Write short but full and accurate answers. Each solution should appear on a separate page and each of its parts should not exceed a page.

1. We are given a connected graph $G = (V, E)$. All edges have unit capacity. At step i we receive a request to allocate a bandwidth p_i on a specific path Q_i. If we allocate the bandwidth on the path we receive benefit of b_i otherwise, we receive no benefit. Also for some known value F and for all i, $1 \leq b_i/p_i \leq F$ and $p_i \leq \frac{1}{\log(2|V|F+2)}$. Our goal is to maximize the total benefit while maintaining the capacity constraints. Design an $O(\log(|V|F))$ competitive algorithm.

2. Consider admission control on a line $[0, n]$ of n unit edges. We are given a maximum value $\mu \geq 2$. Each request is an integer interval (a_i, b_i) of value v_i where $1 \leq v_i \leq \mu$. A solution is feasible if the accepted intervals are disjoint. The goal is to maximize the total value of the accepted request.
 (a) Design a randomized or randomized preemptive algorithm which is $O(\log n \cdot \log \mu)$ competitive.
 (b) Assume $\mu = n$. Show an $\Omega(\sqrt{n})$ lower bound for any deterministic preemptive algorithm.

3. Suppose we are given one machine and a set of jobs that arrive over time. The machine can process one job at a time and may preempt jobs. The duration of a job is known at its release time and the benefit of a job is equal to its duration. In order to get the benefit of a job it must be processed immediately at its release time and should not be preempted until its completion.
 (a) Design a 4 competitive algorithm for the problem.
 (b) Show a lower bound of $4 - \epsilon$ for any $\epsilon > 0$.

4. (a) Show an example that SRPT is not optimal for total flow time of jobs released over time on two (or more) machines.
 (b) We are given one machine and a set of jobs released at time 0. Job i has size w_i and quality a_i. You need to minimize $\sum_i a_i C_i$ where C_i is the completion time (also flow time) of job i in the schedule. Design an optimal algorithm for that measure.
 Remark: You need to show optimality also with respect to preemptive schedules.

5. Suppose we are given one machine and m clients. At any time each client can hold at most one job. All jobs have unit size and unit value. The machine can process a job from one of the clients at any time step. If there are no jobs the machine is idle. At each time step a job may be created at each of the clients. A client may keep the new job if it does not hold a previous job. Otherwise the new job is discarded. We assume that at each time step, jobs are first created at clients and then the machine decides to process one of the client jobs. The goal is to maximize the number of processed jobs.
 (a) Show that any on-line algorithm that processes any job if exists, and keeps new jobs at the clients if possible is 2-competitive. Hint: partition the time line into segments where each consists of maximum consecutive times steps in which the on-line algorithm processed jobs. Transform the sequence (while possibly improving the optimum) to a new sequence such that before the beginning of a new segment the optimum does not process a job.
 (b) Show a lower bound of $2 - \frac{1}{m}$ for the competitive ratio of any deterministic algorithm.
 (c) Consider the case where the jobs have values between 1 and α for some known $\alpha > 1$. The goal is to maximize the total value of processed jobs. A client must discard a new job if it holds a previous job, but may also discard a new job even if it does not hold a previous job. Note that if a client decides to keep a job upon its creation, it will have to discard all newer jobs until the execution of that job (even if newer jobs have higher values). Design an $O(\log \alpha)$ randomized competitive algorithm for the decisions of the clients and the machine.

Exercise # 3 is due May 28, 2014 at 4PM.