A Math Review

• Mathematical notations
• Mathematical proofs
• Functions and predicates
• Graphs
Sets

- order doesn’t matter
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
Sets

- order doesn’t matter
- finite: \(\{2, 4, 6\} \)
- infinite: \(\{2, 4, 6, \ldots \} \ \{x \mid x \text{ is even}\} \)
Sets

- order doesn’t matter
- finite: \(\{2, 4, 6\} \)
- infinite: \(\{2, 4, 6, \ldots \} \) \(\{x \mid x \text{ is even}\} \)
- subset: \(U \subset V, \ U \subseteq V \)
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
- infinite: \{2, 4, 6, \ldots\} \{x \mid x \text{ is even}\}
- subset: \(U \subset V\), \(U \subseteq V\)
- union: \(U \cup V\)
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
- infinite: \{2, 4, 6, \ldots\} \{x \mid x \text{ is even}\}
- subset: \(U \subset V, U \subseteq V\)
- union: \(U \cup V\)
- intersection: \(U \cap V\)
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
- infinite: \{2, 4, 6, \ldots\} \{x \mid x \text{ is even}\}
- subset: \(U \subset V, U \subseteq V\)
- union: \(U \cup V\)
- intersection: \(U \cap V\)
- power set of \(U\): \(2^U\), is set of all subsets

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
- infinite: \{2, 4, 6, \ldots\} \{x \mid x \text{ is even}\}
- subset: \(U \subset V, U \subseteq V\)
- union: \(U \cup V\)
- intersection: \(U \cap V\)
- power set of \(U\): \(2^U\), is set of all subsets
- cardinalities: \(\aleph_0, \aleph_1, 2^{\aleph_0}\)
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
- infinite: \{2, 4, 6, \ldots\} \{x \mid x \text{ is even}\}
- subset: \(U \subset V, U \subseteq V \)
- union: \(U \cup V \)
- intersection: \(U \cap V \)
- power set of \(U \): \(2^U \), is set of all subsets
- cardinalities: \(\aleph_0, \aleph_1, 2^{\aleph_0} \)
- the continuum hypothesis
Sets

- order doesn’t matter
- finite: \{2, 4, 6\}
- infinite: \{2, 4, 6, \ldots\} \{x \mid x \text{ is even}\}
- subset: \(U \subset V, U \subseteq V\)
- union: \(U \cup V\)
- intersection: \(U \cap V\)
- power set of \(U\): \(2^U\), is set of all subsets
- cardinalities: \(\aleph_0, \aleph_1, 2^{\aleph_0}\)
- the continuum hypothesis
- etc., etc.
Sequences

- order matters
Sequences

- order matters
- \((1, 3, 5, \ldots)\)
Sequences

- order matters
- \((1, 3, 5, \ldots)\)
- finite sequence called a *tuple*
Sequences

- order matters
- $(1, 3, 5, \ldots)$
- finite sequence called a *tuple*
- 2 elements is a *pair*
Sequences

- order matters
- \((1, 3, 5, \ldots)\)
- finite sequence called a *tuple*
- 2 elements is a *pair*
- \(k\) elements is a *\(k\)-tuple*
Functions and Predicates

A function or mapping

\[f : X \rightarrow Y \]

\[f : \text{domain} \rightarrow \text{range} \]
Functions and Predicates

A function or mapping

\[f : X \rightarrow Y \]

- \(f : \text{domain} \rightarrow \text{range} \)
- input values are called \textit{arguments}.
Functions and Predicates

A function or mapping

\[f : X \rightarrow Y \]

- \(f : domain \rightarrow range \)
- input values are called arguments.
- a \(k \)-ary function has \(k \) arguments.
Functions and Predicates

A function or mapping

\[f : X \rightarrow Y \]

- \(f : \text{domain} \rightarrow \text{range} \)
- Input values are called \textit{arguments}.
- A \(k \)-ary function has \(k \) arguments.
- A \textit{predicate} is a function with range \{true, false\}.
Functions and Predicates

A function or mapping

\[f : X \rightarrow Y \]

- \(f : \text{domain} \rightarrow \text{range} \)
- input values are called arguments.
- a \(k \)-ary function has \(k \) arguments.
- a predicate is a function with range \{true, false\}.
- a binary relation is a predicate whose domain is a Cartesian product \(U \times V \).
A Popular Example

The “SCISSORS, PAPER, ROCK” game as a predicate (from the "row player" point of view):

<table>
<thead>
<tr>
<th></th>
<th>SCISSORS</th>
<th>PAPER</th>
<th>ROCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCISSORS</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>PAPER</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>ROCK</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

and as a relation:

\{ (\text{SCISSORS, PAPER}), (\text{PAPER, ROCK}), (\text{ROCK, SCISSORS}) \}.
Graphs

\[G = (V, E), \text{ where} \]
Graphs

\[G = (V, E), \text{ where} \]

- \(V \) is set of nodes or vertices, and
Graphs

\[G = (V, E), \text{ where} \]
\[V \text{ is set of nodes or vertices, and} \]
\[E \text{ is set of edges} \]
Graphs

\[G = (V, E) \], where

- \(V \) is set of nodes or vertices, and
- \(E \) is set of edges
- degree of a vertex is number of edges
Graphs

- Graph
- Subgraph
- Tree
- Root
- Leaves
- Path
- Cycle

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Directed Graphs

```
1 -> 2
5 <- 6
4 -> 3
```

```
scissors

paper -> rock
```

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
A Directed Graph and its Adjacency Matrix

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Strings and Languages

an *alphabet* is a finite set of *symbols*
Strings and Languages

- an alphabet is a finite set of symbols
- a string over an alphabet is a finite sequence of symbols from that alphabet.
Strings and Languages

- an *alphabet* is a finite set of *symbols*
- a *string over an alphabet* is a finite sequence of symbols from that alphabet.
- the *length* of a string is the number of symbols
Strings and Languages

- an *alphabet* is a finite set of *symbols*
- a *string over an alphabet* is a finite sequence of symbols from that alphabet.
- the *length* of a string is the number of symbols
- the *empty string* ε
Strings and Languages

- an alphabet is a finite set of symbols
- a string over an alphabet is a finite sequence of symbols from that alphabet.
- the length of a string is the number of symbols
- the empty string ε
- reverse: $abcd$ reversed is $dcba$.
Strings and Languages

- an *alphabet* is a finite set of *symbols*
- a *string over an alphabet* is a finite sequence of symbols from that alphabet.
- the *length* of a string is the number of symbols
- the *empty string* \(\varepsilon \)
- *reverse*: \(abcd \) reversed is \(dcba \).
- *substring*: \(xyz \) in \(xyzzy \).
Strings and Languages

- an alphabet is a finite set of symbols
- a string over an alphabet is a finite sequence of symbols from that alphabet.
- the length of a string is the number of symbols
- the empty string ε
- reverse: $abcd$ reversed is $dcba$.
- substring: xyz in $xyzzy$.
- concatenation of xyz and zy is $xyzzy$.
Strings and Languages

- An alphabet is a finite set of symbols.
- A string over an alphabet is a finite sequence of symbols from that alphabet.
- The length of a string is the number of symbols.
- The empty string ε.
- Reverse: $abcd$ reversed is $dcba$.
- Substring: xyz in $xyzzz$.
- Concatenation of xyz and zy is $xyzzy$.
- x^k is $x \cdots x$, k times.
Strings and Languages

- an alphabet is a finite set of symbols
- a string over an alphabet is a finite sequence of symbols from that alphabet.
- the length of a string is the number of symbols
- the empty string ε
- reverse: $abcd$ reversed is $dcba$.
- substring: xyz in $xyzzy$.
- concatenation of xyz and zy is $xyzzy$.
- x^k is $x \cdots x$, k times.
- a language L is a set of strings.
Proofs

We will use the following basic kinds of proofs.

- by construction
Proofs

We will use the following basic kinds of proofs.

- by construction
- by contradiction
Proofs

We will use the following basic kinds of proofs.

- by construction
- by contradiction
- by induction
Proofs

We will use the following basic kinds of proofs.

- by construction
- by contradiction
- by induction
- by reduction
Proofs

We will use the following basic kinds of proofs.

- by construction
- by contradiction
- by induction
- by reduction

we will often mix them.
Proof by Construction

A graph is k-regular if every node has degree k.

Theorem: For every even $n > 2$, there exists a 3-regular graph with n nodes.
Proof by Construction

Proof: Construct $G = (V, E)$, where

$V = \{0, 1, \ldots, n - 1\}$ and

$$E = \{\{i, i + 1\} \mid \text{for } 0 \leq i \leq n - 2\} \cup \{n - 1, 0\} \cup \{\{i, i + n/2\} \mid \text{for } 0 \leq i \leq n/2 - 1\}.$$

Note: A picture is helpful, but it is not a proof!
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Proof: Suppose not. Then $\sqrt{2} = \frac{m}{n}$, where m and n are relatively prime.

\[
\begin{align*}
 n\sqrt{2} &= m \\
 2n^2 &= m^2
\end{align*}
\]
Proof by Contradiction (cont.)

So \(m^2 \) is even, and so is \(m = 2k \).

\[
2n^2 = (2k)^2 \\
= 4k^2 \\
n^2 = 2k^2
\]

Thus \(n^2 \) is even, and so is \(n \).

Therefore both \(m \) and \(n \) are even, and not relatively prime!

Reductio ad absurdam.
Proof by Induction

Prove properties of elements of an infinite set.

\[\mathcal{N} = \{1, 2, 3, \ldots\} \]

To prove that \(\wp \) holds for each element, show:

- **base step**: show that \(\wp(1) \) is true.
Proof by Induction

Prove properties of elements of an infinite set.
\[\mathcal{N} = \{1, 2, 3, \ldots\} \]

To prove that \(\varphi \) holds for each element, show:

- **base step**: show that \(\varphi(1) \) is true.
- **induction step**: show that if \(\varphi(i) \) is true (the induction hypothesis), then so is \(\varphi(i + 1) \).
Induction Example

Theorem: All cows are the same color.
Induction Example

Theorem: All cows are the same color.

Base step: A single-cow set is definitely the same color.
Induction Example

Theorem: All cows are the same color.

Base step: A single-cow set is definitely the same color.

Induction Step: Assume all sets of i cows are the same color. Divide the set $\{1, \ldots, i+1\}$ into $U = \{1, \ldots, i\}$, and $V = \{2, \ldots, i+1\}$.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Induction Example

Theorem: All cows are the same color.

Base step: A single-cow set is definitely the same color.

Induction Step: Assume all sets of \(i\) cows are the same color. Divide the set \(\{1, \ldots, i + 1\}\) into \(U = \{1, \ldots, i\}\), and \(V = \{2, \ldots, i + 1\}\). All cows in \(U\) are the same color by the induction hypothesis.
Induction Example

Theorem: All cows are the same color.

Base step: A single-cow set is definitely the same color.

Induction Step: Assume all sets of i cows are the same color. Divide the set $\{1, \ldots, i + 1\}$ into $U = \{1, \ldots, i\}$, and $V = \{2, \ldots, i + 1\}$. All cows in U are the same color by the induction hypothesis. All cows in V are the same color by the induction hypothesis.
Induction Example

Theorem: All cows are the same color.

Base step: A single-cow set is definitely the same color.

Induction Step: Assume all sets of i cows are the same color. Divide the set $\{1, \ldots, i + 1\}$ into $U = \{1, \ldots, i\}$, and $V = \{2, \ldots, i + 1\}$. All cows in U are the same color by the induction hypothesis. All cows in V are the same color by the induction hypothesis. All cows in $U \cap V$ are the same color by the induction hypothesis.
Induction Example (cont.)

Ergo, all cows are the same color.

Quod Erat Demonstrandum.
Proof by Reduction

We can sometime solve problem A by reducing it to problem B, whose solution we already know.

Example: Maximal matching in bipartite graphs:
Proof by Reduction

Reducing bipartite matching to MAX FLOW:

Reduction: Put capacity 1 on each edge.