Remarkable Fact (that we want to prove)

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.
Remarkable Fact (that we want to prove)

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.

\Rightarrow construct an NFA accepting R.
Remarkable Fact (that we want to prove)

Thm.: A language, L, is described by a regular expression, R, if and only if L is regular.

\Rightarrow construct an NFA accepting R.

\Leftarrow Given a regular language, L, construct an equivalent regular expression.
(⇒⇒) NFA Accepting Reg Expression, R

1. $R = a$, for some $a \in \Sigma$
(⇒) NFA Accepting Reg Expression, R

1. $R = a$, for some $a \in \Sigma$

2. $R = \varepsilon$
(⇒⇒) NFA Accepting Reg Expression, R

1. $R = a$, for some $a \in \Sigma$

2. $R = \epsilon$

3. $R = \emptyset$
(⇒⇒) NFA Accepting Reg Expression, \(R \)

\[
R = (R_1 \cup R_2)
\]

\[
R = (R_1 \circ R_2)
\]

\[
R = (R_1)^*
\]
Example

\[
\begin{align*}
\text{a} & \quad \xrightarrow{a} \quad \circ \quad \circ \\
\text{b} & \quad \xrightarrow{b} \quad \circ \quad \circ \\
\text{ab} & \quad \xrightarrow{b} \quad \circ \quad \xrightarrow{\varepsilon} \quad \circ \quad \xrightarrow{a} \quad \circ \\
\text{ab} \cup a & \quad \xrightarrow{\varepsilon} \quad \circ \quad \xrightarrow{\varepsilon} \quad \circ \quad \xrightarrow{a} \quad \circ
\end{align*}
\]
We now define generalized non-deterministic finite automata (GNFA).
We now define generalized non-deterministic finite automata (GNFA).

An NFA:

- Each transition labeled with a symbol or ε,
- reads zero or one symbols,
- takes matching transition, if any.
We now define generalized non-deterministic finite automata (GNFA).

An NFA:
- Each transition labeled with a symbol or ε,
- reads zero or one symbols,
- takes matching transition, if any.

A GNFA:
- Each transition labeled with a regular expression,
- reads zero or more symbols,
- takes transition whose regular expression matches string, if any.
We now define generalized non-deterministic finite automata (GNFA).

An NFA:
- Each transition labeled with a symbol or ε,
- reads zero or one symbols,
- takes matching transition, if any.

A GNFA:
- Each transition labeled with a regular expression,
- reads zero or more symbols,
- takes transition whose regular expression matches string, if any.

GNFAs are natural generalization of NFAs.
GNFA Special Form

Start state has outgoing arrows to every other state, but no incoming arrows.
GNFA Special Form

- **Start state** has outgoing arrows to *every* other state, but no incoming arrows.

- Unique **accept state** has incoming arrows from *every* other state, but no outgoing arrows.
GNFA Special Form

- **Start state** has outgoing arrows to every other state, but no incoming arrows.
- Unique **accept state** has incoming arrows from every other state, but no outgoing arrows.
- Except for start and accept states, arrows go from every state to every other state, including itself.
GNFA Special Form

- Start state has outgoing arrows to every other state, but no incoming arrows.
- Unique accept state has incoming arrows from every other state, but no outgoing arrows.
- Except for start and accept states, arrows go from every state to every other state, including itself.

Easy to transform any GNFA into special form.
GNFA Special Form

- **Start state** has outgoing arrows to every other state, but no incoming arrows.
- Unique **accept state** has incoming arrows from every other state, but no outgoing arrows.
- Except for start and accept states, arrows go from every state to every other state, including itself.

Easy to transform any GNFA into special form.

Really? How? …
Converting DFA to Regular Expression (⇐⇒)

Strategy – sequence of \textit{equivalent} transformations

\begin{itemize}
 \item given a k-state DFA
\end{itemize}
Converting DFA to Regular Expression (\iff)

Strategy – sequence of equivalent transformations
- given a k-state DFA
- transform into $(k + 2)$-state GNFA

Label on single transition is the desired regular expression.
Converting DFA to Regular Expression (\iff)

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
- while GNFA has more than 2 states, transform it into equivalent GNFA with one fewer state
Converting DFA to Regular Expression (\iff)

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
- while GNFA has more than 2 states, transform it into equivalent GNFA with one fewer state
- eventually reach 2-state GNFA (states are just start and accept).
Converting DFA to Regular Expression (\iff)

Strategy – sequence of equivalent transformations

- given a k-state DFA
- transform into $(k + 2)$-state GNFA
- while GNFA has more than 2 states, transform it into equivalent GNFA with one fewer state
- eventually reach 2-state GNFA (states are just start and accept).
- label on single transition is the desired regular expression.
Converting Strategy (↔)

3-state DFA

5-state GNFA

4-state GNFA

3-state GNFA

2-state GNFA

regular expression

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Removing One State

We remove one state q_r, and then repair the machine by altering regular expression of other transitions.
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}$$
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \to \mathcal{R}$$

Arrows connect every state to every other state except:

- no arrow from q_a
- no arrow to q_s
Formal Treatment – GNDA Definition

- q_s is start state.
- q_a is accept state.
- \mathcal{R} is collection of regular expressions over Σ.

The transition function is

$$\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \mathcal{R}$$

Arrows connect every state to every other state except:

- no arrow from q_a
- no arrow to q_s

If $\delta(q_i, q_j) = R$, then arrow from q_i to q_j has label R.
A generalized deterministic finite automaton (GDFA) is $(Q, \Sigma, \delta, q_s, q_a)$, where

- Q is a finite set of states,
- Σ is the alphabet,
- $\delta : (Q - \{q_a\}) \times (Q - \{q_s\}) \to \mathcal{R}$ is the transition function.
- $q_s \in Q$ is the start state, and
- $q_a \in Q$ is the unique accept state.
A GNFA accepts a string $w \in \Sigma^*$ if there exists a parsing of w, $w = w_1w_2 \cdots w_k$, where each $w_i \in \Sigma^*$, and there exists a sequence of states q_0, \ldots, q_k such that

- $q_0 = q_s$, the start state,
- $q_k = q_a$, the accept state, and
- for each i, $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.

(namely w_i is an element of the language described by the regular expression R_i.)
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

1. let k be the number of states of G.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.

Let $Q' = Q - \{q_r\}$.

For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 \[R_1 = \delta(q_i, q_r), \quad R_2 = \delta(q_r, q_r), \]
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
 - $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
 - $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- Define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$.
The CONVERT Algorithm

Given GDFA G, convert it to equivalent GNFA G'.

- let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow.
- If $k > 2$, select any q_r distinct from q_s and q_a.
- Let $Q' = Q - \{q_r\}$.
- For any $q_i \in Q' - \{q_a\}$ and $q_j \in Q' - \{q_s\}$, let
 - $R_1 = \delta(q_i, q_r)$, $R_2 = \delta(q_r, q_r)$,
 - $R_3 = \delta(q_r, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- Define $\delta'(q_i, q_j) = (R_1)(R_2)^* (R_3) \cup (R_4)$.
- Denote the resulting $k - 1$ states GNFA by G'.
The CONVERT Procedure

We define the recursive procedure CONVERT(·):

Given GDFA G.

Let k be the number of states of G.
The CONVERT Procedure

We define the recursive procedure CONVERT(·):

Given GDFA G.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow of G.
The CONVERT Procedure

We define the recursive procedure $\text{CONVERT}(\cdot)$:

Given GDFA G.

- Let k be the number of states of G.
- If $k = 2$, return the regular expression labeling the only arrow of G.
- If $k > 2$, let G' be the $k - 1$ states GNFA produced by the algorithm.
The CONVERT Procedure

We define the recursive procedure \textbf{CONVERT}(\cdot):

Given GDFA \(G \).

- Let \(k \) be the number of states of \(G \).
- If \(k = 2 \), return the regular expression labeling the only arrow of \(G \).
- If \(k > 2 \), let \(G' \) be the \(k - 1 \) states GNFA produced by the algorithm.

- Return \textbf{CONVERT}(G').
Correctness Proof of Construction

Theorem: G and $\text{CONVERT}(G)$ accept the same language.

Proof: By induction on number of states of G.
Correctness Proof of Construction

Theorem: G and $\text{CONVERT}(G)$ accept the same language.

Proof: By induction on number of states of G

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by G.
Theorem: G and $\text{CONVERT}(G)$ accept the same language.

Proof: By induction on number of states of G

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by G.

Induction Step: Assume claim for $k - 1$ states, prove for k.
Correctness Proof of Construction

Theorem: G and $\text{CONVERT}(G)$ accept the same language.

Proof: By induction on number of states of G

Basis: When there are only 2 states, there is a single label, which characterizes the strings accepted by G.

Induction Step: Assume claim for $k - 1$ states, prove for k.

Let G' be the $k - 1$ states GNFA produced from G by the algorithm.
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

Three steps:
1. If G accepts w, then so does G'.
2. If G' accepts w, then so does G.
3. Therefore G and G' are equivalent.
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

On input G, the procedure returns $\text{CONVERT}(G')$.

G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

On input G, the procedure returns $\text{CONVERT}(G')$.

So to complete the proof, it suffices to show that G and G' accept the same language.
G and G' accept the same language

By the induction hypothesis, G' and $\text{CONVERT}(G')$ accept the same language.

On input G, the procedure returns $\text{CONVERT}(G')$.

So to complete the proof, it suffices to show that G and G' accept the same language.

Three steps:

1. If G accepts w, then so does G'.
2. If G' accepts w, then so does G.
3. Therefore G and G' are equivalent.
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' accepts w because the new regular expression on each edge of G' contains the old regular expression in the “union part”.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' accepts w because the the new regular expression on each edge of G' contains the old regular expression in the “union part”.

- If q_r does appear, consider the regular expression corresponding to $\ldots q_i, q_r, \ldots, q_r, q_j \ldots$.

The new regular expression $(R_{i,r})(R_{r,r})^*(R_{r,j})$ linking q_i and q_j encompasses any such string.
Step One

Claim: If G accepts w, then so does G':

- If G accepts w, then there exists a “path of states” $q_s, q_1, q_2, \ldots, q_a$ traversed by G on w, leading to the accept state q_a.

- If q_r does not appear on path, then G' accepts w because the new regular expression on each edge of G' contains the old regular expression in the “union part”.

- If q_r does appear, consider the regular expression corresponding to $\ldots q_i, q_r, \ldots, q_r, q_j \ldots$.

The new regular expression $(R_{i,r})(R_{r,r})^*(R_{r,j})$ linking q_i and q_j encompasses any such string.

- Either way, the claim holds.
Claim: If G' accepts w, then so does G.

Proof: Each transition from q_i to q_j in G' corresponds to a transition in G, either directly or through q_r. Thus if G' accepts w, then so does G.

This completes the proof of the claim that $L(G) = L(G')$.
Steps Two and Three

Claim: If G' accepts w, then so does G.

Proof: Each transition from q_i to q_j in G' corresponds to a transition in G, either directly or through q_r. Thus if G' accepts w, then so does G.

This completes the proof of the claim that $L(G) = L(G')$.

Combined with the induction hypothesis, this shows that G and the regular expression $\text{CONVERT}(G)$ accept the same language.
Steps Two and Three

Claim: If G' accepts w, then so does G.

Proof: Each transition from q_i to q_j in G' corresponds to a transition in G, either directly or through q_r. Thus if G' accepts w, then so does G.

This completes the proof of the claim that $L(G) = L(G')$.

Combined with the induction hypothesis, this shows that G and the regular expression $\text{CONVERT}(G)$ accept the same language.

This, in turn, proves our remarkable claim: A language, L, is described by a regular expression, R, if and only if L is regular.
Negative Results

We have made a lot of progress understanding what finite automata can do. But what can’t they do?
We have made a lot of progress understanding what finite automata can do. But what can’t they do? Is there a DFA that accepts

- \(B = \{0^n1^n | n \geq 0\} \)
- \(C = \{w | w \text{ has an equal number of 0’s and 1’s}\} \)
- \(D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same.
Negative Results

Is there a DFA that accepts

- $B = \{0^n1^n | n \geq 0\}$
- $C = \{w | w \text{ has an equal number of 0's and 1's}\}$
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\}$
Negative Results

Is there a DFA that accepts

- $B = \{0^n1^n | n \geq 0\}$
- $C = \{w | w \text{ has an equal number of 0's and 1's}\}$
- $D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\}$

Consider B:

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.
Negative Results

Is there a DFA that accepts

- $B = \{0^n1^n|n \geq 0\}$
- $C = \{w|w \text{ has an equal number of 0’s and 1’s}\}$
- $D = \{w|w \text{ has an equal number of occurrences of 01 and 10 substrings}\}$

Consider B:

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...
Negative Results

Is there a DFA that accepts

\(B = \{0^n1^n|n \geq 0\} \)

\(C = \{w|w\text{ has an equal number of 0’s and 1’s}\} \)

\(D = \{w|w\text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: Is this a proof?
Negative Results

Is there a DFA that accepts

- \(B = \{0^n1^n | n \geq 0\} \)
- \(C = \{w | w \text{ has an equal number of 0's and 1's}\} \)
- \(D = \{w | w \text{ has an equal number of occurrences of 01 and 10 substrings}\} \)

Consider \(B \):

- DFA must “remember” how many 0’s it has seen
- impossible with finite state.

The others are exactly the same...

Question: Is this a proof?

Answer: No, \(D \) is regular!???(see problem set 1)
Pumping Lemma

We will show that all regular languages have a special property.

Suppose L is regular.

If a string in L is longer than a certain critical length ℓ (the pumping length),

then it can be “pumped” to a longer string by repeating an internal substring any number of times.

The longer string must be in L too.

This is a powerful technique for showing that a language is not regular.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the **pumping length**), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

1. $|y| > 0$,
2. $|xy| \leq \ell$,
3. for every $i > 0$, $xy^iz \in L$.

Remarks: Without the second condition, the theorem would be trivial. The third condition is technical and useful occasionally.
Theorem: If L is a regular language, then there is an $\ell > 0$ (the **pumping length**), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i > 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the pumping length), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i > 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial.
Pumping Lemma

Theorem: If L is a regular language, then there is an $\ell > 0$ (the **pumping length**), where if s is any string in L of length $|s| > \ell$, then s may be divided into three pieces $s = xyz$ such that

- for every $i > 0$, $xy^iz \in L$,
- $|y| > 0$, and
- $|xy| \leq \ell$.

Remarks: Without the second condition, the theorem would be trivial.

The third condition is technical and useful occasionally.
Pumping Lemma – Proof

Let \(M = (Q, \Sigma, \delta, q_1, F) \) be a DFA that accepts \(L \).

Let \(\ell \) be \(|Q| \), the number of states of \(M \).
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L.

Let ℓ be $|Q|$, the number of states of M.

If $s \in L$ has length at least ℓ, consider the sequence of states M goes through as it reads s:

\[s_1 s_2 s_3 s_4 s_5 \ldots s_n \]

Since the sequence of states is of length $|s| + 1 > \ell$, and there are only ℓ different states in Q, at least one state is repeated (by the pigeonhole principle).
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L.

Let ℓ be $|Q|$, the number of states of M.

If $s \in L$ has length at least ℓ, consider the sequence of states M goes through as it reads s:

\[
\begin{array}{cccccccc}
 s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & \ldots & s_n \\
 \uparrow & \uparrow \\
 q_1 & q_20 & q_9 & q_{17} & q_{12} & q_{13} & q_9 & q_2 & q_5 \in F
\end{array}
\]
Pumping Lemma – Proof

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that accepts L.

Let ℓ be $|Q|$, the number of states of M.

If $s \in L$ has length at least ℓ, consider the sequence of states M goes through as it reads s:

\[
\begin{array}{cccccccc}
 s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & \ldots & s_n \\
 \uparrow & \uparrow \\
 q_1 & q_{20} & q_9 & q_{17} & q_{12} & q_{13} & q_9 & q_2 & q_5 \in F
\end{array}
\]

Since the sequence of states is of length $|s| + 1 > \ell$, and there are only ℓ different states in Q, at least one state is repeated (by the pigeonhole principle).
Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.
Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.

$|y| > 0$ because the state (q_9 in figure) is repeated.
Pumping Lemma – Proof (cont.)

Write down $s = xyz$

By inspection, M accepts xy^kz for every $k \geq 0$.

$|y| > 0$ because the state (q_9 in figure) is repeated.

To ensure that $|xy| \leq \ell$, pick first state repetition, which must occur no later than $\ell + 1$ states in sequence.
Theorem: The language $B = \{0^n1^n | n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.
Theorem: The language $B = \{0^n1^n | n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.

By pumping lemma $s = xyz$, where $xy^kz \in B$ for every k.
An Application

Theorem: The language \(B = \{0^n1^n|n > 0\} \) is not regular.

Proof: By contradiction. Suppose \(B \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

- Consider the string \(s = 0^\ell 1^\ell \).
- By pumping lemma \(s = xyz \), where \(xy^kz \in B \) for every \(k \).
- If \(y \) is all 0, then \(xy^kz \) has too many 0’s.
An Application

Theorem: The language $B = \{0^n 1^n|n > 0\}$ is not regular.

Proof: By contradiction. Suppose B is regular, accepted by DFA M. Let ℓ be the pumping length.

Consider the string $s = 0^\ell 1^\ell$.

By pumping lemma $s = xyz$, where $xy^k z \in B$ for every k.

If y is all 0, then $xy^k z$ has too many 0’s.

If y is all 1, then $xy^k z$ has too many 1’s.
Theorem: The language \(B = \{0^n1^n | n > 0\} \) is not regular.

Proof: By contradiction. Suppose \(B \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

Consider the string \(s = 0^\ell 1^\ell \).

By pumping lemma \(s = xyz \), where \(xy^kz \in B \) for every \(k \).

If \(y \) is all 0, then \(xy^kz \) has too many 0’s.

If \(y \) is all 1, then \(xy^kz \) has too many 1’s.

If \(y \) is mixed, then \(xy^kz \) is not of right form.

♣
Another Application

Theorem: The language $C = \{w|w \text{ has an equal number of 0's and 1's}\}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
Another Application

Theorem: The language $C = \{w|w\text{ has an equal number of 0's and 1's}\}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.
Another Application

Theorem: The language $C = \{ w | w \text{ has an equal number of 0's and 1's} \}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.
- If y is all 0, then xy^kz has too many 0's.
Another Application

Theorem: The language

\[C = \{ w \mid w \text{ has an equal number of 0's and 1's} \} \]

is not regular.

Proof: By contradiction. Suppose \(C \) is regular, accepted by DFA \(M \). Let \(\ell \) be the pumping length.

- Consider the string \(s = 0^\ell 1^\ell \).
- By pumping lemma \(s = xyz \), where \(xy^kz \in C \) for every \(k \).
- If \(y \) is all 0, then \(xy^kz \) has too many 0’s.
- If \(y \) is all 1, then \(xy^kz \) has too many 1’s.
Another Application

Theorem: The language $C = \{ w \mid w \text{ has an equal number of 0's and 1's} \}$ is not regular.

Proof: By contradiction. Suppose C is regular, accepted by DFA M. Let ℓ be the pumping length.

- Consider the string $s = 0^\ell 1^\ell$.
- By pumping lemma $s = xyz$, where $xy^kz \in C$ for every k.
- If y is all 0, then xy^kz has too many 0’s.
- If y is all 1, then xy^kz has too many 1’s.
- If y is mixed, then since $|xy| \leq \ell$, y must be all 0’s, contradiction.

♣
Algorithms for NDA’s

Given an NDA, \(N \), and a string \(s \), is \(s \in L(N) \)?

Answer: Construct the DFA equivalent to \(N \) and run it on \(w \).
Given an NDA, N, and a string s, is $s \in L(N)$?

Answer: Construct the DFA equivalent to N and run it on w.

Is $L(N) = \emptyset$?

Answer: This is a reachability question in graphs: Is there a path in the states’ graph of N from the start state to some accepting state. There are simple, efficient algorithms for this task.
More Algorithms for NDA’s

Is $L(N) = \Sigma^*$?

Answer: Check if $\overline{L(N)} = \emptyset$.

Given N_1 and N_2, is $L(N_1) \subseteq L(N_2)$?

Answer: Check if $L(N_2) \cap L(N_1) = \emptyset$.

Given N_1 and N_2, is $L(N_1) = L(N_2)$?

Answer: Check if $L(N_1) \subseteq L(N_2)$ and $L(N_2) \subseteq L(N_1)$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
More Algorithms for NDA’s

Is $L(N) = \Sigma^*$?

Answer: Check if $\overline{L(N)} = \emptyset$.

Given N_1 and N_2, is $L(N_1) \subseteq L(N_2)$?

Answer: Check if $\overline{L(N_2)} \cap L(N_1) = \emptyset$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
More Algorithms for NDA’s

Is \(L(N) = \Sigma^* \)?

Answer: Check if \(\overline{L(N)} = \emptyset \).

Given \(N_1 \) and \(N_2 \), is \(L(N_1) \subseteq L(N_2) \)?

Answer: Check if \(\overline{L(N_2)} \cap L(N_1) = \emptyset \).

Given \(N_1 \) and \(N_2 \), is \(L(N_1) = L(N_2) \)?

Answer: Check if \(L(N_1) \subseteq L(N_2) \) and \(L(N_2) \subseteq L(N_1) \).