functions on integers are computable.
Computable Functions

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Exercise: Design a TM that on input $\langle m, n \rangle$, halts with $\langle m + n \rangle$ on tape.
Computable Functions

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Even **non-arithmetic** functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.
Computable Functions

Claim: All the usual arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision).

Even non-arithmetic functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.

Exercise: Design a TM that on input $\langle m, n \rangle$, halts with $\langle m + n \rangle$ on tape.
Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w:

- if $w = \langle M \rangle$ for some TM,
Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - $L(M') = L(M)$, but
Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - $L(M') = L(M)$, but
 - M' never tries to move off LHS of tape.
Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - $L(M') = L(M)$, but
 - M' never tries to move off LHS of tape.
- otherwise write ε and halt.
Computable Functions

A useful class of functions modifies TM descriptions. For example:

On input w:

- if $w = \langle M \rangle$ for some TM,
 - construct $\langle M' \rangle$, where
 - $L(M') = L(M)$, but
 - M' never tries to move off LHS of tape.
- otherwise write ε and halt.

Left as an exercise.
Mapping Reductions

Definition: Let A and B be two languages. We say that there is a **mapping reduction** from A to B, and denote

$$A \leq_m B$$
Mapping Reductions

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

$$A \leq_m B$$

if there is a computable function

$$f : \Sigma^* \rightarrow \Sigma^*$$

such that, for every w,
Mapping Reductions

Definition: Let A and B be two languages. We say that there is a mapping reduction from A to B, and denote

$$A \leq_m B$$

if there is a computable function

$$f : \Sigma^* \rightarrow \Sigma^*$$

such that, for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called the reduction from A to B.
Mapping Reductions

A mapping reduction converts questions about membership in A to membership in B.
A mapping reduction converts questions about membership in \(A \) to membership in \(B \)
Mapping Reductions

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.
Mapping Reductions

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let

- M be the decider for B, and
- f the reduction from A to B.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. – p.31
Mapping Reductions

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let

- M be the decider for B, and
- f the reduction from A to B.

Define N: On input w

1. compute $f(w)$
2. run M on input $f(w)$ and output whatever M outputs.
Mapping Reductions

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.
Mapping Reductions

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of languages other than A_{TM}.
Example: Halting

Recall that

\[\mathcal{A}_{\text{TM}} = \{ \langle M, w \rangle | \text{TM } M \text{ accepts input } w \} \]
\[\mathcal{H}_{\text{TM}} = \{ \langle M, w \rangle | \text{TM } M \text{ halts on input } w \} \]
Example: Halting

Recall that

\[A_{TM} = \{ \langle M, w \rangle | \text{TM } M \text{ accepts input } w \} \]
\[H_{TM} = \{ \langle M, w \rangle | \text{TM } M \text{ halts on input } w \} \]

Earlier we proved that

- \(H_{TM} \) is undecidable
- by (de facto) reduction from \(A_{TM} \).

Let’s reformulate this.
Example: Halting

Define a **computable function**, \(f \):

- input of form \(\langle M, w \rangle \)
Example: Halting

Define a **computable function**, f:

- input of form $\langle M, w \rangle$
- output of form $\langle M', w' \rangle$
Example: Halting

Define a **computable function**, \(f \):

- input of form \(\langle M, w \rangle \)
- output of form \(\langle M', w' \rangle \)
- where \(\langle M, w \rangle \in A_{TM} \iff \langle M', w' \rangle \in H_{TM} \).
Example: Halting

The following machine computes this function f.

$F = \text{on input } \langle M, w \rangle:$

Construct the following machine M'. M': on input x
Example: Halting

The following machine computes this function f.

$F = \text{on input } \langle M, w \rangle$:

- Construct the following machine M'.
 - M': on input x
 - run M on x
Example: Halting

The following machine computes this function \(f \).
\[
F = \text{on input } \langle M, w \rangle:
\]

- Construct the following machine \(M' \).

\(M' \): on input \(x \)
- run \(M \) on \(x \)
- If \(M \) accepts, \(\text{accept} \).
Example: Halting

The following machine computes this function f. $F =$ on input $\langle M, w \rangle$:

- Construct the following machine M'.

 M': on input x

 - run M on x

 - If M accepts, accept.

 - if M rejects, enter a loop.
Example: Halting

The following machine computes this function f. $F = \text{on input } \langle M, w \rangle$:

- Construct the following machine M'. M': on input x
 - run M on x
 - If M accepts, accept.
 - if M rejects, enter a loop.
- output $\langle M', w \rangle$
Enumerability

Theorem: If $A \leq_m B$ and B is enumerable, then A is enumerable.

Proof is same as before, using accepters instead of deciders.
Enumerability

Corollary: If $A \leq_m B$ and A is not enumerable, then B is not enumerable.
TM Equality

Theorem: Both EQ_TM and its complement, $\overline{\text{EQ}_\text{TM}}$, are not enumerable. Stated differently, EQ_TM is neither enumerable nor co-enumerable.
TM Equality

Theorem: Both EQ_{TM} and its complement, $\overline{\text{EQ}_{\text{TM}}}$, are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

We show that A_{TM} is reducible to EQ_{TM}. The same function is also a mapping reduction from A_{TM} to $\overline{\text{EQ}_{\text{TM}}}$, and thus $\overline{\text{EQ}_{\text{TM}}}$ is not enumerable.
TM Equality

Theorem: Both EQ_{TM} and its complement, $\overline{\text{EQ}_{\text{TM}}}$, are not enumerable. Stated differently, EQ_{TM} is neither enumerable nor co-enumerable.

- We show that A_{TM} is reducible to EQ_{TM}. The *same function* is also a mapping reduction from A_{TM} to $\overline{\text{EQ}_{\text{TM}}}$, and thus $\overline{\text{EQ}_{\text{TM}}}$ is *not* enumerable.

- We then show that A_{TM} is reducible to $\overline{\text{EQ}_{\text{TM}}}$. The *new function* is also a mapping reduction from A_{TM} to EQ_{TM}, and thus EQ_{TM} is *not* enumerable.
TM Equality

Claim: \(A_{TM} \) is reducible to \(EQ_{TM} \).

\(f : A_{TM} \rightarrow EQ_{TM} \) works as follows:

\(F: \) On input \(\langle M, w \rangle \)

- Construct machine \(M_1 \): on any input, reject.
TM Equality

Claim: A_{TM} is reducible to EQ_{TM}.

$f : A_{TM} \longrightarrow EQ_{TM}$ works as follows:

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, reject.
- Construct machine M_2: on input x, run M on w. If it accepts, accept.
TM Equality

Claim: A_{TM} is reducible to $\overline{EQ_{TM}}$.

$f : A_{TM} \rightarrow \overline{EQ_{TM}}$ works as follows:

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, reject.
- Construct machine M_2: on input x, run M on w. If it accepts, accept.
- Output $\langle M_1, M_2 \rangle$.
TM Equality

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, reject.
- Construct machine M_2: on any input x, run M on w.
 If it accepts, accept x.
- Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts nothing
TM Equality

\[F: \text{On input } \langle M, w \rangle \]

- Construct machine \(M_1 \): on any input, reject.
- Construct machine \(M_2 \): on any input \(x \), run \(M \) on \(w \).

 If it accepts, accept \(x \).

- Output \(\langle M_1, M_2 \rangle \).

Note

- \(M_1 \) accepts nothing
- if \(M \) accepts \(w \) then \(M_2 \) accepts everything, and otherwise nothing.
TM Equality

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, reject.
- Construct machine M_2: on any input x, run M on w.

 If it accepts, accept x.

- Output $\langle M_1, M_2 \rangle$.

Note

- M_1 accepts nothing
- if M accepts w then M_2 accepts everything, and otherwise nothing.

- so $\langle M, w \rangle \in A_{TM} \iff \langle M_1, M_2 \rangle \in \overline{EQ_{TM}}$
TM Equality

Claim: A_{TM} is reducible to EQ_{TM}.

$f : A_{TM} \longrightarrow EQ_{TM}$ works as follows:

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, *accept*.
TM Equality

Claim: A_{TM} is reducible to EQ_{TM}.

$f : A_{TM} \longrightarrow EQ_{TM}$ works as follows:

F: On input $\langle M, w \rangle$

 - Construct machine M_1: on any input, accept.
 - Construct machine M_2: on any input x, run M on w.

 If it accepts, accept.
TM Equality

Claim: A_{TM} is reducible to EQ_{TM}.

$f : A_{TM} \rightarrow EQ_{TM}$ works as follows:

F: On input $\langle M, w \rangle$

- Construct machine M_1: on any input, *accept*.
- Construct machine M_2: on any input x, run M on w. If it accepts, *accept*.
- Output $\langle M_1, M_2 \rangle$.
TM Equality

\(F \): On input \(\langle M, w \rangle \)

- Construct machine \(M_1 \): on any input, accept.
- Construct machine \(M_2 \): on any input \(x \), run \(M \) on \(w \).

 If it accepts, accept.

- Output \(\langle M_1, M_2 \rangle \).

Note

- \(M_1 \) accepts everything
TM Equality

\(F \): On input \(\langle M, w \rangle \)
- Construct machine \(M_1 \): on any input, accept.
- Construct machine \(M_2 \): on any input \(x \), run \(M \) on \(w \).
 - If it accepts, accept.
- Output \(\langle M_1, M_2 \rangle \).

Note
- \(M_1 \) accepts everything
- if \(M \) accepts \(w \), then \(M_2 \) accepts everything, and otherwise nothing.
TM Equality

F: On input \(\langle M, w \rangle \)

- Construct machine \(M_1 \): on any input, accept.
- Construct machine \(M_2 \): on any input \(x \), run \(M \) on \(w \).

 If it accepts, accept.

- Output \(\langle M_1, M_2 \rangle \).

Note

- \(M_1 \) accepts everything
- If \(M \) accepts \(w \), then \(M_2 \) accepts everything, and otherwise nothing.

\[\langle M, w \rangle \in A_{TM} \iff \langle M_1, M_2 \rangle \in EQ_{TM}. \]
Recursive Inseparability

Two disjoint languages L_1 and L_2 are recursively inseparable if there is no decidable language D such that

$$L_1 \cap D = \emptyset,$$

and
Recursive Inseparability

Two disjoint languages L_1 and L_2 are recursively inseparable if there is no decidable language D such that

1. $L_1 \cap D = \emptyset$, and
2. $L_2 \subset D$.
Recursive Inseparability

Two disjoint languages L_1 and L_2 are recursively inseparable if there is no decidable language D such that

- $L_1 \cap D = \emptyset$, and
- $L_2 \subset D$.

Example of recursively separable languages:
Recursive Inseparability

A_{TM} and \overline{A}_{TM} are a trivial example.
Recursive Inseparability

A_{TM} and \overline{A}_{TM} are a trivial example.

Why?
Recursive Inseparability

A_{TM} and \overline{A}_{TM} are a trivial example.

Why?

Are there non-trivial examples?
Recursive Inseparability

Define

\[A_{\text{yes}} = \{ \langle M \rangle | M \text{ is a TM that accepts } \langle M \rangle \} \]

and

\[A_{\text{no}} = \{ \langle M \rangle | M \text{ is a TM that halts and rejects } \langle M \rangle \} \]

Theorem: \(A_{\text{yes}}\) and \(A_{\text{no}}\) are recursively inseparable.
Proof by Contradiction

Let D be a decidable language that separates them.
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.

Let M_D be the TM that decides D.

What does M_D do with input $\langle M_D \rangle$?

- It must halt.
 - If M_D accepts $\langle M_D \rangle$: $\langle M_D \rangle \in A_{\text{yes}} \land \langle M_D \rangle \notin D$ so M_D rejects $\langle M_D \rangle$.
 - If M_D rejects $\langle M_D \rangle$: $\langle M_D \rangle \in A_{\text{no}} \land \langle M_D \rangle \in D$ so M_D accepts $\langle M_D \rangle$.
Proof by Contradiction

Let D be a decidable language that separates them. Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$. Let M_D be the TM that decides D.

\begin{itemize}
 \item If M_D accepts $\langle M_D \rangle$: $\langle M_D \rangle \in A_{\text{yes}} \land \langle M_D \rangle \notin D$ so M_D rejects $\langle M_D \rangle$.
 \item If M_D rejects $\langle M_D \rangle$: $\langle M_D \rangle \in A_{\text{no}} \land \langle M_D \rangle \in D$ so M_D accepts $\langle M_D \rangle$.
\end{itemize}

♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?

[Proof details and logic follow here]
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.
- Let M_D be the TM that decides D.
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{yes}$
Proof by Contradiction

Let D be a decidable language that separates them.
Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.
Let M_D be the TM that decides D.
What does M_D do with input $\langle M_D \rangle$?
It must halt. (why?)
If M_D accepts $\langle M_D \rangle$:
- $\langle M_D \rangle \in A_{\text{yes}}$
- $\langle M_D \rangle \notin D$
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.
- Let M_D be the TM that decides D.
- What does M_D do with input $\langle M_D \rangle$?
 - It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\langle M_D \rangle \notin D$
 - so M_D rejects $\langle M_D \rangle$.
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.
- Let M_D be the TM that decides D
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{\text{yes}}$
 - $\langle M_D \rangle \not\in D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:
Proof by Contradiction

Let D be a decidable language that separates them.

Assume $A_{\text{no}} \subset D$ and $D \cap A_{\text{yes}} = \emptyset$.

Let M_D be the TM that decides D

What does M_D do with input $\langle M_D \rangle$?

It must halt. (why?)

If M_D accepts $\langle M_D \rangle$:

$\langle M_D \rangle \in A_{\text{yes}}$

$\langle M_D \rangle \notin D$

so M_D rejects $\langle M_D \rangle$.

If M_D rejects $\langle M_D \rangle$:

$\langle M_D \rangle \in A_{\text{no}}$
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D.
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{yes}$
 - $\langle M_D \rangle \notin D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{no}$
 - $\langle M_D \rangle \in D$
Proof by Contradiction

- Let D be a decidable language that separates them.
- Assume $A_{no} \subset D$ and $D \cap A_{yes} = \emptyset$.
- Let M_D be the TM that decides D.
- What does M_D do with input $\langle M_D \rangle$?
- It must halt. (why?)
- If M_D accepts $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{yes}$
 - $\langle M_D \rangle \notin D$
 - so M_D rejects $\langle M_D \rangle$.
- If M_D rejects $\langle M_D \rangle$:
 - $\langle M_D \rangle \in A_{no}$
 - $\langle M_D \rangle \in D$
 - so M_D accepts $\langle M_D \rangle$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Recursive Inseparability

Define

\[B_{yes} = \{ \langle M \rangle | M \text{ is a TM that accepts } \varepsilon \} \]

and

\[B_{no} = \{ \langle M \rangle | M \text{ is a TM that halts and rejects } \varepsilon \} \]

Theorem: \(B_{yes} \) and \(B_{no} \) are recursively inseparable.

Proof by reduction and contradiction.
Recursive Inseparability

Theorem: B_{yes} and B_{no} are recursively inseparable.
By reduction and contradiction.

Assume B_{yes} and B_{no} can be separated by E, decided by TM M_E.
Recursive Inseparability

Theorem: \(B_{yes} \) and \(B_{no} \) are recursively inseparable.

By reduction and contradiction.

- Assume \(B_{yes} \) and \(B_{no} \) can be separated by \(E \), decided by TM \(M_E \).

- For TM \(M \), define \(M' \): On any input,
Recursive Inseparability

Theorem: B_{yes} and B_{no} are recursively inseparable.

By reduction and contradiction.

- Assume B_{yes} and B_{no} can be separated by E, decided by TM M_E.
- For TM M, define M': On any input,
 1. run M on input $\langle M \rangle$.
Recursive Inseparability

Theorem: \(B_{\text{yes}} \) and \(B_{\text{no}} \) are recursively inseparable.

By reduction and contradiction.

- Assume \(B_{\text{yes}} \) and \(B_{\text{no}} \) can be separated by \(E \), decided by TM \(M_E \).
- For TM \(M \), define \(M' \): On any input,
 1. run \(M \) on input \(\langle M \rangle \).
 2. if \(M \) accepts, accept; if \(M \) rejects, reject;
Proof (Concluded)

- Define N: On input $\langle M \rangle$,
Proof (Concluded)

Define N: On input $\langle M \rangle$,
1. construct description of M'.
Proof (Concluded)

Define N: On input $\langle M \rangle$,
1. construct description of M'.
2. run M_E on $\langle M' \rangle$.
Proof (Concluded)

Define N: On input $\langle M \rangle$,
1. construct description of M'.
2. run M_E on $\langle M' \rangle$.
3. if M_E accepts, accept; if M_E rejects, reject;

Claim: N is a decider. (why?)

So N decides a language D separates A_{yes} and A_{no}, contradiction.

♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Proof (Concluded)

- Define N: On input $\langle M \rangle$,
 1. construct description of M'.
 2. run M_E on $\langle M' \rangle$.
 3. if M_E accepts, accept; if M_E rejects, reject;

- Claim:
Proof (Concluded)

Define N: On input $\langle M \rangle$,
1. construct description of M'.
2. run M_E on $\langle M' \rangle$.
3. if M_E accepts, accept; if M_E rejects, reject;

Claim:
N is a decider. (why?)
Proof (Concluded)

Define N: On input $\langle M \rangle$,
1. construct description of M'.
2. run M_E on $\langle M' \rangle$.
3. if M_E accepts, accept; if M_E rejects, reject;

Claim:
- N is a decider. (why?)
- So N decides a language D.
Proof (Concluded)

- Define N: On input $\langle M \rangle$,
 1. construct description of M'.
 2. run M_E on $\langle M' \rangle$.
 3. if M_E accepts, accept; if M_E rejects, reject;

- Claim:
 - N is a decider. (why?)
 - So N decides a language D.
 - D separates A_{yes} and A_{no}, contradiction. ♣