Lecture 12

- NTIME and the classes NP.
Lecture 12

- NTIME and the classes NP.
- Examples of Problems in NP.
Lecture 12

- **NTIME** and the classes **NP**.
- Examples of Problems in **NP**.
- Verifiability.
Lecture 12

- NTIME and the classes NP.
- Examples of Problems in NP.
- Verifiability.
- Poly-Time Reductions
Lecture 12

- NTIME and the classes NP.
- Examples of Problems in NP.
- Verifiability.
- Poly-Time Reductions
- NP completeness
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let $f : \mathcal{N} \rightarrow \mathcal{N}$.

We say that N runs in time $f(n)$ if
- For every input x of length n,
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : \mathcal{N} \rightarrow \mathcal{N}$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : \mathcal{N} \rightarrow \mathcal{N}$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
- on any branch of its computation tree on x,

Non-Deterministic Time (reminder)

Let N be a non-deterministic TM, and let

$$f : \mathcal{N} \rightarrow \mathcal{N}$$

We say that N runs in time $f(n)$ if

- For every input x of length n,
- the maximum number of steps that N uses,
- on any branch of its computation tree on x,
- is at most $f(n)$.
NTime Classes Definition

Let

\[f : \mathbb{N} \rightarrow \mathbb{N} \]

be a function.

Definition:

\[\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language, decided by an } O(f(n))-\text{time NTM} \} \]
The Class NP

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

The class NP is important because:
The Class \(NP \)

Definition: \(NP \) is the set of languages decidable in polynomial time on non-deterministic TMs.

\[
NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)
\]

- The class \(NP \) is important because:
 - Invariant for all TMs with any number of tapes.
The Class NP

Definition: NP is the set of languages decidable in polynomial time on non-deterministic TMs.

$$NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)$$

- The class NP is important because:
 - Invariant for all TMs with any number of tapes.
 - NP is insensitive to choice of reasonable non-deterministic computational model.
The Class \(NP \)

Definition: \(NP \) is the set of languages decidable in polynomial time on non-deterministic TMs.

\[
NP = \bigcup_{c \geq 0} \text{NTIME}(n^c)
\]

- The class \(NP \) is important because:
 - Invariant for all TMs with any number of tapes.
 - \(NP \) is insensitive to choice of reasonable non-deterministic computational model.
 - Roughly corresponds to problems whose positive solutions cannot be efficiently generated (\(\Rightarrow \) intractable), but can be efficiently checked.
A Hamiltonian path in a directed \mathcal{G} visits each node exactly once.
Hamiltonian Path

$$\text{HAMPATH} = \{\langle G, s, t \rangle | G \text{ has Hamiltonian path from } s \text{ to } t \}$$

Question: How hard is it to decide this language?
Hamiltonian Path

\[
\text{HAMPATH} = \{ \langle G, s, t \rangle | G \text{ has Hamiltonian path from } s \text{ to } t \}\]

Easy to obtain exponential time algorithm:
- generate each potential path
- check whether it is Hamiltonian
The Class NP

Here is an NTM that decides HAMPATH in poly time.

On input $\langle G, s, t \rangle$,

1. Guess and write down a list of numbers p_1, \ldots, p_m, where m is number of nodes in G, and $1 \leq p_i \leq m$.

2. Check for repetitions in list. If any found, reject.

3. Check whether $p_1 = s$ and $p_m = t$. If either does not hold, reject.

4. For $i, 1 \leq i \leq m - 1$, check whether (p_i, p_{i+1}) is an edge in G. If any is not, reject. Otherwise accept.
NP

On input \(\langle G, s, t \rangle \),

1. Guess and write down a list of numbers \(p_1, \ldots, p_m \ldots \)
2. Check for repetitions . . .
3. Check whether \(p_1 = s \) and \(p_m = t \) . . .
4. Check whether \((p_i, p_{i+1}) \) is an edge in \(G \) . . .

- Stage 1 polynomial time
- Stages 2 and 3 simple checks.
- Stage 4 simple poly-time too.
Hamiltonian Path

This problem has one very interesting feature: polynomial verifiability.

we don’t know a fast way to find a Hamiltonian path
Hamiltonian Path

This problem has one very interesting feature: **polynomial verifiability**.

- we don’t know a fast way to **find** a Hamiltonian path
- but we can **check** whether a **given path** is Hamiltonian in polynomial time.

In other words,

- **verifying** correctness of a path is much **easier**
- than **determining** whether one exists
Composite Numbers

A natural number is composite if it is the product of two integers greater than one.

\[
\text{COMPOSITES} = \{x \mid x = pq \text{ for integers } p, q > 1\}
\]

- we don’t know a polynomial-time algorithm for deciding this problem*
- But we can easily verify that a number is composite (how?)

*Actually, in summer 2002, two Indian undergrads and their advisor found how to do this. However, let us pretend we’re still in 1/1/2002...
Verifiability

Not all problems are polynomially verifiable.

There is no known way to verify \(\text{HAMPATH} \) in polynomial time.

In fact, we will see many examples where \(L \) is polynomially verifiable, but its complement, \(\overline{L} \), is not known to be polynomially verifiable.
Verifiability

A verifier for a language A is an algorithm V where

$$A = \{ w \mid V \text{ accepts} \langle w, c \rangle \text{ for some string } c \}$$

The verifier uses the additional information c to verify $w \in A$.
Verifiability

A verifier for a language \mathcal{A} is an algorithm \mathcal{V} where

$$\mathcal{A} = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in \mathcal{A}$.
- We measure verifier run time by length of w.
Verifiability

A verifier for a language A is an algorithm V where

$$A = \{ w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if V accepts $\langle w, c \rangle$.
Verifiability

A verifier for a language A is an algorithm \mathcal{V} where

$$A = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if \mathcal{V} accepts $\langle w, c \rangle$.
- A polynomial verifier runs in polynomial time in $|w|$ (so $|c| \leq |w|^{O(1)}$).
Verifiability

A verifier for a language A is an algorithm V where

$$A = \{ w | V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$$

- The verifier uses the additional information c to verify $w \in A$.
- We measure verifier run time by length of w.
- The string c is called a certificate (or proof) for w if V accepts $\langle w, c \rangle$.
- A polynomial verifier runs in polynomial time in $|w|$ (so $|c| \leq |w|^{O(1)}$).
- A language A is polynomially verifiable if it has a polynomial verifier.
Examples

For HAMPATH, a certificate for

\[\langle G, s, t \rangle \in \text{HAMPATH} \]

is simply the Hamiltonian path from \(s \) to \(t \).

Can verify in time polynomial in \(|\langle G \rangle|\) whether given path is Hamiltonian.
Examples

For **COMPOSITES**, a certificate for

\[x \in \text{COMPOSITES} \]

is simply one of its divisors.

Can **verify** in time polynomial in \(|x| \) if given divisor indeed divides \(x \).
The Class \mathcal{NP}, Again

\mathcal{NP} is important because it includes many problems of practical interest.

- Hamiltonian path
The Class \mathcal{NP}, Again

\mathcal{NP} is important because it includes many problems of practical interest.

- Hamiltonian path
- Travelling salesman (salesperson, that is)
The Class \mathcal{NP}, Again

\mathcal{NP} is important because it includes many problems of practical interest.

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
The Class \mathcal{NP}, Again

\mathcal{NP} is important because it includes many problems of practical interest.

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
The Class \mathcal{NP}, Again

\mathcal{NP} is important because it includes many problems of practical interest.

- Hamiltonian path
- Travelling salesman (salesperson, that is)
- Scheduling (operations research)
- Placement and routing (VLSI design)
- Composites (factoring/cryptography)
NP and Verifiability

Theorem: A language is in \(NP \) if and only if it has a polynomial time verifiers.

Basic Idea:
NP and Verifiability

Theorem: A language is in \(\mathcal{NP} \) if and only if it has a polynomial time verifiers.

Basic Idea:

- NTM simulates verifier by guessing the certificate.
NP and Verifiability

Theorem: A language is in \(\mathcal{NP} \) if and only if it has a polynomial time verifiers.

Basic Idea:

- NTM simulates verifier by guessing the certificate.
- Verifier simulates NTM by using accepting branch as certificate.
NP

Claim: If A has a poly-time verifier, then is decided by some polynomial-time NTM.

Let V be poly-time verifier for A.

- single-tape TM
- runs in time n^k

N: on input w of length n

- Nondeterministically select string c of length n^k.
- Run V on $\langle w, c \rangle$
- If V accepts, accept; otherwise reject.
Claim: If A is decided by a polynomial-time NTM N, then A has a poly-time verifier.

Construct polynomial-time verifier V as follows.

V: on input w of length n

- Simulate N on input w, treating each symbol of c as a description of each step’s non-deterministic choice.
- If this branch accepts, accept, otherwise reject.
Examples: Clique

A **clique** in a graph is a subgraph where every two nodes are connected by an edge.

A **k-clique** is a clique of size k.
Examples: Clique

Define the language

\[\text{CLIQUE} = \{ \langle G, k \rangle | G \text{ is an undirected graph with a } k\text{-clique} \} \]
Examples: Clique

Theorem:

CLIQUE ∈ \textit{NP}

The clique is the certificate.

Here is a verifier \(V \): on input \((G, k), c\)
Examples: Clique

Theorem:

$$\text{CLIQUE} \in \mathcal{NP}$$

The clique is the certificate.

Here is a verifier \mathcal{V}: on input $(\langle G, k \rangle, c)$

- if c is not a k-clique, reject
Examples: Clique

Theorem:

\[\text{CLIQUE} \in \mathcal{NP} \]

The clique is the certificate.

Here is a verifier \(V \): on input \(\langle G, k, c \rangle \)

- if \(c \) is not a \(k \)-clique, reject
- if \(G \) does not contain all vertices of \(c \), reject
Examples: Clique

Theorem:

$$\text{CLIQUE} \in \mathcal{NP}$$

The clique is the certificate.

Here is a verifier \mathcal{V}: on input $(\langle G, k \rangle, c)$

- if c is not a k-clique, reject
- if G does not contain all vertices of c, reject
- accept
Examples: SUBSET-SUM

An instance of the problem

- A collection of numbers x_1, \ldots, x_k
- Target number t
- Question: does some subcollection add up to t?

\[
\text{SUBSET-SUM} = \{ \langle S, t \rangle \mid S = \{ x_1, \ldots, x_k \} \exists \{ y_1, \ldots, y_\ell \} \subseteq \{ x_1, \ldots, x_k \}, \sum_{y_j} = t \}\]
Examples: SUBSET-SUM

We have

\[(\{4, 11, 16, 21, 27\}, 25) \in \text{SUBSET-SUM}\]

because \(4 + 21 = 25\).

Collections are multisets: repetitions allowed.
Examples: SUBSET-SUM

Theorem:

\[\text{SUBSET-SUM} \in NP \]

The subset is the certificate.

Here is a verifier:

\(\mathcal{V} \): on input \((\langle S, t \rangle, c)\)

- test whether \(c \) is a collection of numbers summing to \(t \).
- test whether \(c \) is a subset of \(S \)
- if either fail, reject, otherwise accept.
Complementary Problems

CLIQUE and **SUBSET-SUM** seem **not** to be members of NP.
It is harder to efficiently verify that something **does not** exist than to efficiently verify that something **does** exist..
Complementary Problems

CLIQUE and **SUBSET-SUM** seem *not* to be members of NP.

It is harder to efficiently verify that something *does not* exist than to efficiently verify that something *does* exist.

Definition: The class **coNP**:
\[L \in \text{coNP} \text{ if } \overline{L} \in \text{NP} \].
Complementary Problems

CLIQUE and **SUBSET-SUM** seem **not** to be members of NP.

It is harder to efficiently verify that something **not** exist than to efficiently verify that something **does** exist..

Definition: The class **coNP**:

$L \in \text{coNP}$ if $\overline{L} \in \text{NP}$.

So far, no one knows if **coNP** is distinct from **NP**.
The question $P = NP$? is one of the great unsolved mysteries in contemporary mathematics.

- most computer scientists believe the two classes are not equal
- most bogus proofs show them equal (why?)
Observations

If \mathcal{P} differs from \mathcal{NP}, then the distinction between \mathcal{P} and $\mathcal{NP} - \mathcal{P}$ is meaningful and important.

languages in \mathcal{P} tractable
Observations

If \mathcal{P} differs from \mathcal{NP}, then the distinction between \mathcal{P} and $\mathcal{NP} - \mathcal{P}$ is meaningful and important.

- languages in \mathcal{P} tractable
- languages in $\mathcal{NP} - \mathcal{P}$ intractable

Until we can prove that $\mathcal{P} \neq \mathcal{NP}$, there is no hope of proving that a specific language lies in $\mathcal{NP} - \mathcal{P}$.
Observations

If \mathcal{P} differs from \mathcal{NP}, then the distinction between \mathcal{P} and $\mathcal{NP} - \mathcal{P}$ is meaningful and important.

- languages in \mathcal{P} tractable
- languages in $\mathcal{NP} - \mathcal{P}$ intractable

Until we can prove that $\mathcal{P} \neq \mathcal{NP}$, there is no hope of proving that a specific language lies in $\mathcal{NP} - \mathcal{P}$. Nevertheless, we can prove statements of the form “If $\mathcal{P} \neq \mathcal{NP}$ then $A \in \mathcal{NP} - \mathcal{P}$.”
The class of **NP-complete** languages are

- “hardest” languages in NP
- “least likely” to be in P
- If any NP-complete $A \in P$, then $NP = P$.
Cook–Levin (1971-1973)

Theorem: There is a language $S \in NP$ such that $S \in P$ if and only if $P = NP$.

This theorem establishes the class of NP-complete languages. Such a language, like Frodo Baggins, “carries on its back” all burden of NP.

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Cook–Levin (1971-1973)

Theorem: There is a language $S \in \mathcal{NP}$ such that $S \in \mathcal{P}$ if and only if $\mathcal{P} = \mathcal{NP}$.

This theorem establishes the class of NP-complete languages.

Such language, like Frodo Baggins, “carries on its back” all burden of \mathcal{NP}.
Poly-Time Computable Functions

Definition: A function

\[f : \Sigma^* \rightarrow \Sigma^* \]

is **polynomial-time computable** if there is a poly-time deterministic TM that

- starts with input \(w \), and
- halts with \(f(w) \) on tape.
Poly-Time Reducibility

Definition: We say that a language A is polynomial time mapping reducible to B, written

$$A \leq_P B,$$

if there is a poly-time computable function

$$f : \Sigma^* \longrightarrow \Sigma^*$$

such that, for every w,

$$w \in A \iff f(w) \in B.$$

The function f is called a polynomial-time reduction from A to B.
Computable Functions

Converts questions about membership in A to membership in B, and does it efficiently.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

f the reduction from A to B, computed by TM M_f.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
- M be the poly-time decider for B.

Computable Functions

Theorem: If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof: Let

- f the reduction from A to B, computed by TM M_f.
- On input x of length n, M_f takes at most $c_1 n^{a_1}$ steps.
- M be the poly-time decider for B.
- On input y of length m, M takes at most $c_2 m^{a_2}$ steps.
Computable Functions

Define N: on input x

1. compute $f(x)$
2. run M on input $f(x)$ and output whatever M outputs.

Analysis:

On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
Computable Functions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 a_2}$ steps.
Computable Functions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 \cdot a_2}$ steps.
- Summing both stages, we got a polynomial in n.

Correctness is clear, so $A \in \mathcal{P}$.

♣

Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University.
Computable Functions

Define \mathcal{N}: on input x

1. compute $f(x)$
2. run \mathcal{M} on input $f(x)$ and output whatever \mathcal{M} outputs.

Analysis:

- On input x of length n, computing $y = f(x)$ takes at most $c_1 n^{a_1}$ steps.
- On input y of length $m = c_1 n^{a_1}$, \mathcal{M} takes at most $c_2 m^{a_2} = c_2 (c_1 n^{a_1})^{a_2} = (c_2 c_1^{a_2}) n^{a_1 \cdot a_2}$ steps.
- Summing both stages, we got a polynomial in n.
- Correctness is clear, so $\mathcal{A} \in P$. ♣
Satisfiability

A boolean variable assumes values
Satisfiability

A boolean variable assumes values true (written 1), and false (written 0).
Satisfiability

- A boolean variable assumes values
 - true (written 1), and false (written 0).
- Boolean operations:
Satisfiability

- A boolean variable assumes values true (written 1), and false (written 0).
- Boolean operations:
 - and: \land
Satisfiability

A boolean variable assumes values true (written 1), and false (written 0).

Boolean operations:
- and: ∧
- or: ∨
Satisfiability

A boolean variable assumes values true (written 1), and false (written 0).

Boolean operations:

- and: \land
- or: \lor
- not: \neg

Examples:

- $0 \land 1 = 0$
- $0 \lor 1 = 1$
- $0 = 1$
Satisfiability

- A boolean variable assumes values true (written 1), and false (written 0).

- Boolean operations:
 - and: \land
 - or: \lor
 - not: \neg

- Examples:

 $0 \land 1 = 0$
 $0 \lor 1 = 1$
 $\overline{0} = 1$
Satisfiability

A boolean formula is an expression involving boolean variables and operations.

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]
Satisfiability

A boolean formula is an expression involving boolean variables and operations.

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]

Definition: A formula is satisfiable if some assignment of 0s and 1s to the variables makes the formula evaluate to 1.
Satisfiability

\[\phi = (\overline{x} \land y) \lor (x \land \overline{z}) \]

is satisfiable by

\[x = 0 \]
\[y = 1 \]
\[z = 0 \]

This assignment satisfies \(\phi \).
Satisfiability

Define

$$\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable Boolean formula} \}$$
Satisfiability

It is useful to consider special version:
Satisfiability

It is useful to consider special version:

- A **literal** is a variable or negated variable: x or \overline{x}.
Satisfiability

It is useful to consider special version:

- A **literal** is a variable or negated variable: \(x \) or \(\overline{x} \).
- A **term** is several literals joined by \(\lor \)s:
 \[
 (x_1 \lor \overline{x_2} \lor \overline{x_3})
 \]
Satisfiability

It is useful to consider special version:

- A **literal** is a variable or negated variable: \(x \) or \(\overline{x} \).
- A **term** is several literals joined by \(\lor \)'s:
 \[
 (x_1 \lor \overline{x_2} \lor \overline{x_3})
 \]
- A Boolean formula is in **conjunctive normal form** (CNF) if it consists of terms, connected with \(\land \)'s.
Satisfiability

It is useful to consider special version:

- A **literal** is a variable or negated variable: x or \overline{x}.
- A **term** is several literals joined by \lor s:
 \[(x_1 \lor \overline{x_2} \lor \overline{x_3})\]
- A Boolean formula is in **conjunctive normal form (CNF)** if it consists of **terms**, connected with \land s.
- For example
 \[(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6})\]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_3 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)\]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[(x_1 \vee \bar{x}_2 \vee \bar{x}_3) \land (x_3 \vee \bar{x}_5 \vee x_6) \land (x_3 \vee \bar{x}_6 \vee x_4)\]

Define

\[3\text{SAT} = \{ \langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula} \}\]
Satisfiability

Definition: A Boolean formula is in 3CNF form if it is a CNF formula, and all terms have three literals.

\[(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)\]

Define

\[3SAT = \{\langle \phi \rangle \mid \phi \text{ is satisfiable 3CNF formula}\}\]

Clearly, if \(\phi\) is a satisfiable 3CNF formula, then for any satisfying assignment of \(\phi\), every clause must contain at least one literal assigned 1.
Reductions

Claim: There is a poly time reduction from 3SAT to CLIQUE. In other words,

\[3\text{SAT} \leq^P \text{CLIQUE} . \]
Reductions

Claim: There is a poly time reduction from 3SAT to CLIQUE. In other words,

\[3\text{SAT} \leq_P \text{CLIQUE}. \]

We’ll construct a poly time reduction \(f \) that maps 3CNF formulae \(\phi \) to graphs and numbers, \(\langle G, k \rangle \). The function \(f \) will have the property that \(\phi \) is satisfiable if and only if \(G \) has a clique of size \(k \).
Examples: Clique

Reminder: A **clique** in a graph is a subgraph where every two nodes are connected by an edge.

A **k-clique** is a clique of size k. For example, the graph above has a **5-clique**.
3SAT \leq_P CLIQUE

Let ϕ be a 3CNF formula with k clauses.

$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (x_3 \lor \overline{x_5} \lor x_6) \land (x_3 \lor \overline{x_6} \lor x_4)$$

We define a graph G as follows:
3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.

3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
- each triple corresponds to a term of ϕ.

3SAT \leq_P CLIQUE

We define a graph G as follows:

- nodes in G are organized into triples t_1, \ldots, t_k.
- each triple corresponds to a term of ϕ
- each node in a triple corresponds to a literal.
$\text{3SAT} \leq_P \text{CLIQUE}$

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})$$
3SAT vs. CLIQUE

\[(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})\]

Add edges between all vertex pairs, except
- within same triple
- between contradictory literals
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.

- at least one literal is true in every term
Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.

- at least one literal is true in every term
- in every tuple, select one true literal
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.

- at least one literal is true in every term
- in every tuple, select one true literal
- they can be joined by edges
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

Suppose ϕ is satisfiable.
- at least one literal is true in every term
- in every tuple, select one true literal
- they can be joined by edges
- yielding a k-clique
3SAT \leq_P CLIQUE

Claim: If ϕ is satisfiable, G has a k-clique.

$$(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_3} \lor x_5 \lor x_6) \land (x_3 \lor x_4 \lor \overline{x_6})$$

![Diagram showing a graph with vertices labeled x_1, x_2, \ldots, x_6 connected by edges to form a 5-clique.](image-url)
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
3SAT \leq_P CLIQUE

Claim: If \(G \) has a \(k \)-clique, \(\phi \) is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have \(k \) vertexes and \(k \) terms, so
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k terms, so
- each triple has exactly one clique node.
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k terms, so
- each triple has exactly one clique node.
- Assign 1 to each node in clique
3SAT \leq_P CLIQUE

Claim: If G has a k-clique, ϕ is satisfiable.

- No two of the cliques nodes are in the same triple.
- Have k vertexes and k terms, so
each triple has exactly one clique node.
- Assign 1 to each node in clique
- no contradictions.
3SAT \leq_P CLIQUE

We’ve constructed a poly time computable function f.
3SAT \leq_P CLIQUE

- We’ve constructed a poly time computable function f.
- We saw that the function f has the property that $\phi \in 3\text{SAT}$ if and only if $f(\phi) \in \text{CLIQUE}$.
3SAT \leq_P CLIQUE

- We’ve constructed a poly time computable function f.
- We saw that the function f has the property that $\phi \in 3\text{SAT}$ if and only if $f(\phi) \in \text{CLIQUE}$.
- Therefore f is a reduction from 3SAT to CLIQUE, so $3\text{SAT} \leq_P \text{CLIQUE}$.

♣
Independent Set

An independent set in a graph is a set of vertexes, no two of which are linked by an edge.

The independent set problem asks whether there exists an independent set of size k.
Independent Set

Define

\[\text{INDEPENDENT-SET} = \{ \langle G, k \rangle | G \text{ contains an independent set of size } k \} \]
Independent Set

Define

\[\text{INDEPENDENT-SET} = \{ \langle G, k \rangle \mid G \text{ contains an independent set of size } k \} \]

Claim: INDEPENDENT-SET is polynomial time reducible to CLIQUE,

\[\text{INDEPENDENT-SET} \leq_P \text{CLIQUE} \]

and vice-versa,

\[\text{CLIQUE} \leq_P \text{INDEPENDENT-SET} \]
Independent Set

Definition: The complement of a graph of \(G = (V, E) \) is a graph \(G^c = (V, E^c) \), where

\[
E^c = \{(v_1, v_2) \mid v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.
\]
Independent Set

Definition: The complement a graph of $G = (V, E)$ is a graph $G^c = (V, E^c)$, where

$$E^c = \{(v_1, v_2) | v_1, v_2 \in V \text{ and } (v_1, v_2) \notin E\}.$$

Claim: If V is an independent set in G, then V is a clique in G^c.

’nuff said.
Independent Set
A Hamiltonian path in a directed G visits each note once.
Hamiltonian Path

\[\text{HAMPATH} = \{ \langle G, s, t \rangle | G \text{ has Hamiltonian path from } s \text{ to } t \} \]
Hamiltonian Circuit

visits each note once.
Hamiltonian Circuit

- visits each node once.
- ends up **where it started**
Hamiltonian Circuit

\[\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \} \]
Hamiltonian Circuit

\[
\text{HAMCIRCUIT} = \{ \langle G \rangle \mid G \text{ has Hamiltonian circuit} \}
\]

Theorem: HAMPATH is polynomial-time reducible to HAMCIRCUIT,

\[
\text{HAMPATH} \leq_P \text{HAMCIRCUIT}.
\]
Reduction

Theorem: HAMPATH is polynomial-time reducible to HAMCIRCUIT.
Reduction

Theorem: HAMCIRCUIT is polynomial-time reducible to HAMPATH.

Proof: Left as an easy (recommended) exercise.
Definition

A language \mathcal{B} is NP-complete if it satisfies
Definition

A language \mathcal{B} is NP-complete if it satisfies

$\mathcal{B} \in NP$, and
Definition

A language \mathcal{B} is **NP-complete** if it satisfies

- $\mathcal{B} \in \text{NP}$, and
- Every \mathcal{A} in NP is polynomial time reducible to \mathcal{B}
Theorem

Theorem: If B is NP-complete and $B \in P$, then $P = NP$.

To show $P = NP$, suffices find a polynomial-time algorithm for some NP-complete problem.
Theorem

Theorem: If \mathcal{B} is NP-complete and $\mathcal{B} \leq_P \mathcal{C}$, for $\mathcal{C} \in \text{NP}$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in \text{NP}$,
Theorem

Theorem: If \mathcal{B} is NP-complete and $\mathcal{B} \leq_P \mathcal{C}$, for $\mathcal{C} \in \text{NP}$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in \text{NP}$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
Theorem

Theorem: If \mathcal{B} is NP-complete and $\mathcal{B} \leq_P \mathcal{C}$, for $\mathcal{C} \in NP$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in NP$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
- Because \mathcal{B} is NP-complete,
Theorem

Theorem: If \mathcal{B} is NP-complete and $\mathcal{B} \leq_P \mathcal{C}$, for $\mathcal{C} \in \mathcal{NP}$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in \mathcal{NP}$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
- Because \mathcal{B} is NP-complete,
- every language in NP is poly-time reducible to \mathcal{B}.
Theorem

Theorem: If B is NP-complete and $B \leq_P C$, for $C \in NP$, then C is NP-complete.

- We know that $C \in NP$,
- must show that every A in NP is poly-time reducible to C.
- Because B is NP-complete,
- every language in NP is poly-time reducible to B.
- B is poly-time reducible to C
Theorem

Theorem: If \mathcal{B} is NP-complete and $\mathcal{B} \leq_P \mathcal{C}$, for $\mathcal{C} \in NP$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in NP$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
- Because \mathcal{B} is NP-complete,
- every language in NP is poly-time reducible to \mathcal{B}.
- \mathcal{B} is poly-time reducible to \mathcal{C}
- Can compose poly-time reductions (why?), so
Theorem

Theorem: If \mathcal{B} is NP-complete and $\mathcal{B} \leq_P \mathcal{C}$, for $\mathcal{C} \in NP$, then \mathcal{C} is NP-complete.

- We know that $\mathcal{C} \in NP$,
- must show that every \mathcal{A} in NP is poly-time reducible to \mathcal{C}.
- Because \mathcal{B} is NP-complete,
- every language in NP is poly-time reducible to \mathcal{B}.
- \mathcal{B} is poly-time reducible to \mathcal{C}
- Can compose poly-time reductions (why?), so \mathcal{A} is poly-time reducible to \mathcal{C}.
Strategy

Once we have one “structured” NP-complete problem, we can generate more by poly-time reduction.
Strategy

- Once we have one “structured” NP-complete problem, we can generate more by poly-time reduction.
- Getting the first one requires some work.
Strategy

- Once we have one “structured” NP-complete problem, we can generate more by poly-time reduction.

- Getting the first one requires some work.

- This is what Steve Cook (then in Berkeley, now in Toronto) and Leonid Levin (then in Moscow, now in Boston) did in the early seventies.
Traveling Salesman

Parameters:
- set of cities C
- set of inter-city distances D
- goal k

(not drawn to scale)
Traveling Salesman

Define

\[
\text{TRAVELING-SALESMAN} = \{ \langle C, D, k \rangle | (C, D, k) \text{ there is a tour of total distance } \leq k \}.
\]