The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms

Alon Ardenboim

Algorithmic Game Theory Seminar - TAU

January 6, 2011
1 Introduction
- Introduction

2 The Proportional Allocation Mechanism
- Definition
- Price Taking Users and Competitive Equilibrium
- Price Anticipating Users and Nash Equilibrium
- Price of Anarchy

3 A Characterization Theorem
- Motivation
- Smooth Market Clearing Mechanism
- General Class of Mechanisms \mathcal{D}
- \mathcal{D} Characterization

4 The Vickery-Clarke-Groves (VCG) Approach
- VCG Mechanisms
- Scalar Strategy VCG Mechanisms
- Efficiency for SSVCG
Resource allocation

- Several users are competing on a single, infinitely divisible resource.
Resource allocation

- Several users are competing on a single, infinitely divisible resource. i.e. Bandwidth.
Resource allocation

- Several users are competing on a single, infinitely divisible resource, i.e., Bandwidth.
- Each user offers a bid.
Resource allocation

- Several users are competing on a single, infinitely divisible resource. i.e. Bandwidth.
- Each user offers a bid.
- We would like to find efficient mechanisms to ensure the utility is maximized for all users (formalized as low price of anarchy).
Resource allocation

- Several users are competing on a single, infinitely divisible resource. i.e. Bandwidth.
- Each user offers a bid.
- We would like to find efficient mechanisms to ensure the utility is maximized for all users (formalized as low price of anarchy).
- We would like to characterize the efficiency of a general class of mechanisms.
Resource allocation

- Several users are competing on a single, infinitely divisible resource, i.e., Bandwidth.
- Each user offers a bid.
- We would like to find efficient mechanisms to ensure the utility is maximized for all users (formalized as low price of anarchy).
- We would like to characterize the efficiency of a general class of mechanisms.
- No algorithms described, but communication overhead should be low (users choose a single parameter).
Resource allocation

- Several users are competing on a single, infinitely divisible resource, i.e., Bandwidth.
- Each user offers a bid.
- We would like to find efficient mechanisms to ensure the utility is maximized for all users (formalized as low price of anarchy).
- We would like to characterize the efficiency of a general class of mechanisms.
- No algorithms described, but communication overhead should be low (users choose a single parameter).
- We would investigate a VCG approach.
Problem Definition

- Notation:

\[\begin{align*}
R & \text{users} \\
\mathbf{C} & \text{a resource of capacity} \quad \mathbf{C} > 0 \text{ which they share} \\
d_r & \text{the amount of} \quad \mathbf{C} \text{ allocated to user} \\
U_r(d_r) & \text{the utility user} \quad r \text{ gets} \\
\end{align*}\]

Goal (denoted from now on as \(\text{SYSTEM}\)):

\[
\max \sum_r U_r(d_r) \quad \text{subject to} \quad \sum_r d_r \leq \mathbf{C} \quad d_r \geq 0 \quad \forall r \in R
\]
Problem Definition

- Notation:
 - R users
Problem Definition

Notation:

- R users
- a resource of capacity $C > 0$ which they share
Notation:

- R users
- a resource of capacity $C > 0$ which they share
- each d_r - the amount of C allocated to user r
Problem Definition

- **Notation:**
 - R users
 - a resource of capacity $C > 0$ which they share
 - each d_r - the amount of C allocated to user r
 - $U_r(d_r)$ - the *utility* user r gets
Problem Definition

- Notation:
 - R users
 - a resource of capacity $C > 0$ which they share
 - each d_r - the amount of C allocated to user r
 - $U_r(d_r)$ - the utility user r gets

- Goal (denoted from now on as $SYSTEM$):
Problem Definition

- Notation:
 - R users
 - a resource of capacity $C > 0$ which they share
 - each d_r - the amount of C allocated to user r
 - $U_r(d_r)$ - the utility user r gets

- Goal (denoted from now on as SYSTEM):

$$\text{maximize } \sum_r U_r(d_r)$$

subject to

$$\sum_r d_r \leq C$$

$$d_r \geq 0 \quad \forall r \in R$$
Formalities

- **Assumption 1:**

\[\text{for each } r, \text{ over the domain } d_r \geq 0 \text{ the utility function } U_r(d_r) \text{ is concave, strictly increasing and continuous} \]

\[\text{over the domain } d_r > 0, U_r(d_r) \text{ is continuously differentiable} \]

\[\text{the right directional derivative at 0 (denoted } U'_{r}(0) \text{) is finite} \]

\[U^- \text{ the set of all utility functions satisfying these conditions} \]

- the objective function is the utilitarian social welfare function
- the objective function is continuous and the feasible region is compact
- an optimal solution \(d = (d_1, \ldots, d_R) \) exists
- \(U_r \) are strictly concave - the optimal solution is unique (feasible region is convex)

- obvious problem
- \(U_r \text{ aren't available to the resource manager (strategic players)} \)
Formalities

- Assumption 1:
 - for each \(r \), over the domain \(d_r \geq 0 \) the utility function \(U_r(d_r) \) is concave, strictly increasing, and continuous

\[U \text{- the set of all utility functions satisfying these conditions} \]
\[\text{the objective function is the utilitarian social welfare function} \]
\[\text{the objective function is continuous and the feasible region is compact} \]
\[\text{an optimal solution} \ d = (d_1, ..., d_R) \text{ exists} \]
\[\text{\(U_r \) are strictly concave} \]
\[\text{the optimal solution is unique (feasible region is convex)} \]
\[\text{obvious problem} \]
\[\text{the utility functions aren’t available to the resource manager (strategic players)} \]
• Assumption 1:
 ▶ for each \(r \), over the domain \(d_r \geq 0 \) the utility function \(U_r(d_r) \) is concave, strictly increasing and continuous
 ▶ over the domain \(d_r > 0 \), \(U_r(d_r) \) is continuously differentiable
Assumption 1:
- for each r, over the domain $d_r \geq 0$ the utility function $U_r(d_r)$ is concave, strictly increasing and continuous
- over the domain $d_r > 0$, $U_r(d_r)$ is continuously differentiable
- the right directional derivative at 0 (denoted $U'_r(0)$) is finite
Assumption 1:
- for each r, over the domain $d_r \geq 0$ the utility function $U_r(d_r)$ is concave, strictly increasing and continuous
- over the domain $d_r > 0$, $U_r(d_r)$ is continuously differentiable
- the right directional derivative at 0 (denoted $U'_r(0)$) is finite
- \mathcal{U} - the set of all utility functions satisfying these conditions
Formalities

- **Assumption 1:**
 - for each \(r \), over the domain \(d_r \geq 0 \) the utility function \(U_r(d_r) \) is concave, strictly increasing and continuous
 - over the domain \(d_r > 0 \), \(U_r(d_r) \) is continuously differentiable
 - the right directional derivative at 0 (denoted \(U'_r(0) \)) is finite
 - \(\mathcal{U} \) - the set of all utility functions satisfying these conditions

- the objective function is the utilitarian social welfare function
Formalities

- **Assumption 1:**
 - for each r, over the domain $d_r \geq 0$ the utility function $U_r(d_r)$ is concave, strictly increasing and continuous
 - over the domain $d_r > 0$, $U_r(d_r)$ is continuously differentiable
 - the right directional derivative at 0 (denoted $U'_r(0)$) is finite
 - \mathcal{U} - the set of all utility functions satisfying these conditions

- the objective function is the utilitarian social welfare function
- the objective function is continuous and the feasible region is compact
 - an optimal solution $d = (d_1, \ldots, d_R)$ exists
Formalities

- Assumption 1:
 - for each r, over the domain $d_r \geq 0$ the utility function $U_r(d_r)$ is concave, strictly increasing and continuous
 - over the domain $d_r > 0$, $U_r(d_r)$ is continuously differentiable
 - the right directional derivative at 0 (denoted $U'_r(0)$) is finite
 - \mathcal{U} - the set of all utility functions satisfying these conditions

- the objective function is the utilitarian social welfare function
- the objective function is continuous and the feasible region is compact
 - an optimal solution $d = (d_1, ..., d_R)$ exists
- U_r are strictly concave - the optimal solution is unique (feasible region is convex)
Assumption 1:
- for each r, over the domain $d_r \geq 0$ the utility function $U_r(d_r)$ is concave, strictly increasing and continuous
- over the domain $d_r > 0$, $U_r(d_r)$ is continuously differentiable
- the right directional derivative at 0 (denoted $U'_r(0)$) is finite
- U - the set of all utility functions satisfying these conditions

the objective function is the utilitarian social welfare function

the objective function is continuous and the feasible region is compact
- an optimal solution $d = (d_1, ..., d_R)$ exists

U_r are strictly concave - the optimal solution is unique (feasible region is convex)

obvious problem - the utility functions aren’t available to the resource manager (strategic players)
PAM definition

- **PAM (Proportional Allocation Mechanism)** - the pricing scheme for resource allocation
PAM definition

- PAM (Proportional Allocation Mechanism) - the pricing scheme for resource allocation
- each user r gives a bid - w_r to the resource manager (obviously $w_r \geq 0$)
PAM definition

- PAM (Proportional Allocation Mechanism) - the pricing scheme for resource allocation
- each user \(r \) gives a bid - \(w_r \) to the resource manager (obviously \(w_r \geq 0 \))
- given the vector \(\mathbf{w} = (w_1, \ldots, w_r) \), the resource manager chooses an allocation \(\mathbf{d} = (d_1, \ldots, d_r) \).
PAM definition

- **PAM (Proportional Allocation Mechanism)** - the pricing scheme for resource allocation
- each user r gives a bid - w_r to the resource manager (obviously $w_r \geq 0$)
- given the vector $\mathbf{w} = (w_1, \ldots, w_r)$, the resource manager chooses an allocation $\mathbf{d} = (d_1, \ldots, d_r)$.
- no discrimination
PAM definition

- PAM (Proportional Allocation Mechanism) - the pricing scheme for resource allocation
- each user r gives a bid - w_r to the resource manager (obviously $w_r \geq 0$)
- given the vector $\mathbf{w} = (w_1, ..., w_r)$, the resource manager chooses an allocation $\mathbf{d} = (d_1, ..., d_r)$.
- no discrimination
- each user is charged the same price $\mu \rightarrow d_r = \frac{w_r}{\mu}$
PAM definition

- PAM (Proportional Allocation Mechanism) - the pricing scheme for resource allocation
- each user \(r \) gives a bid - \(w_r \) to the resource manager (obviously \(w_r \geq 0 \))
- given the vector \(\mathbf{w} = (w_1, ..., w_r) \), the resource manager chooses an allocation \(\mathbf{d} = (d_1, ..., d_r) \).
- no discrimination
- each user is charged the same price \(\mu \rightarrow d_r = w_r / \mu \)
- must satisfy \(\sum_r \frac{w_r}{\mu} = C \) (eating the whole cake)
PAM definition

- PAM (Proportional Allocation Mechanism) - the pricing scheme for resource allocation
- each user \(r\) gives a bid - \(w_r\) to the resource manager (obviously \(w_r \geq 0\))
- given the vector \(w = (w_1, ..., w_r)\), the resource manager chooses an allocation \(d = (d_1, ..., d_r)\).
- no discrimination
- each user is charged the same price \(\mu \rightarrow d_r = w_r / \mu\)
- must satisfy \(\sum_r w_r / \mu = C\) (eating the whole cake)
- we get \(\mu = \frac{\sum_r w_r}{C}\)
Competitive Equilibrium for *price takers*

- users are *price takers* - each user does not anticipate the effect of their payment w_r on the price μ

\[P_r(w_r; \mu) = U_r(w_r, \mu) - w_r \] over $w_r \geq 0$

similar to value

A pair $((w_1, \ldots, w_R), \mu)$ is a competitive equilibrium if for every user r:

\[P_r(w_r; \mu) \geq P_r(w_r; \mu) \quad \forall w_r \geq 0 \]

$\mu = \sum_r w_r$

intuitively - each user gets the best value with its current payment and the “whole pie” is eaten
Competitive Equilibrium for *price takers*

- users are *price takers* - each user does not anticipate the effect of their payment w_r on the price μ
- given a price $\mu > 0$, user r wishes to maximize the following:

$$P_r(w_r; \mu) = U_r \left(\frac{w_r}{\mu} \right) - w_r$$

over $w_r \geq 0$
Competitive Equilibrium for *price takers*

- users are *price takers* - each user does not anticipate the effect of their payment w_r on the price μ
- given a price $\mu > 0$, user r wishes to maximize the following:
 \[
 P_r(w_r; \mu) = U_r \left(\frac{w_r}{\mu} \right) - w_r
 \]
 over $w_r \geq 0$
- similar to value
Competitive Equilibrium for *price takers*

- users are *price takers* - each user does not anticipate the effect of their payment w_r on the price μ
- given a price $\mu > 0$, user r wishes to maximize the following:

$$P_r(w_r; \mu) = U_r \left(\frac{w_r}{\mu} \right) - w_r$$

over $w_r \geq 0$
- similar to value
- a pair $(w = (w_1, ..., w_R), \mu)$ is a *competitive equilibrium* if for every user r:

$$P_r(w_r; \mu) \geq P_r(\overline{w}_r; \mu) \quad \forall \overline{w}_r \geq 0$$

$$\mu = \frac{\sum_r w_r}{C}$$
Competitive Equilibrium for *price takers*

- users are *price takers* - each user does not anticipate the effect of their payment w_r on the price μ
- given a price $\mu > 0$, user r wishes to maximize the following:

 $$P_r(w_r; \mu) = U_r \left(\frac{w_r}{\mu} \right) - w_r$$

 over $w_r \geq 0$
- similar to value
- a pair $(w = (w_1, ..., w_R), \mu)$ is a *competitive equilibrium* if for every user r:

 $$P_r(w_r; \mu) \geq P_r(\overline{w}_r; \mu) \quad \forall \overline{w}_r \geq 0$$

 $$\mu = \frac{\sum_r w_r}{C}$$
Competitive Equilibrium for *price takers*

Theorem

There exists a competitive equilibrium \((w, \mu)\), and for which, the vector \(d = w/\mu\) is an optimal solution for SYSTEM.
Competitive Equilibrium for *price takers*

Theorem

There exists a competitive equilibrium \((w, \mu)\), and for which, the vector \(d = w/\mu\) is an optimal solution for SYSTEM.

Proof.

- The payoff function \((P_r(w_r; \mu))\) is concave for any \(\mu > 0\).
Competitive Equilibrium for *price takers*

Theorem

There exists a competitive equilibrium \((w, \mu)\), and for which, the vector \(d = w/\mu\) is an optimal solution for SYSTEM.

Proof.

- The payoff function \((P_r(w_r; \mu))\) is concave for any \(\mu > 0\).
- Let \(d_r = w_r/\mu\).
Theorem

There exists a competitive equilibrium \((w, \mu)\), and for which, the vector \(d = w/\mu\) is an optimal solution for SYSTEM.

Proof.

- The payoff function \((P_r(w_r; \mu))\) is concave for any \(\mu > 0\).
- Let \(d_r = w_r/\mu\).
- If \(d_r \geq 0\) then \(P_r(w_r; \mu)' = \frac{1}{\mu} U'_r(d_r) - 1 = 0 \Rightarrow U'_r(d_r) = \mu\).
Theorem

There exists a competitive equilibrium \((w, \mu)\), and for which, the vector \(d = \frac{w}{\mu}\) is an optimal solution for SYSTEM.

Proof.

- The payoff function \((P_r(w_r; \mu))\) is concave for any \(\mu > 0\).
- Let \(d_r = \frac{w_r}{\mu}\).
- If \(d_r \geq 0\) then \(P_r(w_r; \mu)' = \frac{1}{\mu} U'_r(d_r) - 1 = 0 \Rightarrow U'_r(d_r) = \mu\).
- If \(d_r = 0\) then \(U'_r(0) \leq \mu\).
Theorem

There exists a competitive equilibrium \((w, \mu)\), and for which, the vector \(d = w/\mu\) is an optimal solution for SYSTEM.

Proof.

- The payoff function \((P_r(w_r; \mu))\) is concave for any \(\mu > 0\).
- Let \(d_r = w_r/\mu\).
- If \(d_r \geq 0\) then \(P_r(w_r; \mu)' = \frac{1}{\mu} U'_r(d_r) - 1 = 0 \Rightarrow U'_r(d_r) = \mu\).
- If \(d_r = 0\) then \(U'_r(0) \leq \mu\).
- From the second equilibrium condition we get that \(C = \sum_r \frac{w_r}{\mu} = \sum_r d_r\).
Competitive Equilibrium for price takers

proof-cont.

- Using simple Lagrangian optimization, we get that these conditions are exactly the optimality conditions for $SYSTEM$.
Using simple Lagrangian optimization, we get that these conditions are exactly the optimality conditions for SYSTEM.

Therefore, \((w, \mu)\) is a competitive equilibrium \(\iff d = w/\mu\) is a solution to SYSTEM with Lagrange multiplier \(\mu\).
Competitive Equilibrium for price takers

proof-cont.

- Using simple Lagrangian optimization, we get that these conditions are exactly the optimality conditions for \(\text{SYSTEM} \).
- Therefore, \((w, \mu)\) is a competitive equilibrium \(\iff d = w/\mu \) is a solution to \(\text{SYSTEM} \) with Lagrange multiplier \(\mu \).
- There exists a unique solution to \(\text{SYSTEM} \) \(\Rightarrow \) there exists a competitive equilibrium.
Using simple Lagrangian optimization, we get that these conditions are exactly the optimality conditions for SYSTEM.

Therefore, \((w, \mu)\) is a competitive equilibrium \(\iff d = w/\mu\) is a solution to SYSTEM with Lagrange multiplier \(\mu\).

There exists a unique solution to SYSTEM \(\Rightarrow\) there exists a competitive equilibrium.
Using simple Lagrangian optimization, we get that these conditions are exactly the optimality conditions for \(\text{SYSTEM} \).

Therefore, \((w, \mu)\) is a competitive equilibrium \(\iff d = w/\mu \) is a solution to \(\text{SYSTEM} \) with Lagrange multiplier \(\mu \).

There exists a unique solution to \(\text{SYSTEM} \) \(\Rightarrow \) there exists a competitive equilibrium.

Meaning - if users are \emph{price takers} then there exists an equilibrium \(w \) where all users have optimally chosen their bids \(w_r \) with respect to the given price \(\mu = \frac{\sum_r w_r}{c} \) and the aggregate utility is maximized.
Nash Equilibrium for *price anticipators*

- Users are smart - they realize that $\mu = \frac{\sum_r w_r}{C}$.
Nash Equilibrium for price anticipators

- Users are smart - they realize that $\mu = \frac{\sum w_r}{C}$.
- We have a game between R players.
Nash Equilibrium for price anticipators

- Users are smart - they realize that $\mu = \sum_r \frac{w_r}{C}$.
- We have a game between R players.
- $w_{-r} = (w_1, w_2, \ldots, w_{r-1}, w_{r+1}, \ldots, w_R)$ (everybody except me)
Nash Equilibrium for price anticipators

- Users are smart - they realize that $\mu = \frac{\sum w_r}{C}$.
- We have a game between R players.
- $w_{-r} = (w_1, w_2, \ldots, w_{r-1}, w_{r+1}, \ldots, w_R)$ (everybody except me)
- given w_{-r}, user r chooses w_r to maximize:

$$Q_r(w_r; w_{-r}) = \begin{cases} U_r \left(\frac{w_r}{\sum_{s} w_s} C \right) - w_r & w_r > 0 \\ U_r(0) & w_r = 0 \end{cases}$$
Nash Equilibrium for *price anticipators*

- Users are smart - they realize that $\mu = \frac{\sum_r w_r}{C}$.
- We have a game between R players.
- $w_{-r} = (w_1, w_2, \ldots, w_{r-1}, w_{r+1}, \ldots, w_R)$ (everybody except me)
- given w_{-r}, user r chooses w_r to maximize:

$$Q_r(w_r; w_{-r}) = \begin{cases} U_r \left(\frac{w_r}{\sum_s w_s} C \right) - w_r & w_r > 0 \\ U_r(0) & w_r = 0 \end{cases}$$

- A *Nash equilibrium* is a bid w such that for all r:

$$Q_r(w_r; w_{-r}) \geq Q_r(\overline{w}_r; w_{-r}) \quad \forall \overline{w}_r \geq 0$$
Nash Equilibrium for *price anticipators*

Theorem

Suppose $R > 1$. *Then there exists a unique Nash equilibrium* $\mathbf{w} \geq 0$ *of the game defined by* (Q_1, \ldots, Q_r), *and it satisfies* $\sum_r w_r > 0$.

Nash Equilibrium for price anticipators

Theorem

- Suppose $R > 1$. Then there exists a unique Nash equilibrium $w \geq 0$ of the game defined by $(Q_1, ..., Q_r)$, and it satisfies $\sum_r w_r > 0$.

- The vector d defined by $d_r = \frac{w_r}{\sum_s w_s} C$ is a unique optimal solution for the following optimization problem (denoted as GAME):

 \[
 \text{maximize } \sum_r \hat{U}_r(d_r) \\
 \text{subject to } \sum_r d_r \leq C \\
 d_r \geq 0 \quad \forall r \in [R]
 \]

 where $\hat{U}_r(d_r) = \left(1 - \frac{d_r}{C}\right) U_r(d_r) + \frac{d_r}{C} \left(\frac{1}{d_r} \int_0^{d_r} U_r(z)dz\right)$.
Nash Equilibrium for *price anticipators*

Proof.

- At any Nash equilibrium, at least two bidders with positive bid (otherwise, the only bidder can always offer less and increase his gain) - therefore the payoff function is concave and continuous in w_r.
Nash Equilibrium for *price anticipators*

Proof.

- At any Nash equilibrium, at least two bidders with positive bid (otherwise, the only bidder can always offer less and increase his gain) - therefore the payoff function is concave and continuous in w_r.
- The same as with the previous theorem, we can find the conditions for maxima:

$$U'_r \left(\frac{w_r}{\sum_s w_s} C \right) \left(1 - \frac{w_r}{\sum_s w_s} \right) = \frac{\sum_s w_s}{C} \quad w_r > 0$$

$$U'_r(0) \leq \frac{\sum_s w_s}{C} \quad w_r = 0$$
Nash Equilibrium for *price anticipators*

proof-cont.

Let $\rho = \sum_s w_s / C$ and $d_r = w_r / \rho$, we can rewrite the previous:

\[
\hat{U}_r'(d_r) = \rho \quad d_r > 0 \\
\hat{U}_r'(0) \leq \rho \quad d_r = 0 \\
\sum_r d_r = C
\]
Nash Equilibrium for price anticipators

proof-cont.

- Let \(\rho = \sum_s w_s / C \) and \(d_r = w_r / \rho \), we can rewrite the previous:

\[
\hat{U}_r'(d_r) = \rho \quad d_r > 0 \\
\hat{U}_r'(0) \leq \rho \quad d_r = 0 \\
\sum_r d_r = C
\]

- We get the same optimality conditions as we got with competitive equilibrium, but under a different objective function.
Nash Equilibrium for *price anticipators*

proof-cont.

- Let \(\rho = \sum_s w_s / C \) and \(d_r = w_r / \rho \), we can rewrite the previous:

 \[
 \hat{U}_r'(d_r) = \rho \quad d_r > 0 \\
 \hat{U}_r'(0) \leq \rho \quad d_r = 0 \\
 \sum_r d_r = C
 \]

- We get the same optimality conditions as we got with competitive equilibrium, but under a different objective function.

- Since the utility functions \(\hat{U}_r(d_r) \) are strictly concave and continuous over \(0 \leq d_r \leq C \), these conditions are sufficient optimality for \(GAME \).
Nash Equilibrium for *price anticipators*

proof-cont.

Hence, \(\mathbf{w} \) is a Nash equilibrium if and only if \(\sum_s w_s > 0 \) and the resulting allocation \(\mathbf{d} \) is optimal for \(\text{GAME} \) with Lagrange multiplier \(\rho = \sum_s w_s / C \).
Nash Equilibrium for *price anticipators*

proof-cont.

- Hence, \(\mathbf{w} \) is a Nash equilibrium \(\iff \sum_s w_s > 0 \) and the resulting allocation \(\mathbf{d} \) is optimal for GAME with Lagrange multiplier \(\rho = \sum_s w_s / C \).
- GAME has a strictly concave and continuous objective function over a compact feasible region \(\implies \) unique optimal solution \(\implies \) unique Nash equilibrium.
Nash Equilibrium for \textit{price anticipators}

\begin{itemize}
 \item Hence, \(\mathbf{w}\) is a Nash equilibrium \(\iff \sum_s w_s > 0\) and the resulting allocation \(\mathbf{d}\) is optimal for \(\text{GAME}\) with Lagrange multiplier \(\rho = \sum_s w_s / C\).
 \item \(\text{GAME}\) has a strictly concave and continuous objective function over a compact feasible region \(\Rightarrow\) unique optimal solution \(\Rightarrow\) unique Nash equilibrium.
\end{itemize}
Corollary of the Theorem

Corollary

Suppose $R > 1$. Let \mathbf{w} be the unique Nash equilibrium of the game defined by (Q_1, \ldots, Q_R), and \mathbf{d} defined by $d_r = \frac{w_r}{\sum_s w_s} C$, then for every $\mathbf{d} \geq 0$ such that $\sum_r d_r \leq C$, there holds:

$$\sum_r \hat{U}'_r(d_r)(\bar{d}_r - d_r) \leq 0$$
Corollary of the Theorem

Corollary

Suppose $R > 1$. Let w be the unique Nash equilibrium of the game defined by (Q_1, \ldots, Q_R), and d defined by $d_r = \frac{w_r}{\sum_s w_s} C$, then for every $\overline{d} \geq 0$ such that $\sum_r d_r \leq C$, there holds:

$$\sum_r \hat{U}'_r(d_r)(\overline{d}_r - d_r) \leq 0$$
Proof of the Corollary

Proof.

\[\sum_r \hat{U}_r'(d_r)(\overline{d}_r - d_r) \leq \]

Alon Ardenboim

The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms
Proof of the Corollary

Proof.

\[\sum_r \hat{U}_r'(d_r)(\bar{d}_r - d_r) \leq \sum_r \frac{\sum_s w_s}{C} (\bar{d}_r - \frac{w_r}{\sum_s w_s} C) = \]
Proof of the Corollary

Proof.

\[\sum_r \hat{U}_r'(d_r)(\bar{d}_r - d_r) \leq \sum_r \frac{\sum_s w_s}{C} (\bar{d}_r - \frac{w_r}{\sum_s w_s} C) = \]

\[\sum_r \bar{d}_r \frac{\sum_s w_s}{C} - \sum_r w_r \leq \]
Proof of the Corollary

Proof.

\[\sum_r \hat{U}'_r(d_r)(\bar{d}_r - d_r) \leq \sum_r \frac{\sum_s w_s}{C} (\bar{d}_r - \frac{w_r}{\sum_s w_s} C) = \]

\[\sum_r \bar{d}_r \frac{\sum_s w_s}{C} - \sum_r w_r \leq C \frac{\sum_s w_s}{C} - \sum_r w = \]
Proof of the Corollary

Proof.

\[\sum_r \hat{U}_r'(d_r)(\bar{d}_r - d_r) \leq \sum_r \frac{\sum_s w_s}{C} (\bar{d}_r - \frac{w_r}{\sum_s w_s} C) = \]

\[\sum_r \frac{w_r}{C} \sum_s w_s - \sum_r w_r \leq C \frac{\sum_s w_s}{C} - \sum_r w = 0 \]
Measuring Anarchy

- Let’s denote the optimal solution for SYSTEM as d^S and d^G as the optimal solution for GAME.
Measuring Anarchy

- Let’s denote the optimal solution for SYSTEM as \(d^S\) and \(d^G\) as the optimal solution for GAME.
- Price of anarchy - how much utility is lost because users are price anticipating?
Measuring Anarchy

- Let’s denote the optimal solution for $SYSTEM$ as d^S and d^G as the optimal solution for $GAME$.
- Price of anarchy - how much utility is lost because users are *price anticipating*?
- We know that $\sum_r U_r(d^G) \leq \sum_r U_r(d^S)$, but by how much?
Theorem

Suppose that $R > 1$ and that $U_r(0) \geq 0$ for all r. We can bound the efficiency loss by the following:

$$\sum_r U_r(d_r^G) \geq \frac{3}{4} \sum_r U_r(d_r^S)$$

Furthermore, this bound is tight, i.e., for every $\epsilon > 0$, exists R and utility functions U_r for every user r such that:

$$\sum_r U_r(d_r^G) \leq \left(\frac{3}{4} + \epsilon \right) \sum_r U_r(d_r^S)$$
Proof of the Bound

Proof.

\[\beta = \inf_{U \in \mathcal{U}} \inf_{c > 0} \inf_{0 \leq d, \bar{d} \leq c} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \]
Proof of the Bound

Proof.

- \(\beta = \inf_{u \in U} \inf_{c > 0} \inf_{0 \leq d, \bar{d} \leq c} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \)

- \(d \geq \bar{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \bar{d} \)).
Proof of the Bound

Proof.

\[\beta = \inf_{u \in U} \inf_{c > 0} \inf_{0 \leq d, \bar{d} \leq c} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \]

- \(d \geq \bar{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \bar{d} \)).
- If \(d < \bar{d} \), then:
Proof of the Bound

Proof.

1. \(\beta = \inf_{U \in \mathcal{U}} \inf_{C > 0} \inf_{0 \leq d, \bar{d} \leq C} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \)
2. \(d \geq \bar{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \bar{d} \)).
3. If \(d < \bar{d} \), then:

\[
U(d) + \hat{U}'(d)(\bar{d} - d) = \]

\[
\geq \frac{3}{4} U(d) + (1 - d) (U(d) - U(d))
\]
Proof of the Bound

Proof.

- \(\beta = \inf_{u \in U} \inf_{c > 0} \inf_{0 \leq d, \bar{d} \leq c} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \)
- \(d \geq \bar{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \bar{d} \)).
- If \(d < \bar{d} \), then:

\[
U(d) + \hat{U}'(d)(\bar{d} - d) = U(d) + U'(d) \left(1 - \frac{d}{C}\right) (\bar{d} - d)
\]
Proof of the Bound

Proof.

\[\beta = \inf_{u \in U} \inf_{c > 0} \inf_{0 \leq d, \bar{d} \leq c} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \]

- \(d \geq \bar{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \bar{d} \)).
- If \(d < \bar{d} \), then:

\[
U(d) + \hat{U}'(d)(\bar{d} - d) = U(d) + U'(d) \left(1 - \frac{d}{\bar{d}}\right)(\bar{d} - d) \\
\geq U(d) + \left(1 - \frac{d}{\bar{d}}\right)(U(\bar{d}) - U(d))
\]
Proof of the Bound

Proof.

- \(\beta = \inf_{U \in \mathcal{U}} \inf_{C > 0} \inf_{0 \leq d, \overline{d} \leq C} \frac{U(d) + \hat{U}'(d)(\overline{d} - d)}{U(d)} \)

- \(d \geq \overline{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \overline{d} \)).

- If \(d < \overline{d} \), then:

\[
U(d) + \hat{U}'(d)(\overline{d} - d) = U(d) + U'(d) \left(1 - \frac{d}{C}\right)(\overline{d} - d)
\]

\[
\geq U(d) + \left(1 - \frac{d}{\overline{d}}\right)(U(\overline{d}) - U(d))
\]

\[
\geq \left(\frac{d}{\overline{d}}\right)^2 U(\overline{d}) + \left(1 - \frac{d}{\overline{d}}\right) U(\overline{d})
\]
Proof of the Bound

Proof.

\[\beta = \inf_{u \in U} \inf_{c > 0} \inf_{0 \leq d, \bar{d} \leq c} \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)} \]

- \(d \geq \bar{d} \Rightarrow \beta \geq 1 \) (\(\beta \) is increasing in \(d \) and \(\beta = 1 \) when \(d = \bar{d} \)).
- If \(d < \bar{d} \), then:

\[
U(d) + \hat{U}'(d)(\bar{d} - d) = U(d) + U'(d) \left(1 - \frac{d}{C} \right) (\bar{d} - d)
\geq U(d) + \left(1 - \frac{d}{\bar{d}} \right) (U(\bar{d}) - U(d))
\geq \left(\frac{d}{\bar{d}} \right)^2 U(\bar{d}) + \left(1 - \frac{d}{\bar{d}} \right) U(\bar{d}) \geq \frac{3}{4} U(\bar{d})
\]
Proof of the Bound

Proof-cont.

Let \(d^S \) and \(d^G \) be the solutions to SYSTEM and GAME.
Proof of the Bound

Let d^S and d^G be the solutions to SYSTEM and GAME.

Since:

$$
\sum_s U_s(d^S_s) \leq \sum_s \frac{1}{\beta} \left(U_s(d^G_s) + \hat{U}'_s(d^G_s)(d^S_s - d^G_s) \right) \leq \frac{1}{\beta} \sum_s U_s(d^G_s)
$$

we get a bound on the anarchy of $\frac{4}{3}$.
Proof of the Bound

Proof-cont.

- Let \(d^S \) and \(d^G \) be the solutions to \(\text{SYSTEM} \) and \(\text{GAME} \).
- Since:

\[
\sum_s U_s(d^S_s) \leq \sum_s \frac{1}{\beta} \left(U_s(d^G_s) + \hat{U}'_s(d^G_s)(d^S_s - d^G_s) \right) \leq \frac{1}{\beta} \sum_s U_s(d^G_s)
\]

we get a bound on the anarchy of \(\frac{4}{3} \).

- Next step - show the bound is tight.
Proof of the Bound Tightness

Proof-cont.

- Fix $U, d < \bar{d}$ and set $C = \bar{d}$. Suppose $R > 1$ users.
Proof of the Bound Tightness

Proof-cont.

- Fix $U, d < \overline{d}$ and set $C = \overline{d}$. Suppose $R > 1$ users.
- Let $U_1 = U$ and $U_r(d_r) = \hat{U}'(d)d_r = (U'(d)(1 - d/C))d_r$ for $r = 2, ..., R$.

Since a possible solution involves giving all the resource to the first user, it's obvious that $\sum_{s} U_s(d_S) \geq U(d)$. Nash equilibrium has at least 2 users with a positive quantity and is unique \Rightarrow users $2, ..., R$ receive the same quantity.

$\lim_{R \to \infty} d_r = 0$ for $r = 2, ..., R$.

Alon Ardenboim
The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms
Proof of the Bound Tightness

Proof-cont.

- Fix U, $d < \bar{d}$ and set $C = \bar{d}$. Suppose $R > 1$ users.
- Let $U_1 = U$ and $U_r(d_r) = \hat{U}'(d)d_r = (U'(d)(1 - d/C))d_r$ for $r = 2, ..., R$.
- Since a possible solution involves giving all the resource to the first user, it’s obvious that $\sum_s U_s(d^S_s) \geq U(\bar{d})$.

\[\text{Nash equilibrium has at least 2 users with a positive quantity and is unique} \Rightarrow \text{users 2, ..., R receive the same quantity.}\]

\[\lim_{R \to \infty} d_r = 0 \text{ for } r = 2, ..., R.\]
Proof of the Bound Tightness

Proof-cont.

- Fix \(U, d < \bar{d} \) and set \(C = \bar{d} \). Suppose \(R > 1 \) users.
- Let \(U_1 = U \) and \(U_r(d_r) = \hat{U}'(d)d_r = (U'(d)(1 - d/C))d_r \) for \(r = 2, ..., R \).
- Since a possible solution involves giving all the resource to the first user, it's obvious that \(\sum_s U_s(d_s^S) \geq U(\bar{d}) \).
- Nash equilibrium has at least 2 users with a positive quantity and is unique.
Proof-cont.

- Fix U, $d < \bar{d}$ and set $C = \bar{d}$. Suppose $R > 1$ users.
- Let $U_1 = U$ and $U_r(d_r) = \hat{U}'(d)d_r = (U'(d)(1 - d/C))d_r$ for $r = 2, \ldots, R$.
- Since a possible solution involves giving all the resource to the first user, it’s obvious that $\sum_s U_s(d_s^S) \geq U(d)$.
- Nash equilibrium has at least 2 users with a positive quantity and is unique \Rightarrow users $2, \ldots, R$ receive the same quantity.
Proof of the Bound Tightness

Proof-cont.

- Fix U, $d < \bar{d}$ and set $C = \bar{d}$. Suppose $R > 1$ users.
- Let $U_1 = U$ and $U_r(d_r) = \hat{U}'(d)d_r = (U'(d)(1 - d/C))d_r$ for $r = 2, \ldots, R$.
- Since a possible solution involves giving all the resource to the first user, it’s obvious that $\sum_s U_s(d^S_s) \geq U(\bar{d})$.
- Nash equilibrium has at least 2 users with a positive quantity and is unique \Rightarrow users $2, \ldots, R$ receive the same quantity.
- $\lim_{R \to \infty} d_r = 0$ for $r = 2, \ldots, R$.
Proof of the Bound Tightness

Proof-cont.

Out of the equilibrium conditions, we get that when $R \to \infty$:

$$
\sum_s \frac{w_s}{C} = \hat{U}_r'(d_r) = (1 - \frac{d_r}{C})U_r'(d_r) \approx \hat{U}'(d)
$$
Proof of the Bound Tightness

Proof-cont.

- Out of the equilibrium conditions, we get that when \(R \to \infty \):

\[
\sum_s w_s \frac{w_s}{C} = \hat{U}'(d_r) = (1 - \frac{d_r}{C})U'_r(d_r) \approx \hat{U}'(d)
\]

- Hence, at a Nash equilibrium, \(d_1 = d + \epsilon \) and \(d_r = \frac{d - d - \epsilon}{R - 1} \) for \(r = 2, \ldots, R \) where \(\lim_{R \to \infty} \epsilon = 0 \).
Proof of the Bound Tightness

Proof-cont.

- Out of the equilibrium conditions, we get that when \(R \to \infty \):
 \[
 \sum_s \frac{w_s}{C} = \hat{U}_r'(d_r) = (1 - \frac{d_r}{C})U'_r(d_r) \approx \hat{U}'(d)
 \]

- Hence, at a Nash equilibrium, \(d_1 = d + \epsilon \) and \(d_r = \frac{d - d - \epsilon}{R - 1} \) for \(r = 2, ..., R \) where \(\lim_{R \to \infty} \epsilon = 0 \).

- Thus, we get an efficiency of
 \[
 \frac{\sum_s U_s(d^G_s)}{\sum_s U_s(d^S_s)} \ll \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)}
 \]
Proof of the Bound Tightness

Proof-cont.

- Out of the equilibrium conditions, we get that when $R \to \infty$:

$$\sum_s w_s \frac{w_s}{C} = \hat{U}_r'(d_r) = (1 - \frac{d_r}{C}) U'_r(d_r) \approx \hat{U}'(d)$$

- Hence, at a Nash equilibrium, $d_1 = d + \epsilon$ and $d_r = \frac{d - d - \epsilon}{R - 1}$ for $r = 2, \ldots, R$ where $\lim_{R \to \infty} \epsilon = 0$.

- Thus, we get an efficiency of

$$\frac{\sum_s U_s(d_s^G)}{\sum_s U_s(d_s^S)} \leq \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)}.$$

- For $d = \frac{1}{2}$, $\bar{d} = 1$ and $U(x) = x$ we get that

$$\frac{\sum_s U_s(d_s^G)}{\sum_s U_s(d_s^S)} \leq \frac{3}{4}.$$
Proof of the Bound Tightness

Proof-cont.

- Out of the equilibrium conditions, we get that when $R \to \infty$:
 \[
 \frac{\sum_s w_s}{C} = \hat{U}_r'(d_r) = (1 - \frac{d_r}{C})U'_r(d_r) \approx \hat{U}'(d)
 \]

- Hence, at a Nash equilibrium, $d_1 = d + \epsilon$ and $d_r = \frac{\bar{d} - d - \epsilon}{R - 1}$ for $r = 2, ..., R$ where $\lim_{R \to \infty} \epsilon = 0$.

- Thus, we get an efficiency of
 \[
 \frac{\sum_s U_s(d^G_s)}{\sum_s U_s(d^S_s)} \leq \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)}.
 \]

- For $d = \frac{1}{2}$, $\bar{d} = 1$ and $U(x) = x$ we get that
 \[
 \frac{\sum_s U_s(d^G_s)}{\sum_s U_s(d^S_s)} \leq \frac{3}{4}.
 \]

- Meaning - the price of anarchy is exactly $\frac{4}{3}$.

Alon Ardenboim
The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms
Proof of the Bound Tightness

Proof-cont.

- Out of the equilibrium conditions, we get that when $R \to \infty$:

$$\sum_s w_s \frac{w_s}{C} = \hat{U}_r'(d_r) = (1 - \frac{d_r}{C})U'_r(d_r) \approx \hat{U}'(d)$$

- Hence, at a Nash equilibrium, $d_1 = d + \epsilon$ and $d_r = \frac{d-d-\epsilon}{R-1}$ for $r = 2, \ldots, R$ where $\lim_{R \to \infty} \epsilon = 0$.

- Thus, we get an efficiency of

$$\frac{\sum_s U_s(d_s^G)}{\sum_s U_s(d_s^S)} \leq \frac{U(d) + \hat{U}'(d)(\bar{d} - d)}{U(d)}$$

- For $d = \frac{1}{2}$, $\bar{d} = 1$ and $U(x) = x$ we get that

$$\frac{\sum_s U_s(d_s^G)}{\sum_s U_s(d_s^S)} \leq \frac{3}{4}.$$

- Meaning - the price of anarchy is exactly $\frac{4}{3}$.

The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms

Alon Ardenboim
We want to find the conditions for a mechanism so it would be “Desirable” and “Reasonable”.
The Search for “Desirable” and “Reasonable” Mechanisms

- We want to find the conditions for a mechanism so it would be “Desirable” and “Reasonable”.

- **Desirable**: The mechanism should minimize the efficiency loss when the users are *price anticipating* (low price of anarchy).
The Search for “Desirable” and “Reasonable” Mechanisms

- We want to find the conditions for a mechanism so it would be “Desirable” and “Reasonable”.

- **Desirable**: The mechanism should minimize the efficiency loss when the users are *price anticipating* (low price of anarchy).

- **Reasonable**: The strategy space for each participant should be simple (of low dimension) - we'll focus on mechanisms where each user chooses a scalar from \mathbb{R}^+, meaning - low communication overhead.
The Search for “Desirable” and “Reasonable” Mechanisms

- We want to find the conditions for a mechanism so it would be “Desirable” and “Reasonable”.
- **Desirable:** The mechanism should minimize the efficiency loss when the users are *price anticipating* (low price of anarchy).
- **Reasonable:** The strategy space for each participant should be simple (of low dimension) - we'll focus on mechanisms where each user chooses a scalar from \mathbb{R}^+, meaning - low communication overhead.
- We’ll see that under certain assumptions, the PAM mechanism minimizes the efficiency loss when users are *price anticipating*.
Smooth Market Clearing Mechanism

Definition

A smooth market-clearing mechanism is a differential function $D : (0, \infty) \times [0, \infty) \mapsto \mathbb{R}^+$ such that

$\forall C > 0 \quad \forall R > 1 \quad \forall \theta \in (\mathbb{R}^+)^R \quad \exists p > 0$ (unique) s.t.:

$$\sum_{r=1}^{R} D(p, \theta_r) = C$$
Definition

A smooth market-clearing mechanism is a differential function $D : (0, \infty) \times [0, \infty) \mapsto \mathbb{R}^+$ such that

$\forall C > 0 \quad \forall R > 1 \quad \forall \theta \in (\mathbb{R}^+)^R \quad \exists p > 0 \text{ (unique) s.t.:}$

$$\sum_{r=1}^{R} D(p, \theta_r) = C$$

- Undefined if $\theta = 0$.

A generalization of the demand function interpretation of the PAM. There we had $D(p, \theta) = \theta p$ and $p D(\theta) = \sum_{r} \theta_r / C$.
A **smooth market-clearing mechanism** is a differential function $D: (0, \infty) \times [0, \infty) \mapsto \mathbb{R}^+$ such that

\[
\forall C > 0 \quad \forall R > 1 \quad \forall \theta \in (\mathbb{R}^+)^R \quad \exists p > 0 \text{ (unique)} \text{ s.t.:}
\]

\[
\sum_{r=1}^{R} D(p, \theta_r) = C
\]

- Undefined if $\theta = 0$.
- A generalization of the demand function interpretation of the PAM. There we had $D(p, \theta) = \frac{\theta}{p}$ and $p_D(\theta) = \sum_r \theta_r / C$.

Definition

Smooth Market Clearing Mechanism

Outline

- Introduction
- The Proportional Allocation Mechanism
- A Characterization Theorem
- The Vickery-Clarke-Groves (VCG) Approach
- Summary

Motivation

Smooth Market Clearing Mechanism

General Class of Mechanisms \mathcal{D}

\mathcal{D} Characterization
Competitive Equilibrium for SMCM

Definition
Given a utility system \((C, R, U)\) and a SMCM \(D\), we say that a nonzero vector \(\theta\) is a competitive equilibrium if for \(\mu = p_D(\theta)\):

\[
\theta_r \in \arg \max_{\bar{\theta}_r \geq 0} \left[U_r(D(\mu, \bar{\theta}_r)) - \mu D(\mu, \bar{\theta}_r) \right] \quad \forall r
\]

The utility you get minus the price you pay (same as payoff).
Competitive Equilibrium for SMCM

Definition

Given a utility system \((C, R, U)\) and a SMCM \(D\), we say that a nonzero vector \(\theta\) is a competitive equilibrium if for \(\mu = p_D(\theta)\):

\[
\theta_r \in \arg \max_{\bar{\theta}_r \geq 0} [U_r(D(\mu, \bar{\theta}_r)) - \mu D(\mu, \bar{\theta}_r)] \quad \forall r
\]

- The utility you get minus the price you pay (same as payoff).
Nash Equilibrium for SMCM

Definition

Given a utility system \((C, R, U)\) and a SMCM \(D\), we say that a nonzero vector \(\theta\) is a \textit{Nash equilibrium} if for all \(r\):

\[
\theta_r \in \arg \max_{\bar{\theta}_r \geq 0} Q_r(\bar{\theta}_r; \theta_{-r})
\]

where:

\[
Q_r(\theta_r; \theta_{-r}) = \begin{cases}
U_r(D(p_D(\theta), \theta_r)) - p_d(\theta)D(p_D(\theta), \theta_r) & \theta \neq 0 \\
-\infty & \theta = 0
\end{cases}
\]
Nash Equilibrium for SMCM

Definition

Given a utility system \((C, R, U)\) and a SMCM \(D\), we say that a nonzero vector \(\theta\) is a \textit{Nash equilibrium} if for all \(r\):

\[
\theta_r \in \arg \max_{\bar{\theta}_r \geq 0} Q_r(\bar{\theta}_r; \theta_{-r})
\]

where:

\[
Q_r(\theta_r; \theta_{-r}) = \begin{cases}
U_r(D(p_D(\theta), \theta_r)) - p_d(\theta)D(p_D(\theta), \theta_r) & \theta \neq 0 \\
-\infty & \theta = 0
\end{cases}
\]

- Almost the same, but with \(-\infty\) when \(\theta = 0\).
Class of Mechanisms of Interest

Definition

The class \mathcal{D} consists of all functions $D(p, \theta)$ such that:

- D is a SMCM.
Class of Mechanisms of Interest

Definition

The class \(\mathcal{D} \) consists of all functions \(D(p, \theta) \) such that:

1. \(D \) is a SMCM.
2. For all \(C > 0 \) and for all \(U_r \in \mathcal{U} \) the user’s payoff is concave if he’s *price anticipating* (that is, \(Q_r(\theta_r; \theta_{-r}) \) is concave).
Class of Mechanisms of Interest

Definition

The class \mathcal{D} consists of all functions $D(p, \theta)$ such that:

- D is a SMCM.
- For all $C > 0$ and for all $U_r \in \mathcal{U}$ the user’s payoff is concave if he’s *price anticipating* (that is, $Q_r(\theta_r; \theta_{-r})$ is concave).
- For all $p > 0$ and for all $d \geq 0$, there exists a $\theta > 0$ such that $D(p, \theta) = d$.
Definition

The class \mathcal{D} consists of all functions $D(p, \theta)$ such that:

- D is a SMCM.
- For all $C > 0$ and for all $U_r \in \mathcal{U}$ the user’s payoff is concave if he’s \textit{price anticipating} (that is, $Q_r(\theta_r; \theta_{-r})$ is concave).
- For all $p > 0$ and for all $d \geq 0$, there exists a $\theta > 0$ such that $D(p, \theta) = d$.
- $\forall p. \forall \theta. D(p, \theta) \geq 0$
Class of Mechanisms of Interest

Definition

The class \mathcal{D} consists of all functions $D(p, \theta)$ such that:

- D is a SMCM.
- For all $C > 0$ and for all $U_r \in \mathcal{U}$ the user’s payoff is concave if he’s *price anticipating* (that is, $Q_r(\theta_r; \theta_{-r})$ is concave).
- For all $p > 0$ and for all $d \geq 0$, there exists a $\theta > 0$ such that $D(p, \theta) = d$.
- $\forall p. \forall \theta. D(p, \theta) \geq 0$
Example of $D \in \mathcal{D}$

Example:

- Let $D(p, \theta) = \theta p^{-1/c}$ where $c \geq 1$.
Example of $D \in \mathcal{D}$

Example:

- Let $D(p, \theta) = \theta p^{-1/c}$ where $c \geq 1$.
- $D \in \mathcal{D}$ - easy to confirm.
Example of $D \in \mathcal{D}$

Example:

- Let $D(p, \theta) = \theta p^{-1/c}$ where $c \geq 1$.
- $D \in \mathcal{D}$ - easy to confirm.
- Note that for $c = 1$ we get the PAM mechanism.
Example of $D \in \mathcal{D}$

Example:
- Let $D(p, \theta) = \theta p^{-1/c}$ where $c \geq 1$.
- $D \in \mathcal{D}$ - easy to confirm.
- Note that for $c = 1$ we get the PAM mechanism.
- $\sum_r D(p_D(\theta), \theta_r) = C \Rightarrow p_D(\theta)^{-1/c} = C/\sum_r \theta_r \Rightarrow p_D(\theta) = (\sum_r \theta_r/C)^{1/c}$
Example of $D \in \mathcal{D}$

Example:

- Let $D(p, \theta) = \theta p^{-1/c}$ where $c \geq 1$.
- $D \in \mathcal{D}$ - easy to confirm.
- Note that for $c = 1$ we get the PAM mechanism.
- $\sum_r D(p_D(\theta), \theta_r) = C \Rightarrow p_D(\theta)^{-1/c} = C / \sum_r \theta_r \Rightarrow p_D(\theta) = (\sum_r \theta_r / C)^{1/c}$
- Hence:

$$D(p_D(\theta), \theta_r) = \theta \left(\left(\frac{\sum_r \theta_r}{C} \right)^{1/c} \right)^{-1/c} = \frac{\theta}{\sum_r \theta_r} C$$
Example of $D \in \mathcal{D}$

Conclusion:
- For the given mechanism D, we saw that regardless of c, the market clearing allocations are chosen proportional to the bids.
Example of $D \in \mathcal{D}$

Conclusion:

- For the given mechanism D, we saw that regardless of c, the market clearing allocations are chosen proportional to the bids.
- This is a special case of the general result - all mechanisms in \mathcal{D} yield market-clearing allocations that are proportional to the bids.
Example of $D \in \mathcal{D}$

Conclusion:

- For the given mechanism D, we saw that regardless of c, the market clearing allocations are chosen proportional to the bids.
- This is a special case of the general result - all mechanisms in \mathcal{D} yield market-clearing allocations that are proportional to the bids.
- The mechanisms differ only in the market-clearing price chosen.
Example of $D \in \mathcal{D}$

Conclusion:
- For the given mechanism D, we saw that regardless of c, the market clearing allocations are chosen proportional to the bids.
- This is a special case of the general result - all mechanisms in \mathcal{D} yield market-clearing allocations that are proportional to the bids.
- The mechanisms differ only in the market-clearing price chosen.
Price of Anarchy for \(\mathcal{D} \)

- We’re interested in the worst case ratio between the aggregate utility at any Nash equilibrium to the optimal solution of \(\text{SYSTEM} \).
Price of Anarchy for D

- We’re interested in the worst case ratio between the aggregate utility at any Nash equilibrium to the optimal solution of $SYSTEM$.
- For every $D \in D$ we define a constant $\rho(D)$ as follows:

$$
\rho(D) = \inf \left\{ \frac{\sum_{r=1}^{R} U_r(D(p_D(\theta), \theta_r))}{\sum_{r=1}^{R} U_r(d_r)} \mid C > 0, R > 1, U \in U^R \right\}
$$

where d solves $SYSTEM$, and θ is a Nash equilibrium.
We’re interested in the worst case ratio between the aggregate utility at any Nash equilibrium to the optimal solution of \(\text{SYSTEM} \).

For every \(D \in \mathcal{D} \) we define a constant \(\rho(D) \) as follows:

\[
\rho(D) = \inf \left\{ \frac{\sum_{r=1}^{R} U_r(D(p_D(\theta), \theta_r))}{\sum_{r=1}^{R} U_r(d_r)} \mid C > 0, R > 1, U \in \mathcal{U}^R \right\}
\]

where \(d \) solves \(\text{SYSTEM} \), and \(\theta \) is a Nash equilibrium.

Models price of anarchy. \(\rho(D) \) gets it’s value when \(d \) is optimal for \(\text{SYSTEM} \) and \(\theta \) is the least efficient Nash equilibrium.
Characterization Theorem for \mathcal{D}

Theorem

Let $D \in \mathcal{D}$ be a smooth market-clearing mechanism. Then:

1. There exists a competitive equilibrium θ. Furthermore, for any such θ, the resulting allocation d given by $d = D(p, \theta)$ solves SYSTEM.
2. There exists a concave, strictly increasing, differentiable, and invertible $B : (0, \infty) \mapsto (0, \infty)$ such that for all $p > 0$ and $\theta \geq 0$:

 $$D(p, \theta) = \theta B(p)$$

3. $\rho(D) \leq \frac{3}{4}$, and the bound is met with equality iff $D(p, \theta) = \Delta \theta / p$ for some $\Delta > 0$.

Alon Ardenboim

The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms
Characterization Theorem for \(\mathcal{D} \)

Theorem

Let \(D \in \mathcal{D} \) be a smooth market-clearing mechanism. Then:

(i) There exists a competitive equilibrium \(\theta \). Furthermore, for any such \(\theta \), the resulting allocation \(d \) given by \(d_r = D(p_D(\theta), \theta_r) \) solves SYSTEM.
Characterization Theorem for D

Theorem

Let $D \in \mathcal{D}$ be a smooth market-clearing mechanism. Then:

(i) There exists a competitive equilibrium θ. Furthermore, for any such θ, the resulting allocation d given by $d_r = D(p_D(\theta), \theta_r)$ solves the system.

(ii) There exists a concave, strictly increasing, differentiable, and invertible $B : (0, \infty) \mapsto (0, \infty)$ such that for all $p > 0$ and $\theta \geq 0$:

$$D(p, \theta) = \frac{\theta}{B(p)}$$
Characterization Theorem for \mathcal{D}

Theorem

Let $D \in \mathcal{D}$ be a smooth market-clearing mechanism. Then:

(i) There exists a competitive equilibrium θ. Furthermore, for any such θ, the resulting allocation d given by $d_r = D(p_D(\theta), \theta_r)$ solves SYSTEM.

(ii) There exists a concave, strictly increasing, differentiable, and invertible $B : (0, \infty) \mapsto (0, \infty)$ such that for all $p > 0$ and $\theta \geq 0$:

$$D(p, \theta) = \frac{\theta}{B(p)}$$

(iii) $\rho(D) \leq \frac{3}{4}$, and the bound is met with equality iff $D(p, \theta) = \Delta \theta / p$ for some $\Delta > 0$.

Alon Ardenboim

The Price of Anarchy and the Design of Scalable Resource Allocation Algorithms
Characterization Theorem for \mathcal{D}

Proof.
Characterization Theorem for \mathcal{D}

Proof.

Cause I say so.
Characterization Theorem for \mathcal{D}

Proof.

Cause I say so.
Conclusions from the Characterization Theorem

- From the second part of the theorem:

\[
\sum_r D(p_D(\theta), \theta_r) = \frac{\sum_r \theta_r}{B(p_D(\theta))} = C \Rightarrow B(p_D(\theta)) = \frac{\sum_r \theta_r}{C}
\]
Conclusions from the Characterization Theorem

- From the second part of the theorem:

\[
\sum_r D(p_D(\theta), \theta_r) = \frac{\sum_r \theta_r}{B(p_D(\theta))} = C \Rightarrow B(p_D(\theta)) = \frac{\sum_r \theta_r}{C}
\]

- Therefore:

\[
D(p_D(\theta), \theta_r) = \frac{\theta_r}{B(p_D(\theta))} \Rightarrow D(p_D(\theta), \theta_r) = \frac{\theta_r}{\sum_s \theta_s} C
\]
Conclusions from the Characterization Theorem

- From the second part of the theorem:

\[\sum_r D(p_D(\theta), \theta_r) = \frac{\sum_r \theta_r}{B(p_D(\theta))} = C \Rightarrow B(p_D(\theta)) = \frac{\sum_r \theta_r}{C} \]

- Therefore:

\[D(p_D(\theta), \theta_r) = \frac{\theta_r}{B(p_D(\theta))} \Rightarrow D(p_D(\theta), \theta_r) = \frac{\theta_r}{\sum_s \theta_s} C \]

- Meaning: **Every** mechanism in \(\mathcal{D} \) chooses allocations in proportions to the bids.
Conclusions from the Characterization Theorem

- From the second part of the theorem:

\[
\sum_r D(p_D(\theta), \theta_r) = \frac{\sum_r \theta_r}{B(p_D(\theta))} = C \Rightarrow B(p_D(\theta)) = \frac{\sum_r \theta_r}{C}
\]

- Therefore:

\[
D(p_D(\theta), \theta_r) = \frac{\theta_r}{B(p_D(\theta))} \Rightarrow D(p_D(\theta), \theta_r) = \frac{\theta_r}{\sum_s \theta_s} \cdot C
\]

- Meaning: Every mechanism in \(\mathcal{D} \) chooses allocations in proportions to the bids.

- For each \(D \in \mathcal{D} \) we get the same allocations as PAM. The only difference is the market-clearing price.
Conclusions from the Characterization Theorem

- At least 25 percent efficiency loss.
Conclusions from the Characterization Theorem

- At least 25 percent efficiency loss.
- The loss is minimized when a mechanism charges a user exactly their bid.
Motivation

- The mechanisms we offered had some restrictions:
 1. A simple strategy space (every user offers a price).
 2. A single market-clearing price.
Motivation

The mechanisms we offered had some restrictions:

1. A simple strategy space (every user offers a price).
2. A single market-clearing price.

Maybe we would like users to declare their utility functions.
Motivation

- The mechanisms we offered had some restrictions:
 1. A simple strategy space (every user offers a price).
 2. A single market-clearing price.
- Maybe we would like users to declare their utility functions.
- Or maybe we would like to discriminate some users.
Motivation

- The mechanisms we offered had some restrictions:
 1. A simple strategy space (every user offers a price).
 2. A single market-clearing price.
- Maybe we would like users to declare their utility functions.
- Or maybe we would like to discriminate some users.
- We apply a VCG approach to elicit utility information.
Motivation

- The mechanisms we offered had some restrictions:
 1. A simple strategy space (every user offers a price).
 2. A single market-clearing price.
- Maybe we would like users to declare their utility functions.
- Or maybe we would like to discriminate some users.
- We apply a VCG approach to elicit utility information.
- But try keeping a low-dimensional strategy space.
The VCG Approach

- In the VCG class of mechanisms, each user’s strategy space is the predefined U.
The VCG Approach

- In the VCG class of mechanisms, each user’s strategy space is the predefined \mathcal{U}.
- \tilde{U}_r - the declared utility function of user r.
The VCG Approach

- In the VCG class of mechanisms, each user’s strategy space is the predefined \mathcal{U}.
- \tilde{U}_r - the declared utility function of user r.
- \tilde{U} - the vector of declared utilities.
The VCG Approach

- In the VCG class of mechanisms, each user’s strategy space is the predefined \mathcal{U}.
- \tilde{U}_r - the declared utility function of user r.
- \tilde{U} - the vector of declared utilities.
- d_r - the allocation of user r. t_r - the payment of user r.
The VCG Approach

- In the VCG class of mechanisms, each user’s strategy space is the predefined \mathcal{U}.
- \tilde{U}_r - the declared utility function of user r.
- \tilde{U} - the vector of declared utilities.
- d_r - the allocation of user r. t_r - the payment of user r.
- The payoff is $U_r(d_r) - t_r$.
The VCG Approach

- In the VCG class of mechanisms, each user’s strategy space is the predefined \mathcal{U}.
- \tilde{U}_r - the declared utility function of user r.
- \tilde{U} - the vector of declared utilities.
- d_r - the allocation of user r. t_r - the payment of user r.
- The payoff is $U_r(d_r) - t_r$.
- The social objective can be written as $U_r(d_r) + \sum_{s \neq r} U_s(d_s)$.
The VCG Approach

- Let \(\chi = \{ d \geq 0 : \sum_r d_r \leq c \} \) (feasible region for \(SYSTEM \)).
The VCG Approach

- Let $\chi = \{d \geq 0 : \sum_r d_r \leq c\}$ (feasible region for $SYSTEM$).
- The VCG mechanism will choose:

$$d(\tilde{U}) \in \arg\max_{d \in \chi} \sum_r \tilde{U}_r(d_r)$$

The payments are structured so that:

$$t_r(\tilde{U}) = -\sum_{s \neq r} \tilde{U}_s(d_s(\tilde{U}) + h_r(\tilde{U} - r))$$

Different price per-unit for each user.

VCG mechanism \rightarrow dominant strategy equilibrium where each user reveals his true utility function.

Because of the definition of $d(\tilde{U})$ we get full efficiency.
The VCG Approach

- Let $\chi = \{d \geq 0 : \sum_r d_r \leq c\}$ (feasible region for $SYSTEM$).
- The VCG mechanism will choose:
 $$d(\tilde{U}) \in \arg \max_{d \in \chi} \sum_r \tilde{U}_r(d_r)$$
- The payments are structured so that:
 $$t_r(\tilde{U}) = -\sum_{s \neq r} \tilde{U}_s(d_s(\tilde{U})) + h_r(\tilde{U}_{-r})$$
The VCG Approach

- Let $\chi = \{ d \geq 0 : \sum_r d_r \leq c \}$ (feasible region for SYSTEM).
- The VCG mechanism will choose:

$$d(\tilde{U}) \in \arg \max_{d \in \chi} \sum_r \tilde{U}_r(d_r)$$

- The payments are structured so that:

$$t_r(\tilde{U}) = -\sum_{s \neq r} \tilde{U}_s(d_s(\tilde{U})) + h_r(\tilde{U}_{-r})$$

- Different price per-unit for each user.
The VCG Approach

- Let $\chi = \{ d \geq 0 : \sum_r d_r \leq c \}$ (feasible region for SYSTEM).
- The VCG mechanism will choose:
 $$d(\tilde{U}) \in \arg \max_{d \in \chi} \sum_r \tilde{U}_r(d_r)$$

- The payments are structured so that:
 $$t_r(\tilde{U}) = -\sum_{s \neq r} \tilde{U}_s(d_s(\tilde{U}) + h_r(\tilde{U}_{-r})$$

- Different price per-unit for each user.
- VCG mechanism \rightarrow dominant strategy equilibrium where each user reveals his true utility function.
The VCG Approach

- Let \(\chi = \{ d \geq 0 : \sum_r d_r \leq c \} \) (feasible region for SYSTEM).
- The VCG mechanism will choose:
 \[
 d(\tilde{U}) \in \arg \max_{d \in \chi} \sum_r \tilde{U}_r(d_r)
 \]
- The payments are structured so that:
 \[
 t_r(\tilde{U}) = - \sum_{s \neq r} \tilde{U}_s(d_s(\tilde{U})) + h_r(\tilde{U}_{-r})
 \]
- Different price per-unit for each user.
- VCG mechanism \(\rightarrow \) dominant strategy equilibrium where each user reveals his true utility function.
- Because of the definition of \(d(\tilde{U}) \) we get full efficiency.
Presenting the Scalar Strategy VCG(SSVCG)

- Too much communication overhead (users need to pass a full description of the utility).
Presenting the Scalar Strategy VCG(SSVCG)

- Too much communication overhead (users need to pass a full description of the utility).
- Instead, users choose from a given single parameter of utility functions $\overline{U}(.; \theta)$.

Assumption 2:
- For every $\theta > 0$, the function $U(d; \theta)$ belongs to \mathcal{U} and also strictly concave.
- For every $\gamma \in (0, \infty)$ and $d \geq 0$, there exists a $\theta > 0$ such that $U'(d; \theta) = \gamma$.

Alon Ardenboim

The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms
Presenting the Scalar Strategy VCG(SSVCG)

- Too much communication overhead (users need to pass a full description of the utility).
- Instead, users choose from a given single parameter of utility functions $\overline{U}(.; \theta)$.
- **Assumption 2:**
Presenting the Scalar Strategy VCG(SSVCG)

- Too much communication overhead (users need to pass a full description of the utility).
- Instead, users choose from a given single parameter of utility functions $\overline{U}(.; \theta)$.

Assumption 2:
- For every $\theta > 0$, the function $\overline{U}(.; \theta) : d \mapsto \overline{U}(d; \theta)$ belongs to \mathcal{U} and also strictly concave.
Presenting the Scalar Strategy VCG (SSVCG)

- Too much communication overhead (users need to pass a full description of the utility).
- Instead, users choose from a given single parameter of utility functions $\overline{U}(.; \theta)$.
- **Assumption 2:**
 - For every $\theta > 0$, the function $\overline{U}(.; \theta) : d \mapsto \overline{U}(d; \theta)$ belongs to \mathcal{U} and also strictly concave.
 - For every $\gamma \in (0, \infty)$ and $d \geq 0$, there exists a $\theta > 0$ such that $\overline{U}'(d; \theta) = \gamma$.

Alon Ardenboim
The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms
Presenting SSVCG

Given θ, the mechanism chooses allocation:

$$d(\theta) = \arg \max_{d \in \chi} \sum_r U(d_r; \theta_r)$$
Presenting SSVCG

- Given θ, the mechanism chooses allocation:

$$d(\theta) = \arg \max_{d \in \chi} \sum_r \overline{U}(d_r; \theta_r)$$

- A unique solution, since $\overline{U}(., \theta_r)$ is strictly concave.
Presenting SSVCG

- Given θ, the mechanism chooses allocation:

$$d(\theta) = \arg \max_{d \in \chi} \sum_r U(d_r; \theta_r)$$

- A unique solution, since $U(., \theta_r)$ is strictly concave.

- The payment is:

$$t_r(\theta) = - \sum_{s \neq r} U(d_s(\theta); \theta_s) + h_r(\theta_{-r})$$

where h_r depends only on strategies θ_{-r}.
Payoff and Nash Equilibrium

- The payoff is defined:

\[P_r(d_r(\theta), t_r(\theta)) = U_r(d_r(\theta)) + \sum_{s \neq r} \bar{U}(d_s(\theta); \theta_s) - h_r(\theta_{-r}) \]
The payoff is defined:

\[P_r(d_r(\theta), t_r(\theta)) = U_r(d_r(\theta)) + \sum_{s \neq r} \bar{U}(d_s(\theta); \theta_s) - h_r(\theta_{-r}) \]

\(\theta \) is a Nash equilibrium if for all \(r \):

\[P_r(d_r(\theta), t_r(\theta)) \geq P_r(d_r(\theta', \theta_{-r}), t_r(\theta', \theta_{-r})) \quad \forall \theta' > 0 \]
Lemma

The vector θ is a Nash equilibrium iff for all r:

$$d(\theta) \in \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} \overline{U}(d_s; \theta_s) \right]$$
Connecting Nash Equilibrium and Utilities

Lemma

The vector θ is a Nash equilibrium iff for all r:

$$d(\theta) \in \arg \max_{d \in X} \left[U_r(d_r) + \sum_{s \neq r} \bar{U}(d_s; \theta_s) \right]$$

Proof.

\Leftarrow:
Connecting Nash Equilibrium and Utilities

Lemma

The vector θ is a Nash equilibrium iff for all r:

$$d(\theta) \in \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} \overline{U}(d_s; \theta_s) \right]$$

Proof.

\Leftarrow:

- Fix user r. Since θ_r doesn’t effect h_r in the payoff, user r will choose θ_r to maximize $U_r(d_r(\theta)) + \sum_{s \neq r} \overline{U}(d_s(\theta); \theta_s)$.
Lemma

The vector θ is a Nash equilibrium iff for all r:

$$d(\theta) \in \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} \bar{U}(d_s; \theta_s) \right]$$

Proof.

\Leftarrow:

- Fix user r. Since θ_r doesn’t effect h_r in the payoff, user r will choose θ_r to maximize $U_r(d_r(\theta)) + \sum_{s \neq r} \bar{U}(d_s(\theta); \theta_s)$.
- We assume that the following holds for all r in θ.

Connecting Nash Equilibrium and Utilities

proof-cont.

⇒:

\[\text{Suppose } \theta \text{ is a NE.} \]

\[\text{Suppose there exists } r \text{ for which } \frac{d(\theta)}{\in \arg \max_{d \in \chi} \left[U_r(d) + \sum_{s \neq r} U(d_s; \theta_s) \right].} \]

\[\chi \text{ is compact } \rightarrow \exists \text{ optimal } d^* \text{ for the latter.} \]

\[\text{From that, } U'_r(d^*_r) + \sum_{s \neq r} U(d^*_s; \theta_s) = 0. \]

\[\text{If user } r \text{ chooses } \theta'_r > 0 \text{ such that } U'_r(d^*_r) = U'_r(d^*_r) \] then \[d^* \text{ is also the (unique) optimal allocation for } (\theta'_r, \theta - r). \]
proof-cont.

⇒:

- Suppose θ is a NE.
Connecting Nash Equilibrium and Utilities

proof-cont.

\(\Rightarrow: \)

- Suppose \(\theta \) is a NE.
- Suppose there exists \(r \) for which
 \[d(\theta) \notin \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} U(d_s; \theta_s) \right]. \]
proof-cont.

\[\Rightarrow: \]

1. Suppose \(\theta \) is a NE.
2. Suppose there exists \(r \) for which
 \[
 d(\theta) \notin \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} U(d_s; \theta_s) \right].
 \]
3. \(\chi \) is compact \(\rightarrow \) exists optimal \(d^* \) for the latter.
proof-cont.

\[\Rightarrow: \]

- Suppose \(\theta \) is a NE.
- Suppose there exists \(r \) for which
 \[d(\theta) \notin \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} \overline{U}(d_s; \theta_s) \right]. \]
- \(\chi \) is compact \(\rightarrow \) exists optimal \(d^* \) for the latter.
- From that, \(U_r'(d^*_r) + \sum_{s \neq r} \overline{U}(d^*_s; \theta_s) = 0. \)
proof-cont.

⇒:

- Suppose θ is a NE.
- Suppose there exists r for which $d(\theta) \notin \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} U(d_s; \theta_s) \right]$.
- χ is compact \rightarrow exists optimal d^* for the latter.
- From that, $U'_r(d^*_r) + \sum_{s \neq r} U(d^*_s; \theta_s) = 0$.
- If user r chooses $\theta'_r > 0$ such that $\overline{U}'(d^*_r) = U'_r(d^*_r)$ then d^* is also the (unique) optimal allocation for (θ'_r, θ_{-r}).

Connecting Nash Equilibrium and Utilities

⇒-cont.

- We get:
Connecting Nash Equilibrium and Utilities

⇒-cont.

We get:

\[P_r(d_r(\theta), t_r(\theta)) = U_r(d_r) + \sum_{s \neq r} U(d_s; \theta_s) + h_r(\theta_{-r}) \]
Connecting Nash Equilibrium and Utilities

⇒-cont.

We get:

\[P_r(d_r(\theta), t_r(\theta)) = U_r(d_r) + \sum_{s \neq r} \overline{U}(d_s; \theta_s) + h_r(\theta_{-r}) \]

\[< U_r(d^*_r) + \sum_{s \neq r} \overline{U}(d^*_s; \theta_s) + h_r(\theta_{-r}) \]
Connecting Nash Equilibrium and Utilities

⇒-cont.

- We get:

\[
P_r(d_r(\theta), t_r(\theta)) = U_r(d_r) + \sum_{s \neq r} U(d_s; \theta_s) + h_r(\theta_{-r})
\]

\[
< U_r(d^*_r) + \sum_{s \neq r} U(d^*_s; \theta_s) + h_r(\theta_{-r})
\]

\[
= U_r(d_r(\theta'_r, \theta_{-r})) + \sum_{s \neq t} U(d_s(\theta'_r, \theta_{-r}); \theta) + h_r(\theta_{-r})
\]
Connecting Nash Equilibrium and Utilities

⇒-cont.

- We get:

\[P_r(d_r(\theta), t_r(\theta)) = U_r(d_r) + \sum_{s \neq r} U(d_s; \theta_s) + h_r(\theta_{-r}) \]
\[< U_r(d^*_r) + \sum_{s \neq r} U(d^*_s; \theta_s) + h_r(\theta_{-r}) \]
\[= U_r(d_r(\theta'_r, \theta_{-r})) + \sum_{s \neq t} U(d_s(\theta'_r, \theta_{-r}); \theta_s) + h_r(\theta_{-r}) \]
\[= P_r(d_r(\theta'_r, \theta_{-r}), t_r(\theta'_r, \theta_{-r})) \]
Connecting Nash Equilibrium and Utilities

\(\Rightarrow \)-cont.

- We get:

\[
P_r(d_r(\theta), t_r(\theta)) = U_r(d_r) + \sum_{s \neq r} \overline{U}(d_s; \theta_s) + h_r(\theta_{-r})
\]

\[
< U_r(d^*_r) + \sum_{s \neq r} \overline{U}(d^*_s; \theta_s) + h_r(\theta_{-r})
\]

\[
= U_r(d_r(\theta'_r, \theta_{-r})) + \sum_{s \neq t} \overline{U}(d_s(\theta'_r, \theta_{-r}); \theta_s) + h_r(\theta_{-r})
\]

\[
= P_r(d_r(\theta'_r, \theta_{-r}), t_r(\theta'_r, \theta_{-r}))
\]

- In contradiction of \(\theta \) being a NE.
Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined as follows: Let d^S be an optimal solution to SYSTEM. Each user r chooses θ_r so that $U'(d^S_r; \theta_r) = U'_r(d^S_r)$. The resulting allocation satisfies $D(\theta) = d^S$.

Proof. Each user r can choose θ_r so that $U'(d^S_r; \theta_r) = U'_r(d^S_r)\sum_r U'(d^S_r; \theta_r) = \sum_r U'_r(d^S_r)$. By taking derivatives, $d^S \in \arg\max d \in \chi [U_r(d^S_r) + \sum_{s \neq r} U(d^S_s; \theta_s)]$. Hence, θ is a NE.
Efficient Price of Stability

Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined as follows: Let d^S be an optimal solution to SYSTEM. Each user r chooses θ_r so that $\overline{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$. The resulting allocation satisfies $D(\theta) = d^S$.

Proof.

- Each user r can θ_r so that $\overline{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$
Efficient Price of Stability

Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium \(\theta \) defined as follows: Let \(d^S \) be an optimal solution to SYSTEM. Each user \(r \) chooses \(\theta_r \) so that \(U'(d^S_r; \theta_r) = U'_r(d^S_r) \). The resulting allocation satisfies \(D(\theta) = d^S \).

Proof.

- Each user \(r \) can \(\theta_r \) so that \(U'(d^S_r; \theta_r) = U'_r(d^S_r) \)
- \(\sum_r U'(d^S_r; \theta_r) = \sum_r U'_r(d^S_r) = 0 \)
Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined as follows: Let d^S be an optimal solution to SYSTEM. Each user r chooses θ_r so that $\overline{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$. The resulting allocation satisfies $D(\theta) = d^S$.

Proof.

- Each user r can θ_r so that $\overline{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$
- $\sum_r \overline{U}'(d^S_r; \theta_r) = \sum_r U'_r(d^S_r) = 0 \Rightarrow$
Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined as follows: Let d^S be an optimal solution to SYSTEM. Each user r chooses θ_r so that $\overline{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$. The resulting allocation satisfies $D(\theta) = d^S$.

Proof.

- Each user r can θ_r so that $\overline{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$
- $\sum_r \overline{U}'(d^S_r; \theta_r) = \sum_r U'_r(d^S_r) = 0 \Rightarrow d(\theta) = d^S$
Efficient Price of Stability

Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined as follows: Let d^S be an optimal solution to SYSTEM. Each user r chooses θ_r so that $\bar{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$. The resulting allocation satisfies $D(\theta) = d^S$.

Proof.

- Each user r can choose θ_r so that $\bar{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$
- $\sum_r \bar{U}'(d^S_r; \theta_r) = \sum_r U'_r(d^S_r) = 0 \Rightarrow d(\theta) = d^S$
- By taking derivatives, $d^S \in \arg \max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} \bar{U}(d_s; \theta_s) \right]$.
Efficient Price of Stability

Corollary

For any SSVCG mechanism, there exists an efficient Nash equilibrium θ defined as follows: Let d^S be an optimal solution to SYSTEM. Each user r chooses θ_r so that $\bar{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$. The resulting allocation satisfies $D(\theta) = d^S$.

Proof.

- Each user r can θ_r so that $\bar{U}'(d^S_r; \theta_r) = U'_r(d^S_r)$
- $\sum_r \bar{U}'(d^S_r; \theta_r) = \sum_r U'_r(d^S_r) = 0 \Rightarrow d(\theta) = d^S$
- By taking derivatives, $d^S \in \arg\max_{d \in \chi} \left[U_r(d_r) + \sum_{s \neq r} \bar{U}(d_s; \theta_s)\right]$
- Hence, θ is a NE.
Notes About Price of Anarchy

- Note that there can exist another NE that is not efficient.
Notes About Price of Anarchy

- Note that there can exist another NE that is not efficient.
- It’s also possible to construct such an example if a user declares a high marginal utility compared to the other users.
Notes About Price of Anarchy

- Note that there can exist another NE that is not efficient.
- It’s also possible to construct such an example if a user declares a high marginal utility compared to the other users.
- On the other hand, if we set $U'_r = \infty$ for all users, the NE achieves full efficiency.
Notes About Price of Anarchy

- Note that there can exist another NE that is not efficient.
- It’s also possible to construct such an example if a user declares a high marginal utility compared to the other users.
- On the other hand, if we set $U'_r = \infty$ for all users, the NE achieves full efficiency.
- Intuitively, for an SSVCG mechanism being efficient, we would like the several users competing with each other.
Summery of Subjects Investigated

Single Market-Clearing Price:

- A naive approach of proportionally allocating the resource is pretty efficient.
Summery of Subjects Investigated

Single Market-Clearing Price:

- A naive approach of proportionally allocating the resource is pretty efficient.
- There exists a broad class of mechanisms, \mathcal{D}, that end out being proportional.
Single Market-Clearing Price:

- A naive approach of proportionally allocating the resource is pretty efficient.
- There exists a broad class of mechanisms, \mathcal{D}, that end out being proportional.
- The naive mechanism achieves the upper bound of efficiency for this class of mechanisms.
Summary of Subjects Investigated

Single Market-Clearing Price:
- A naive approach of proportionally allocating the resource is pretty efficient.
- There exists a broad class of mechanisms, \mathcal{D}, that end out being proportional.
- The naive mechanism achieves the upper bound of efficiency for this class of mechanisms.

VCG Approach:
- Taking the VCG approach allows us reach full efficiency.
Summery of Subjects Investigated

Single Market-Clearing Price:
- A naive approach of proportionally allocating the resource is pretty efficient.
- There exists a broad class of mechanisms, \mathcal{D}, that end out being proportional.
- The naive mechanism achieves the upper bound of efficiency for this class of mechanisms.

VCG Approach:
- Taking the VCG approach allows us reach full efficiency.
- Using a quasi-VCG mechanism where the communication overhead is small gives us no efficiency loss when we take the optimal NE.
Summery of Subjects Investigated

Single Market-Clearing Price:
- A naive approach of proportionally allocating the resource is pretty efficient.
- There exists a broad class of mechanisms, \mathcal{D}, that end out being proportional.
- The naive mechanism achieves the upper bound of efficiency for this class of mechanisms.

VCG Approach:
- Taking the VCG approach allows us reach full efficiency.
- Using a quasi-VCG mechanism where the communication overhead is small gives us no efficiency loss when we take the optimal NE.
- The SSVCG can be tweaked so that the price of anarchy would be minimized.