Remarkable Fact (that we want to prove)

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.
Remarkable Fact (that we want to prove)

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.

\implies construct an NFA accepting R.
Remarkable Fact (that we want to prove)

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.

\implies construct an NFA accepting R.

\impliedby Given a regular language, L, construct an equivalent regular expression.
(⇒⇒) NFA Accepting Reg Expression, R

1. $R = a$, for some $a \in \Sigma$
(\iff\iff) NFA Accepting Reg Expression, R

1. $R = a$, for some $a \in \Sigma$

2. $R = \varepsilon$
NFA Accepting Reg Expression, R

1. $R = a$, for some $a \in \Sigma$

2. $R = \varepsilon$

3. $R = \emptyset$
NFA Accepting Reg Expression, R

$R = (R_1 \cup R_2)$

$R = (R_1 \circ R_2)$

$R = (R_1)^*$
Example

\[a \]

\[b \]

\[ab \]

\[ab \cup a \]
(⇐⇒) Regular Expression from an NFA

We now define generalized non-deterministic finite automata (GNFA).
(⇐⇒) Regular Expression from an NFA

We now define generalized non-deterministic finite automata (GNFA).

An NFA:

- Each transition labeled with a symbol or ε,
- reads zero or one symbols,
- takes matching transition, if any.
(⇐⇒) Regular Expression from an NFA

We now define generalized non-deterministic finite automata (GNFA).

An NFA:

- Each transition labeled with a symbol or ε, reads zero or one symbols,
- takes matching transition, if any.

A GNFA:

- Each transition labeled with a regular expression, reads zero or more symbols,
- takes transition whose regular expression matches string, if any.
Regular Expression from an NFA

We now define generalized non-deterministic finite automata (GNFA).
An NFA:

- Each transition labeled with a symbol or ε, reads zero or one symbols, takes matching transition, if any.

A GNFA:

- Each transition labeled with a regular expression, reads zero or more symbols, takes transition whose regular expression matches string, if any.

GNFAs are natural generalization of NFAs.
GNFA Special Form

- Start state has outgoing arrows to every other state, but no incoming arrows.

Easy to transform any GNFA into special form.
GNFA Special Form

- Start state has outgoing arrows to every other state, but no incoming arrows.
- Unique accept state has incoming arrows from every other state, but no outgoing arrows.
GNFA Special Form

- Start state has outgoing arrows to every other state, but no incoming arrows.
- Unique accept state has incoming arrows from every other state, but no outgoing arrows.
- Except for start and accept states, arrows go from every state to every other state, including itself.
GNFA Special Form

- Start state has outgoing arrows to every other state, but no incoming arrows.
- Unique accept state has incoming arrows from every other state, but no outgoing arrows.
- Except for start and accept states, arrows go from every state to every other state, including itself.

Easy to transform any GNFA into special form.
GNFA Special Form

- Start state has outgoing arrows to every other state, but no incoming arrows.
- Unique accept state has incoming arrows from every other state, but no outgoing arrows.
- Except for start and accept states, arrows go from every state to every other state, including itself.

Easy to transform any GNFA into special form.

Really? How? …
Converting DFA to Regular Expression

\[\text{Strategy – sequence of equivalent transformations} \]

- given a \(k\)-state DFA
Converting DFA to Regular Expression

(⇐⇒)

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
Converting DFA to Regular Expression

(⇐⇒)

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
- while GNFA has more than 2 states, transform it into equivalent GNFA with one fewer state
Converting DFA to Regular Expression

\[(\iffalse)\]

Strategy – sequence of \textit{equivalent} transformations

\begin{itemize}
 \item given a \(k\)-state DFA
 \item transform into \((k + 2)\)-state GNFA
 \item while GNFA has \textit{more than 2 states}, transform it into equivalent GNFA with \textit{one fewer} state
 \item eventually reach 2-state GNFA (states are just \textit{start} and \textit{accept}).
\end{itemize}
Converting DFA to Regular Expression

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
- while GNFA has more than 2 states, transform it into equivalent GNFA with one fewer state
- eventually reach 2-state GNFA (states are just start and accept).
- label on single transition is the desired regular expression.
Converting Strategy \(\leftrightarrow \)

- 3-state DFA
 - 5-state GNFA
 - 4-state GNFA
 - 3-state GNFA
 - 2-state GNFA
 - regular expression

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Removing One State

We remove one state q_r, and then repair the machine by altering regular expression of other transitions.

\[R_1 \rightarrow R_2 \rightarrow R_3 \rightarrow R_4 \]

\[q_i \rightarrow q_j \]

\[R_1 R_2^* R_3 \cup R_4 \]
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}$$
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}$$

Arrows connect every state to every other state except:

- no arrow from q_a
- no arrow to q_s
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}$$

Arrows connect every state to every other state except:
- no arrow from q_a
- no arrow to q_s

If $\delta(q_i, q_j) = R$, then arrow from q_i to q_j has label R.
Formal Definition

A generalized deterministic finite automaton (GDFA) is $(Q, \Sigma, \delta, q_s, q_a)$, where

- Q is a finite set of states,
- Σ is the alphabet,
- $\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow R$ is the transition function.
- $q_s \in Q$ is the start state, and
- $q_a \in Q$ is the unique accept state.
A Formal Model of GNFA Computation

A GNFA accepts a string \(w \in \Sigma^* \) if there exists a parsing of \(w, w = w_1w_2 \cdots w_k \), where each \(w_i \in \Sigma^* \), and there exists a sequence of states \(q_0, \ldots, q_k \) such that

- \(q_0 = q_s \), the start state,
- \(q_k = q_a \), the accept state, and
- for each \(i, w_i \in L(R_i) \), where \(R_i = \delta(q_{i-1}, q_i) \).
 (namely \(w_i \) is an element of the language described by the regular expression \(R_i \).)
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.
- Let k be the number of states of G.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

1. Let k be the number of states of G.
2. If $k = 2$, return the regular expression labeling the only arrow.
3. If $k > 2$, select any q_r distinct from q_s and q_a.
4. Let $Q' = Q - \{q_r\}$.
5. For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$, $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
 - $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- Define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
 - $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- Define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$.
- Denote the resulting $k - 1$ states GNFA by G'.
The CONVERT Procedure

We define the recursive procedure $\text{CONVERT}()$:

Given GDFA G.

Let k be the number of states of G.
The CONVERT Procedure

We define the recursive procedure $\text{CONVERT}(\cdot)$:

Given GDFA G.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow of G.
The CONVERT Procedure

We define the recursive procedure $\text{CONVERT}()$:

Given GDFA G.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow of G.
- If $k > 2$, let G' be the $k - 1$ states GNFA produced by the algorithm.
The CONVERT Procedure

We define the recursive procedure \textsf{CONVERT}(\cdot):

Given GDFA \(G \).

- Let \(k \) be the number of states of \(G \).
- If \(k = 2 \), return the regular expression labeling the only arrow of \(G \).
- If \(k > 2 \), let \(G' \) be the \(k - 1 \) states GNFA produced by the algorithm.

Return \textsf{CONVERT}(G').
Correctness Proof of Construction

Theorem: G and $\text{CONVERT}(G)$ accept the same language.

Proof: By induction on number of states of G
Correctness Proof of Construction

Theorem: G and $\text{CONVERT}(G)$ accept the same language.

Proof: By induction on number of states of G

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by G.
Correctness Proof of Construction

Theorem: \(G \) and \(\text{CONVERT}(G) \) accept the same language.

Proof: By induction on number of states of \(G \)

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by \(G \).

Induction Step: Assume claim for \(k - 1 \) states, prove for \(k \).
Correctness Proof of Construction

Theorem: \(G \) and \(\text{CONVERT}(G) \) accept the same language.

Proof: By induction on number of states of \(G \)

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by \(G \).

Induction Step: Assume claim for \(k - 1 \) states, prove for \(k \).

Let \(G' \) be the \(k - 1 \) states GNFA produced from \(G \) by the algorithm.
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.
G and G' accept the same language

By the induction hypothesis, G' and CONVERT(G') accept the same language.

On input G, the procedure returns CONVERT(G').
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

On input G, the procedure returns $\text{CONVERT}(G')$.

So to complete the proof, it suffices to show that G and G' accept the same language.
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

On input G, the procedure returns $\text{CONVERT}(G')$.
So to complete the proof, it suffices to show that G and G' accept the same language.

Three steps:

1. If G accepts w, then so does G'.
2. If G' accepts w, then so does G.
3. Therefore G and G' are equivalent.
Step One

Claim: If \(G \) accepts \(w \), then so does \(G' \):

- If \(G \) accepts \(w \), then there exists a “path of states” \(q_s, q_1, q_2, \ldots, q_a \) traversed by \(G \) on \(w \), leading to the accept state \(q_a \).
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' accepts w because the new regular expression on each edge of G' contains the old regular expression in the “union part”.

Either way, the claim holds.
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' accepts w because the the new regular expression on each edge of G' contains the old regular expression in the “union part”.

- If q_r does appear, consider the regular expression corresponding to $\ldots q_i, q_r, \ldots, q_r, q_j \ldots$. The new regular expression $(R_{i,r})(R_{r,r})^*(R_{r,j})$ linking q_i and q_j encompasses any such string.
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' accepts w because the new regular expression on each edge of G' contains the old regular expression in the “union part”.

- If q_r does appear, consider the regular expression corresponding to $q_i, q_r, \ldots, q_r, q_j, \ldots$. The new regular expression $(R_{i,r})(R_{r,r})^*(R_{r,j})$ linking q_i and q_j encompasses any such string.

Either way, the claim holds.
Steps Two and Three

Claim: If G' accepts w, then so does G.

Proof: Each transition from q_i to q_j in G' corresponds to a transition in G, either directly or through q_r. Thus if G' accepts w, then so does G.

This completes the proof of the claim that $L(G) = L(G')$.
Steps Two and Three

Claim: If G' accepts w, then so does G.

Proof: Each transition from q_i to q_j in G' corresponds to a transition in G, either directly or through q_r. Thus if G' accepts w, then so does G.

- This completes the proof of the claim that $L(G) = L(G')$.
- Combined with the induction hypothesis, this shows that G and the regular expression $\text{CONVERT}(G')$ accept the same language.
Steps Two and Three

Claim: If G' accepts w, then so does G.

Proof: Each transition from q_i to q_j in G' corresponds to a transition in G, either directly or through q_r. Thus if G' accepts w, then so does G.

- This completes the proof of the claim that $L(G) = L(G')$.
- Combined with the induction hypothesis, this shows that G and the regular expression $\text{CONVERT}(G')$ accept the same language.
- This, in turn, proves our remarkable claim: A language, L, is described by a regular expression, R, if and only if L is regular.
Negative Results

We have made a lot of progress understanding what finite automata can do. But what can’t they do?
Negative Results

We have made a lot of progress understanding what finite automata can do. But what can’t they do? Is there a DFA that accepts

- $B = \{0^n1^n | n \geq 0\}$
- $C = \{w | w$ has an equal number of 0’s and 1’s$\}$
- $D = \{w | w$ has an equal number of occurrences of 01 and 10 substrings$\}$

Consider B:

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same.
Negative Results

Is there a DFA that accepts

- \(B = \{0^n1^n | n \geq 0\} \)
- \(C = \{w | w \text{ has an equal number of 0's and 1's}\} \)
- \(D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \): DFA must "remember" how many 0's it has seen impossible with finite state.

The others are exactly the same...

Question: Is this a proof?

Answer: No, \(D \) is regular! (see problem set 1)
Negative Results

Is there a DFA that accepts

$B = \{0^n1^n | n \geq 0\}$

$C = \{w | w \text{ has an equal number of 0's and 1's}\}$

$D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\}$

Consider B:

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: Is this a proof?

Answer: No, D is regular! (see problem set 1)
Negative Results

Is there a DFA that accepts

- $B = \{0^n1^n|n \geq 0\}$
- $C = \{w|w \text{ has an equal number of 0’s and 1’s}\}$
- $D = \{w|w \text{ has an equal number of occurrences of 01 and 10 substrings}\}$

Consider B:
- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...
Negative Results

Is there a DFA that accepts

- \(B = \{0^n1^n|n \geq 0\} \)
- \(C = \{w|w \text{ has an equal number of 0’s and 1’s}\} \)
- \(D = \{w|w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \):
- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: Is this a proof?
Negative Results

Is there a DFA that accepts

\[B = \{0^n1^n | n \geq 0\} \]

\[C = \{w | w \text{ has an equal number of 0’s and 1’s}\} \]

\[D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \]

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: Is this a proof?

Answer: No, \(D \) is regular!?? (see problem set 1)
Pumping Lemma

We will show that all regular languages have a special property.

- Suppose L is regular.
- If a string in L is longer than a certain critical length ℓ (the pumping length),
- then it can be “pumped” to a longer string by repeating an internal substring any number of times.
- The longer string must be in L too.
- This is a powerful technique for showing that a language is not regular.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

$$xy^iz \in L$$

for every $i > 0$, $|y| > 0$, and $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial. The third condition is technical and useful occasionally.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i > 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial. The third condition is technical and useful occasion-
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i > 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i > 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial.

The third condition is technical and useful occasionally.
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L. Let ℓ be $|Q|$, the number of states of M. Since the sequence of states is of length $\ell + 1 > \ell$, and there are only ℓ different states in Q, at least one state is repeated (by the pigeonhole principle).
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L.

Let ℓ be $|Q|$, the number of states of M.

If $s \in L$ has length at least ℓ, consider the sequence of states M goes through as it reads s:
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L.

Let ℓ be $|Q|$, the number of states of M.

If $s \in L$ has length at least ℓ, consider the sequence of states M goes through as it reads s:

\[
\begin{array}{cccccccccc}
 s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & \ldots & s_n \\
 q_1 & q_20 & q_9 & q_17 & q_12 & q_13 & q_9 & q_2 & q_5 \in F
\end{array}
\]
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L.

Let ℓ be $|Q|$, the number of states of M.

If $s \in L$ has length at least ℓ, consider the sequence of states M goes through as it reads s:

\[
\begin{array}{cccccccccc}
 s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & \ldots & s_n \\
 q_1 & q_{20} & q_9 & q_{17} & q_{12} & q_{13} & q_9 & q_2 & q_5 \in F \\
\end{array}
\]

Since the sequence of states is of length $|s| + 1 > \ell$, and there are only ℓ different states in Q, at least one state is repeated (by the pigeonhole principle).
Pumping Lemma – Proof (cont.)

Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.
Pumping Lemma – Proof (cont.)

Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.

$|y| > 0$ because the state (q_9 in figure) is repeated.
Pumping Lemma – Proof (cont.)

Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.

$|y| > 0$ because the state (q_9 in figure) is repeated.

To ensure that $|xy| \leq \ell$, pick first state repetition, which must occur no later than $\ell + 1$ states in sequence.
An Application

Theorem: The language $B = \{0^n1^n | n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.
An Application

Theorem: The language $B = \{0^n1^n \mid n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in B$ for every k.
An Application

Theorem: The language $B = \{0^n1^n|n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in B$ for every k.
- If y is all 0, then xy^kz has too many 0’s.
An Application

Theorem: The language \(B = \{0^n1^n | n > 0\} \) is not regular.

Proof: By contradiction. Suppose \(B \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

- Consider the string \(s = 0^\ell 1^\ell \).
- By pumping lemma \(s = xyz \), where \(xy^kz \in B \) for every \(k \).
- If \(y \) is all 0, then \(xy^kz \) has too many 0’s.
- If \(y \) is all 1, then \(xy^kz \) has too many 1’s.
An Application

Theorem: The language $B = \{0^n1^n | n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in B$ for every k.
- If y is all 0, then xy^kz has too many 0’s.
- If y is all 1, then xy^kz has too many 1’s.
- If y is mixed, then xy^kz is not of right form.
Another Application

Theorem: The language $C = \{w \mid w \text{ has an equal number of 0's and 1's}\}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.
Another Application

Theorem: The language $C = \{w | w \text{ has an equal number of 0's and 1's}\}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.
Another Application

Theorem: The language $C = \{ w | w \text{ has an equal number of 0’s and 1’s} \}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.

By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.

If y is all 0, then xy^kz has too many 0’s.
Another Application

Theorem: The language $C = \{ w | w \text{ has an equal number of 0's and 1's} \}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^{\ell}1^{\ell}$.
- By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.
- If y is all 0, then xy^kz has too many 0’s.
- If y is all 1, then xy^kz has too many 1’s.
Another Application

Theorem: The language $C = \{w | w \text{ has an equal number of 0's and 1's}\}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.
- If y is all 0, then xy^kz has too many 0’s.
- If y is all 1, then xy^kz has too many 1’s.
- If y is mixed, then since $|xy| \leq \ell$, y must be all 0’s, contradiction.
Algorithms for NDA’s

Given an NDA, N, and a string s, is $s \in L(N)$?

Answer: Construct the DFA equivalent to N and run it on w.
Algorithms for NDA’s

Given an NDA, N, and a string s, is $s \in L(N)$?

Answer: Construct the DFA equivalent to N and run it on w.

Is $L(N) = \emptyset$?

Answer: This is a reachability question in graphs: Is there a path in the states’ graph of N from the start state to some accepting state. There are simple, efficient algorithms for this task.
More Algorithms for NDA’s

Is $L(N) = \Sigma^*$?

Answer: Check if $L(N) = \emptyset$.

Given N_1 and N_2, is $L(N_1) \subseteq L(N_2)$?

Answer: Check if $L(N_2) \cap L(N_1) = \emptyset$.

Given N_1 and N_2, is $L(N_1) = L(N_2)$?

Answer: Check if $L(N_1) \subseteq L(N_2)$ and $L(N_2) \subseteq L(N_1)$.
More Algorithms for NDA’s

Is \(L(N) = \Sigma^* \)?

Answer: Check if \(\overline{L(N)} = \emptyset \).

Given \(N_1 \) and \(N_2 \), is \(L(N_1) \subseteq L(N_2) \)?

Answer: Check if \(\overline{L(N_2)} \cap \overline{L(N_1)} = \emptyset \).
More Algorithms for NDA’s

Is \(L(N) = \Sigma^* \)?

Answer: Check if \(\overline{L(N)} = \emptyset \).

Given \(N_1 \) and \(N_2 \), is \(L(N_1) \subseteq L(N_2) \)?

Answer: Check if \(\overline{L(N_2)} \cap L(N_1) = \emptyset \).

Given \(N_1 \) and \(N_2 \), is \(L(N_1) = L(N_2) \)?

Answer: Check if \(L(N_1) \subseteq L(N_2) \) and \(L(N_2) \subseteq L(N_1) \).