A Finite Automaton

011011001

read unread
A Pushdown Automaton

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
A Pushdown Automaton

- can push symbols onto the stack
A Pushdown Automaton

- can **push** symbols onto the stack
- can **pop** them (read them back) later
A Pushdown Automaton

- can **push** symbols onto the stack
- can **pop** them (read them back) later
- stack can grow **unboundedly**
A Pushdown Automaton

- can push symbols onto the stack
- can pop them (read them back) later
- stack can grow unboundedly
- yet at any moment stack has finite size.
An Example

Recall that the language $\{0^n1^n \mid n \geq 0\}$ is not regular. Consider the following PDA:

- read input symbols
An Example

Recall that the language \(\{0^n1^n | n \geq 0\} \) is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
An Example

Recall that the language $\{0^n1^n \mid n \geq 0\}$ is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
An Example

Recall that the language \(\{0^n1^n \mid n \geq 0\} \) is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
- accept if stack is empty when last symbol read
An Example

Recall that the language $\{0^n1^n \mid n \geq 0\}$ is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
- accept if stack is empty when last symbol read
- reject if
An Example

Recall that the language \(\{0^n1^n \mid n \geq 0\} \) is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
- accept if stack is empty when last symbol read
- reject if stack is non-empty when last symbol read
An Example

Recall that the language \(\{0^n1^n \mid n \geq 0\} \) is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
- accept if stack is empty when last symbol read
- reject if
 - stack is non-empty when last symbol read
 - stack is empty but input symbol(s) still exist,
An Example

Recall that the language \(\{0^n1^n \mid n \geq 0\} \) is not regular. Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
- accept if stack is empty when last symbol read
- reject if
 - stack is non-empty when last symbol read
 - stack is empty but input symbol(s) still exist,
 - 0 is read after 1.
On PDA vs. Finite Automata

Nondeterminism
On PDA vs. Finite Automata

Nondeterminism

PDA may be deterministic or non-deterministic.
On PDA vs. Finite Automata

Nondeterminism

- PDA may be deterministic or non-deterministic.
- Unlike finite automata, non-determinism adds power.
On PDA vs. Finite Automata

Nondeterminism

- PDA may be deterministic or non-deterministic.
- Unlike finite automata, non-determinism adds power.
- There are some languages accepted only by non-deterministic PDAs.
On PDA vs. Finite Automata

Nondeterminism

- PDA may be deterministic or non-deterministic.
- Unlike finite automata, non-determinism adds power.
- There are some languages accepted only by non-deterministic PDAs.

Transition function δ looks different than DFA or NFA cases, reflecting stack functionality.
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the **domain** of the transition function δ is
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the domain of the transition function δ is current state: Q

$\delta: Q \times \Sigma \epsilon \times \Gamma \epsilon \rightarrow P(Q \times \Gamma \epsilon)$
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the **domain** of the transition function δ is
 - current state: Q
 - next input symbol, if any: $\Sigma_\varepsilon (=\Sigma \cup \{\varepsilon\})$
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the domain of the transition function δ is
 - current state: Q
 - next input symbol, if any: Σ_ε (=$\Sigma \cup \{\varepsilon\}$)
 - stack symbol popped, if any: Γ_ε
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the domain of the transition function δ is
 - current state: Q
 - next input symbol, if any: Σ_ε ($=\Sigma \cup \{\varepsilon\}$)
 - stack symbol popped, if any: Γ_ε

- and its range is
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the domain of the transition function δ is
 - current state: Q
 - next input symbol, if any: Σ_ε ($=\Sigma \cup \{\varepsilon\}$)
 - stack symbol popped, if any: Γ_ε
- and its range is
 - new state: Q
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the **domain** of the transition function δ is
 - current state: Q
 - next input symbol, if any: Σ_ε ($=\Sigma \cup \{\varepsilon\}$)
 - stack symbol popped, if any: Γ_ε

- and its **range** is
 - new state: Q
 - stack symbol pushed, if any: Γ_ε
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the domain of the transition function δ is
 - current state: Q
 - next input symbol, if any: Σ_ε ($=\Sigma \cup \{\varepsilon\}$)
 - stack symbol popped, if any: Γ_ε

- and its range is
 - new state: Q
 - stack symbol pushed, if any: Γ_ε
 - non-determinism: $\mathcal{P}(\cdots)$
The Transition Function

Denote input alphabet by Σ and stack alphabet by Γ.

- the **domain** of the transition function δ is
 - current state: Q
 - next input symbol, if any: Σ_ε ($=\Sigma \cup \{\varepsilon\}$)
 - stack symbol popped, if any: Γ_ε

- and its **range** is
 - new state: Q
 - stack symbol pushed, if any: Γ_ε
 - non-determinism: $\mathcal{P}(\cdots)$

- $\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow \mathcal{P}(Q \times \Gamma_\varepsilon)$

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Formal Definitions

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set called the states,
Formal Definitions

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- Σ is a finite set called the input alphabet,
Formal Definitions

A pushdown automaton (PDA) is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\), where

- \(Q\) is a finite set called the states,
- \(\Sigma\) is a finite set called the input alphabet,
- \(\Gamma\) is a finite set called the stack alphabet,
Formal Definitions

A pushdown automaton (PDA) is a 6-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\), where

- \(Q\) is a finite set called the states,
- \(\Sigma\) is a finite set called the input alphabet,
- \(\Gamma\) is a finite set called the stack alphabet,
- \(\delta : Q \times \Sigma \varepsilon \times \Gamma \varepsilon \rightarrow \mathcal{P}(Q \times \Gamma \varepsilon)\) is the transition function,
Formal Definitions

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- Σ is a finite set called the input alphabet,
- Γ is a finite set called the stack alphabet,
- $\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow \mathcal{P}(Q \times \Gamma_\varepsilon)$ is the transition function,
- $q_0 \in Q$ is the start state, and
Formal Definitions

A pushdown automaton (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- Σ is a finite set called the input alphabet,
- Γ is a finite set called the stack alphabet,
- $\delta : Q \times \Sigma^\varepsilon \times \Gamma^\varepsilon \rightarrow \mathcal{P}(Q \times \Gamma^\varepsilon)$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states.
Conventions

Question: When is the stack empty?
Conventions

Question: When is the stack empty?

start by pushing $ \$ $ onto stack
Conventions

Question: When is the stack empty?

- start by pushing $\$ \$ onto stack
- when you see it again, stack is empty.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Conventions

- **Question**: When is the stack empty?
 - start by pushing $\$ $ onto stack
 - when you see it again, stack is empty.
- **Question**: When is input string exhausted?

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Conventions

- **Question**: When is the stack empty?
 - start by pushing $\$ $ onto stack
 - when you see it again, stack is empty.

- **Question**: When is input string exhausted?
 - doesn’t matter – PDA need not know this explicitly.
Conventions

- **Question**: When is the stack empty?
 - start by pushing $\$ $ onto stack
 - when you see it again, stack is empty.

- **Question**: When is input string exhausted?
 - doesn’t matter – PDA need not know this explicitly
 - accepting state accepts only if inputs exhausted!
Notation

Transition $a, b \rightarrow c$ means

Notation

- Transition $a, b \rightarrow c$ means read a from input
Notation

- Transition $a, b \rightarrow c$ means
 - read a from input
 - pop b from stack

Meaning of ε transitions:
- if $a = \varepsilon$, don't read inputs
- if $b = \varepsilon$, don't pop any symbols
- if $c = \varepsilon$, don't push any symbols
Notation

Transition \(a, b \rightarrow c \) means

- read \(a \) from input
- pop \(b \) from stack
- push \(c \) onto stack
Notation

- Transition $a, b \rightarrow c$ means
 - read a from input
 - pop b from stack
 - push c onto stack

- Meaning of ε transitions:
Notation

- Transition $a, b \rightarrow c$ means
 - read a from input
 - pop b from stack
 - push c onto stack

- Meaning of ε transitions:
 - if $a = \varepsilon$, don’t read inputs
Notation

- Transition $a, b \rightarrow c$ means
 - read a from input
 - pop b from stack
 - push c onto stack

- Meaning of ε transitions:
 - if $a = \varepsilon$, don’t read inputs
 - if $b = \varepsilon$, don’t pop any symbols
Notation

- Transition $a, b \rightarrow c$ means
 - read a from input
 - pop b from stack
 - push c onto stack

- Meaning of ε transitions:
 - if $a = \varepsilon$, don’t read inputs
 - if $b = \varepsilon$, don’t pop any symbols
 - if $c = \varepsilon$, don’t push any symbols
What does this PDA accept?

\[\{0^n1^n | n \geq 1\} \]
Example

What does this PDA accept?

\{0^n | n \geq 1\}.
Example

What does this PDA accept?

\[\{0^n1^n | n \geq 1\} \].
Another Example

A PDA that accepts
\[\{ a^i b^j c^k \mid i, j, k > 0 \text{ and } i = j \text{ or } i = k \} \]

Informally:

- read and push a’s
Another Example

A PDA that accepts

$$\{ a^i b^j c^k | i, j, k > 0 \text{ and } i = j \text{ or } i = k \}$$

Informally:

- read and push a’s
- either pop and match with b’s

Note: non-determinism essential here!

Unlike finite automata, non-determinism does add power.
Another Example

A PDA that accepts

\[\{ a^i b^j c^k | i, j, k > 0 \text{ and } i = j \text{ or } i = k \} \]

Informally:

- read and push \(a \)'s
- either pop and match with \(b \)'s
- or else pop and match with \(c \)'s
Another Example

A PDA that accepts
\[\{ a^i b^j c^k | i, j, k > 0 \text{ and } i = j \text{ or } i = k \} \]

Informally:
- read and push \(a \)'s
- either pop and match with \(b \)'s
- or else pop and match with \(c \)'s
- non-deterministic choice!

Note: non-determinism essential here!

Unlike finite automata, non-determinism does add power.
Another Example

A PDA that accepts
\(\{ a^i b^j c^k \mid i, j, k > 0 \text{ and } i = j \text{ or } i = k \}\)

Informally:
- read and push \(a\)’s
- either pop and match with \(b\)’s
- or else pop and match with \(c\)’s
- non-deterministic choice!

Note: non-determinism essential here!

Unlike finite automata, non-determinism does add power
Another Example

This PDA accepts

\[\{ a^i b^j c^k \mid i, j, k > 0 \text{ and } i = j \text{ or } i = k \} \]
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

“Madam I’m Adam”
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

- “Madam I’m Adam”
- “Dennis and Edna sinned”
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

- “Madam I’m Adam”
- “Dennis and Edna sinned”
- “Red rum, sir, is murder”
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

- “Madam I’m Adam”
- “Dennis and Edna sinned”
- “Red rum, sir, is murder”
- “Able was I ere I saw Elba”
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

- “Madam I’m Adam”
- “Dennis and Edna sinned”
- “Red rum, sir, is murder”
- “Able was I ere I saw Elba”
- “In girum imus nocte et consumimur igni”
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

- “Madam I’m Adam”
- “Dennis and Edna sinned”
- “Red rum, sir, is murder”
- “Able was I ere I saw Elba”
- “In girum imus nocte et consumimur igni”
- “νιψον ανωμηματα μη μοναν οψιν”

Palindromes also appear in nature. For example as DNA sites (strings over \{A,C,T,G\}) being cut by restriction enzymes.
Yet Another Example

A palindrome is a string w satisfying $w = w^R$.

- “Madam I’m Adam”
- “Dennis and Edna sinned”
- “Red rum, sir, is murder”
- “Able was I ere I saw Elba”
- “In girum imus nocte et consumimur igni”
- “νιψον ανομηματα μη μοναν οψιν”

Palindromes also appear in nature. For example as DNA sites (strings over $\{A, C, T, G\}$) being cut by restriction enzymes.
Yet Another Example

This PDA accepts binary palindromes of *even length*.
Equivalence Theorem

Theorem: A language is context free if and only if some pushdown automata accepts it.
Equivalence Theorem

Theorem: A language is context free if and only if some pushdown automata accepts it.

This time, the proofs of both the “if” part and the “only if” part are interesting.
If Part

Theorem: If a language is context free, then some pushdown automaton accepts it.

Let A be a context-free language.
If Part

Theorem: If a language is context free, then some pushdown automaton accepts it.

- Let A be a context-free language.
- By definition, A has a context-free grammar G generating it.
If Part

Theorem: If a language is context free, then some pushdown automaton accepts it.

- Let A be a context-free language.
- By definition, A has a context-free grammar G generating it.
- On input w, the PDA P should figure out if there is a derivation of w using G.
If Part

Theorem: If a language is context free, then some pushdown automaton accepts it.

- Let \(A \) be a context-free language.
- By definition, \(A \) has a context-free grammar \(G \) generating it.
- On input \(w \), the PDA \(P \) should figure out if there is a derivation of \(w \) using \(G \).

Question: How does \(P \) figure out which substitution to make?
If Part

Theorem: If a language is context free, then some pushdown automaton accepts it.

- Let A be a context-free language.
- By definition, A has a context-free grammar G generating it.
- On input w, the PDA P should figure out if there is a derivation of w using G.

Question: How does P figure out which substitution to make?

Answer: It guesses.
CFL Implies PDA

Informally:

- P pushes start variable S on stack
CFL Implies PDA

Informally:

- P pushes start variable S on stack
- keeps making substitutions, storing intermediate strings
CFL Implies PDA

Informally:

- P pushes start variable S on stack
- keeps making substitutions, storing intermediate strings
- when only terminals remain . . .
CFL Implies PDA

Informally:
- P pushes start variable S on stack
- keeps making substitutions, storing \textbf{intermediate strings}
- when only terminals remain . . .
- tests whether derived string equals input
CFL Implies PDA

Where do we keep the intermediate string?

- Can’t put it all on the stack
CFL Implies PDA

Where do we keep the intermediate string?

- Can’t put it all on the stack
- Keep on stack only symbols after first variable
CFL Implies PDA

Where do we keep the intermediate string?

- Can’t put it all on the stack
- Keep on stack only symbols after first variable
- Terminal symbols before first variable matched immediately to input string symbols.
CFL Implies PDA

Where do we keep the intermediate string?

- Can’t put it all on the stack
- Keep on stack only symbols after first variable
- Terminal symbols before first variable matched immediately to input string symbols.

intermediate string: 01A1A0

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
CFL Implies PDA

Informal description:

- push S on stack
CFL Implies PDA

Informal description:

- push S on stack
- if top of stack is a variable A, non-deterministically select rule and substitute.
CFL Implies PDA

Informal description:

- push S on stack
- if top of stack is a variable A, non-deterministically select rule and substitute.
- if top of stack is terminal a read next input and compare. If they differ, reject on this branch of the nondeterminism.
CFL Implies PDA

Informal description:

- push S on stack
- if top of stack is a variable A, non-deterministically select rule and substitute.
- if top of stack is terminal a read next input and compare. If they differ, reject on this branch of the nondeterminism.
- if top of stack is $\$, enter accept state (here we accept only if input has all been read, as accept state will have no exits labeled with input symbols!).

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
CFL Implies PDA

Need shorthand to push entire string onto stack (in this example the pushed string is $w = xyz$).

$$(r, w) \in \delta(q, a, s)$$

Easy to do by introducing intermediate states.
CFL Implies PDA

States of P are

- start state, q_s
CFL Implies PDA

States of P are

- start state, q_s
- accept state, q_a
CFL Implies PDA

States of P are

- start state, q_s
- accept state, q_a
- loop state, q_ℓ
CFL Implies PDA

States of P are

- start state, q_s
- accept state, q_a
- loop state, q_ℓ
- E states, shorthand for pushing entire strings
Transition Function

- Initialize stack – \(\delta(q_s, \varepsilon, \varepsilon) = \{q_\ell, S\$\} \)
Transition Function

- Initialize stack – \(\delta(q_s, \varepsilon, \varepsilon) = \{q_\ell, S\$\} \)
- Top of stack is variable –
 \[\delta(q_\ell, \varepsilon, A) = \{(q_\ell, w) | \text{where } A \rightarrow w \text{ is a rule } \} \]
Transition Function

- Initialize stack – $\delta(q_s, \varepsilon, \varepsilon) = \{q_\ell, S$\}
- Top of stack is variable – $\delta(q_\ell, \varepsilon, A) = \{(q_\ell, w)| \text{ where } A \rightarrow w \text{ is a rule } \}$
- Top of stack is terminal – $\delta(q_\ell, a, a) = \{(q_\ell, \varepsilon)\}$
Transition Function

- Initialize stack – \(\delta(q_s, \varepsilon, \varepsilon) = \{q_\ell, S$\} \)
- Top of stack is variable – \(\delta(q_\ell, \varepsilon, A) = \{(q_\ell, w) \mid \text{where } A \rightarrow w \text{ is a rule } \} \)
- Top of stack is terminal – \(\delta(q_\ell, a, a) = \{(q_\ell, \varepsilon)\} \)
- End of Stack – \(\delta(q_\ell, \varepsilon, \$) = \{(q_a, \varepsilon)\} \)
Transition Function

$q_s \xrightarrow{\varepsilon, \varepsilon} S$

$q_l \xrightarrow{\varepsilon, A, w} \xrightarrow{a, a} \varepsilon

q_a \xrightarrow{\varepsilon, \$, \$} \varepsilon

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Example

\[S \rightarrow aTb | b \]
\[T \rightarrow Ta | \varepsilon \]

Initialization:

![Diagram](attachment:image)
Example

\[S \rightarrow aTb|b \]
\[T \rightarrow Ta|\varepsilon \]

Rules for \(S \)

\[\varepsilon,\varepsilon \rightarrow S \$
\[\varepsilon,\varepsilon \rightarrow S \$
\[\varepsilon,\varepsilon \rightarrow T \]
\[\varepsilon,\varepsilon \rightarrow a \]
\[\varepsilon,\varepsilon \rightarrow b \]

\(q_s \)

\(q_l \)

\(q_a \)
Example

\[S \rightarrow aTb | b \]
\[T \rightarrow Ta | \varepsilon \]

Rules for \(T \)
Example

\[S \rightarrow aTb | b \]
\[T \rightarrow Ta | \varepsilon \]

Rules for terminals

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Example

$$S \rightarrow aTb|b$$
$$T \rightarrow Ta|\epsilon$$

Termination: