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2 Here we extend the study of the online independent set problem from thedomain of graphs to that of hypergraphs. We consider the case of k-uniformhypergraphs, where the hypergraph is not known in advance, and vertices arepresented along with their edges. The �rst part of the paper contains lower andupper bounds for the performance ratio (usually called the competitive ratio) ofonline algorithms for these problems.Besides being interesting in their own rights, the results on the performanceof online algorithms for the hypergraph maximum independent set problem havenice applications in obtaining lower bounds for the performance of online algo-rithms for routing over networks via �xed paths. These applications are obtainedby an on-line reduction, a notion that di�ers from the usual reduction and worksin the online setting.In the online routing problems considered here a network graph is given inadvance and the algorithm is presented with requests for calls over given pathsin the network. We refer to the throughput version of the problem in which eachcall is accompanied by a required bandwidth, and must be either allocated thisbandwidth, or rejected. The goal is to maximize the weighted number of calls(that is, the total bandwidth) accepted by the network. Routing received a lotof attention recently with various results. We explore the relation between thehypergraph independent set problem and the routing problem, obtaining lowerbounds for the performance of online algorithms for both. This relation alsocaptures randomized and preemptive algorithms.1.1 Independent sets in graphs and hypergraphsThe o�ine version of the problem is de�ned as follows. Given a hypergraphG = (V;E), �nd a maximum subset of V such that the vertex induced subgraphon it does not contain any edge.In the online version of the problem, vertices are presented one by one alongwith edges which connect them to previously presented vertices. The onlinealgorithm must decide for each vertex, as it is presented, whether to accept itor not. The accepted set must induce an independent set at all times. The goalis to maximize the size of the selected set.We consider deterministic or randomized algorithms. Our discussion will al-low both preemptive and non-preemptive algorithms. In the preemptive versionof the problem, the algorithmmay discard previously selected vertices. However,a vertex which has been discarded, at any time, can not be returned to the set.Deterministic, non-preemptive algorithms for the online graph independentset problem have been considered before. A well known folklore result statesthat any deterministic algorithm has a competitive ratio 
(n) when the graphis not known in advance. Here we provide tight bounds for the competitive ratioof deterministic non-preemptive, randomized non-preemptive and deterministicpreemptive algorithms for graphs as well as for hypergraphs. We also obtainupper and lower bounds for the randomized preemptive case. Note that ourupper bound for the randomized preemptive case for hypergraphs is obtainedusing a polynomial time algorithm, and its performance bound matches the



3bound of the best known polynomial time approximation o�-line algorithm thatcan be obtained using the methods of [9] (see also [17], [3]). To the best of ourknowledge, this is the �rst online algorithm for the hypergraph independent setproblem that achieves sub-linear competitive ratio. Note that by the result of[16] following [4], one cannot hope to obtain a much better bound even by ano�-line polynomial time algorithm, unless NP have polynomial time randomizedalgorithms.It is interesting to note that our polynomial time algorithm does not relyon the special properties of independent sets in uniform hypergraphs, but onthe fact that being an independent set is a hereditary property. A property ofsubsets of a universe U is hereditary, if for every subset A � U that satis�es it,every subset of A has the property as well. Hence, the same algorithm and upperbound hold for any hereditary property. In particular the upper bound holds forindependent set in arbitrary hypergraphs, which are not necessarily uniform.A related version of the online independent set problem deals with the modelin which a graph (or a hypergraph) is known in advance to the algorithm, anda subset of vertices of it is presented by the adversary in an online manner. Thegoal here is also that of �nding a large independent set, and the performanceis measured by comparing it to the maximum size of an independent set inthe induced subgraph on the presented vertices. It is quite easy to show thatan 
(n�) lower bound holds for deterministic algorithms when the graph isknown in advance where � < 1 is some �xed positive number. Bartal, Fiat andLeonardi [8] showed that an 
(n�) lower bound still holds when randomizationand preemption are allowed.1.2 Routing via �xed pathsOur results for the online hypergraph independent set problem can be appliedin the study of the problem of (virtual circuit) routing over networks. Here thenetwork graph is known in advance, and each edge has a known capacity. Thealgorithm is presented with requests for calls over the network with a certainrequired bandwidth. The algorithm either allocates this bandwidth on a path orrejects the call. The goal is to maximize the throughput (total bandwidth) of theaccepted calls. Clearly, one may allow to use randomization and preemption. Inthe preemptive case accepted calls may be preempted, but preempted or rejectedcalls cannot be re-accepted. Obviously, calls preempted by an algorithm are notcounted for the value of the throughput of this algorithm.Two di�erent versions for routing via �xed paths can be considered. In the�rst, the algorithm is presented with a request consisting of a source and adestination node, and must assign a route with the required bandwidth over thenetwork to accept the call, while in the second version, each request includes apath to be routed over the network, and the algorithmmay only decide to acceptor reject the call.There are numerous results for the virtual circuit routing problem for bothversions (for surveys see [11, 15]). The competitive ratio of any deterministic(non-preemptive) algorithm has been shown to have an 
(n) lower bound when



4the bandwidth request could be as large as the capacity. On the other hand, anO(logn)-competitive deterministic routing algorithm has been shown for generalnetworks when all bandwidth requirements are bounded by the network capacityover logn [2].A lot of research has been invested to overcome the small capacity require-ments for special networks such as lines, tress, meshes [13, 14, 7, 5, 6, 12, 1].However, the problem of deciding whether randomized or preemptive algorithmscan achieve poly-logarithmic bound for large bandwidth requests over generalnetworks remained open. A major step has been taken by [8] that showed an
(n�) lower bound for randomized preemptive online routing algorithms on gen-eral networks. Their lower bound holds for requests of maximal bandwidth, i.e.unit bandwidth for each request in a unit capacity network. The lower boundwas proved by a reduction from the online maximum independent set problemin a known graph to the problem of routing calls over a network. The reductiondoes not extend for unit bandwidth and capacity k networks. In fact, it is stilla major open problem to show a lower bound even for capacity 2.Interestingly, we show a reduction between the independent set problem withan unknown graph and the �xed paths routing problem. Our reduction doesextend for the case of capacity k. Speci�cally, we show a reduction from theindependent set problem in a k uniform hypergraph to the �xed paths routingproblem in a network of capacity k � 1. This enables us to obtain lower boundsfor the latter problem by using our lower bounds for the performance of onlinealgorithms for the hypergraph independent set problem. The reduction holdsalso for randomized and preemptive algorithms.Our result covers the gap between the known results for unit bandwidthand logarithmic bandwidth by giving a lower bound that approaches the knownresults as the bandwidth grows from 1 to logn.1.3 The presented resultsWe show the following,{ For the Independent Set problem in k-uniform hypergraphs with n vertices,� A �(nk ) tight lower bound for the competitive ratio of deterministic,deterministic preemptive or randomized non-preemptive algorithms.� An 
(n1=2k ) lower bound for the competitive ratio of randomized pre-emptive algorithms.� An O( nlogn) upper bound for the competitive ratio of randomized pre-emptive algorithms.{ For the �xed paths routing problem over a network of N vertices with ca-pacity k � 1,� An 
(N1=kk ) lower bound for the competitive ratio of deterministic, de-terministic preemptive or randomized non-preemptive algorithm.� An 
(N1=(2k)k ) lower bound for the competitive ratio of randomized pre-emptive algorithms.



52 Independent sets in k-uniform hypergraphsAs mentioned in the introduction, the algorithmic problem discussed in thissection is the following. Given a k-uniform hypergraph G = (V;E), with V =fv1; v2; : : : ; vng and E � 2V (8e 2 E; jej = k), �nd a subset V 0 � V of maximumcardinality such that for all vi1 ; vi2 ; : : : ; vik 2 V 0 : (vi1 ; vi2; : : : ; vik) =2 E.In the online version, the vertices are presented one by one, along with theedges which connect them to previously presented vertices.2.1 A tight lower bound for online deterministic or randomizedalgorithmsSince G is a k-uniform hypergraph, any set of k�1 vertices forms an independentset. Therefore an upper bound of nk�1 =O(nk ) is trivially achievable. We nowprove an 
(nk ) lower bound.Theorem 1. Any deterministic or randomized non-preemptive algorithm for thehypergraph independent set problem in a k-uniform hypergraph on n vertices hasa competitive ratio 
(nk ).Proof. We use the online version of Yao's lemma by evaluating the performanceof deterministic algorithms on a probability distribution on the inputs. De�nethe following probability distribution on the input sequences:{ Vertices are presented in pairs.{ One vertex of each pair will be selected randomly and marked as a \good"vertex, the other vertex will be marked as \bad".{ A set of k vertices containing a vertex from the current pair is an edge i� itcontains at least one \bad" vertex from a previous pair.Clearly, once the online algorithm picked one \bad" vertex, it can no longerpick more than k � 2 additional vertices. Note that, crucially, the two verticesin each pair are indistinguishable when they are presented. Therefore, wheneverthe online algorithm picks a vertex, the probability it is \bad" is 12 , regardlessof the history. The expected number of vertices the algorithm picked until the�rst \bad" vertex is picked, is 2. Hence the expected size of the independent setit �nds is at most 2+ (k� 2) = k. The o�ine algorithm, on the other hand, canalways pick all \good" vertices, yielding a competitive ratio of 
(nk ).2.2 A tight lower bound for online deterministic preemptivealgorithmsTheorem 2. Any deterministic preemptive algorithm for the hypergraph inde-pendent set problem for k-uniform hypergraphs on n vertices has a competitiveratio 
(nk ).Proof. We de�ne the following input sequence:



6{ Vertices are presented in steps. In each step there are 2k � 2 vertices suchthat any subset of k of them is an edge.{ At most k � 1 vertices from each step will be selected as \bad" vertices, allthe other vertices will be marked as \good".{ A set of k vertices that contains vertices from the current step and previoussteps is an edge if it contains at least one \bad" vertex from a previous step.The deterministic algorithmmay choose at most k�1 vertices from each step.The adversary will mark them as \bad" and all other vertices (at least k� 1) as\good". Therefore all the vertices which may be selected by the online algorithmare \bad", and may be replaced, by preemption, only by other \bad" vertices.By the construction of the sequence the online algorithm may hold a maximumof k�1 vertices at any time without having an edge (at most k�1 from one stepor at most k�1 from several steps). However, the optimal algorithm will collectall \good" vertices, thus creating an independent set of at least n2 vertices.2.3 A lower bound for online randomized preemptive algorithmsWe prove a lower bound of 
(pnk ) for the competitive ratio of any randomizedpreemptive on-line algorithm. We make use of Yao's lemma to establish a lowerbound for any deterministic algorithm on a given probability distribution, thusyielding a lower bound for the randomized case.Theorem 3. Any randomized preemptive on-line algorithm for the online in-dependent set problem for k-uniform hypergraphs on n vertices has competitiveratio 
(pnk ).Proof. De�ne the following probability distribution on the input sequences. Eachsequence will be constructed of vertices, presented in steps. Each step consistsof l vertices, with a total of n vertices in all steps. Each step will be generatedaccording to the following distribution:{ At step j, l vertices are presented such that any subset of k of them is anedge.{ One vertex chosen uniformly at random will be marked as a \good" vertex,while all others will be marked as \bad".{ A set of k vertices that contains vertices from the current step and previoussteps is an edge i� it contains at least one \bad" vertex from a previous step.For the proof, we reveal at the end of each step, which is the \good" vertex,thus giving the algorithm the opportunity to immediately discard all \bad"vertices, at the beginning of the next step. Note that all the vertices in each steplook indistinguishable given all the history since they participate in exactly thesame edges. Thus, there is no way for the algorithm to distinguish between the\good" and the \bad" vertices before the step ends. Therefore, at the end ofeach step, the algorithm may hold any number of \good" vertices from previoussteps, plus a set of at most k � 1 additional vertices. Some of these additional



7vertices may be \bad" vertices from previous steps, and some may belong to thecurrent step. The probability of the algorithm to select each \good" vertex ina step is at most k�1l , regardless of previous selections. The expected bene�t ofthe algorithm is thus:E(ON) � nl � k � 1l + k � 1 � nkl2 + kOn the other hand, the optimum algorithm OPT may pick all the \good"vertices, giving a bene�t of at least nl . Choosing, optimally, l = pn we get acompetitive ratio of 
(pnk ).2.4 A sublinear upper boundHere we present a randomized, preemptive algorithm for the independent setproblem in an arbitrary (not necessarily uniform) hypergraph and show that itscompetitive ratio is O(n= logn). The algorithm also runs in polynomial time.Given an input sequence of n vertices, the algorithm divides the sequenceinto groups of y vertices each. Each of these groups will be called a phase. Atthe beginning of each phase we uniformly select at random � distinct verticesof that phase. During the phase we pick all selected vertices, as long as theyinduce an independent set. If they do not induce an independent set, then thephase fails, and we drop all the vertices but one. If the phase succeeds we stop.Otherwise, we start another phase and replace the one remaining vertex withthe �rst selected vertex of the next phase. We assume that the portion of themaximal independent set size, x, is known in advance (i.e. the set contains n=xvertices). Later we use an appropriate weighted version of classify and randomlyselect to relieve this restriction.Claim. For each 4 � x � logn de�ne � = logn4 logx and y = 4�x. Then ouralgorithm picks an independent set of size � with high probability, or there isno independent set of size nx in the graph.Proof. We assume that there is an independent set in the graph, consisting ofat least nx vertices. We distinguish between phases with a lot of vertices fromthe set, and those with few vertices from the independent set. Phases with morethan y2x vertices are good phases. There are at least n2xy good phases, otherwisethe total number of vertices in the independent set is less than n2xy �y+ ny � y2x = nxin contradiction to the size of the independent set. From each good set we select� vertices at random. Since y = 4�x, each of these vertices has a conditionalprobability greater than y=2x��y = 14x of being a vertex from the independentset, given that all the previously selected vertices are from the independent set.Therefore the probability of failure is less than 1� ( 14x)�, for each good phase.Since we have n2xy good phases, the total probability of failure is bounded by�1� ( 14x )�� n2xy . As � = logn4 logx and y = 4�x, we get that the probability of failure



8is less than �1� ( 14x )�� n2xy � �1� 1n1=2� n2xy � e�n1=22xy � e�n0:49Theorem 4. There exists a randomized preemptive algorithm which achievesa competitive ratio of O( nlogn) for the independent set problem in an arbitraryhypergraph on n vertices.Proof. We use classify and randomly select. Divide the range of x from 4 to logninto classes by powers of two, and assign a probability to each such class. Forthe class of 2i�1 � x < 2i we assign probability proportional to i2i .Using the above algorithm for the chosen class we get an algorithm for which:{ If OPT(�) � nlogn , then ON(�) � 1 and the competitive ratio is at mostnlogn .{ If OPT(�) = nx > nlogn , then E(ON(�)) � 
( logxx ) ��( lognlogx ) = 
( lognx ), andagain the competitive ratio is at most O( nlogn ).Note that if the length of the sequence is unknown we may use a techniquesimilar to the standard doubling techniques by selecting an initial value for n andthen squaring its value if the sequence turns out to be too long. Squaring ensuresthat only a small portion of the independent set will be processed using a wrongvalue of n, while having the wrong value for n (by at most a power of 2) willonly add a constant factor to the competitive ratio. To avoid the sequence fromending just as we update the value of n, we use a simple boundary smoothingtechnique, such as randomly selecting a multiplicative factor between 1 and 2,and multiplying the updated value by this factor.3 Routing via �xed paths in constant capacity networksWe next show a reduction from the independent set problem for k-uniform hy-pergraphs to routing with �xed paths over a k � 1 bandwidth network. Thereduction step translates vertices into paths over the given graph, while makingsure that any hyperedge results in an inconsistent set of calls. The reductionyields lower bounds for the routing problem.Note that while the hypergraph was unknown to the algorithm in the inde-pendent set problem, the network structure is known in advance in the case ofrouting. The process of adding a new (unknown) vertex of the hypergraph whilerevealing the edges which connect it to previously presented vertices, correspondsto the process of presenting a new path, to be allocated over the network.A vertex v is called the completing vertex of an edge e, if all the other verticesof e were presented before v, and thus the edge e was revealed at the appearanceof v.



93.1 The reduction stepLet G = (V;E) be a k-uniform hypergraph, with V = fc1; c2; : : : ; cng, and as-sume the vertices are presented in this order. We construct a graph G0 = (V 0; E0),where each edge has capacity k� 1 and a set of paths P = fp1; p2; : : : ; png, suchthat1. Each vertex ci 2 V corresponds to the path pi.2. For every set of paths pi1 ; pi2; : : : ; pik, there exists an edge e 2 E0 such thate 2 pij ; 8j if and only if (ci1 ; ci2 ; : : : ; cik) 2 E.Note that the reduction we present is an on-line reduction, and not a standardreduction. In the on-line reduction the network, and the paths are built as thealgorithm advances, without knowing what are the actions of the algorithm, andhow the sequence will continue, while in a regular \o�ine" reduction the wholesequence in known in advance. Moreover, in a standard reduction, any inputsequence might result in a completely di�erent image, even if the sequences havea common pre�x. In an on-line reduction, on the other hand, we must allowany pre�x to be completed in every possible way without restricting it by thereduction process itself.G0 consists of 2n+2 �nk � vertices, and 2n�nk�+�nk �2 edges. First we constructa graph with �nk � independent edges. Each edge has a unique label (i1; i2; : : : ; ik)where ij < ij+1 8j, ik is called the last coordinate in the edge label. We referto these edges as restricting edges. We assign a left and a right vertex to eachrestricting edge. The right end of each edge is connected to the left end of everyother restricting edge, we refer to these edges as connecting edges. We then addtwo sets of vertices si and ti i = 1 : : :n with si connected to all left ends, and ticonnected to all the right ends (see Figure 1 ).For each vertex ci we assign the following path pi; starting from si, we passthrough all edges containing i in their label not as their last coordinate, andthrough all the edges labeled (i1; i2; : : : ; i) with i as the last coordinate of thelabel if and only if (ci1 ; ci2; : : : ; ci) 2 E. Note that ci is the completing vertexof the edge (ci1 ; ci2 ; : : : ; ci). Finally we connect the last edge to the vertex ti.Starting from si, the path will enter each edge through its left vertex, and leavethrough its right vertex.To complete the reduction we prove the following lemma,Lemma 1. In the resulting graph, for every set of paths pi1 ; pi2; : : : ; pik, thereexists an edge e 2 E0 such that e 2 pij ; 8j if and only if (ci1 ; ci2 ; : : : ; cik) 2 E.Proof. We �rst show that each connecting edge is used by at most k�1 di�erentpaths. Each path passing through a connecting edge must pass through therestricting edges connected to it. A path pi uses a certain restricting edge onlyif its index is one of the coordinates in the label of that edge, but two restrictingedges may share at most k � 1 coordinates. Thus no connecting edge is usedmore than k � 1 times.Therefore, we limit our attention to restricting edges. Consider the pathsgoing through the restricting edge e 2 E0 whose label is (i1; i2; : : : ; ik). All the
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(n-k+1,...,n-2,n-1,n)Fig. 1. The structure of G0. Labeled edges are the restricting edges, dashed lines rep-resent connecting edges.paths pi1 ; pi2; : : : ; pik�1 pass through the edge, as their index is not the lastcoordinate in the edge label. Therefore, all edges are used to their maximumcapacity by the paths corresponding to the �rst k� 1 coordinates in their label.According to our construction, the last path pik goes through this edge if andonly if (ci1 ; ci2; : : : ; cik) 2 E, thus creating an inconsistency.3.2 The resulting lower boundsTheorem 5. The following lower bounds hold for the online routing problemwith �xed paths, over a network with N vertices and constant capacity k � 1.{ Any deterministic, deterministic preemptive or randomized non-preemptiveon-line algorithm has competitive ratio 
(N1=kk ).{ Any randomized preemptive on-line algorithm has competitive ratio 
(N1=(2k)k ).Proof. By the above lemma, any online algorithm for the �xed paths routingproblem over a network with capacity k � 1, is also an algorithm for the inde-pendent set problem over a k-uniform hypergraph. Each path selected matchesa vertex in the hypergraph, and vice-versa. Moreover, any independent set inthe hypergraph de�nes a set of consistent paths in the network, and any set ofconsistent paths de�nes an independent set. Therefore, any algorithm(online oro�ine) which achieves a value of A(�) for the network routing problem, maybe used to build an independent set of the same size in the hypergraph. Thus,any lower bound on the competitive ratio for the independent set problem for a



11k-uniform hypergraph with n vertices, is also a lower bound for the competitiveratio for the routing problem on a k � 1 capacity network with N = �(nk)vertices.Using the lower bounds found for the k-uniform hypergraph problem, we getthe following set of lower bounds:{ The competitive ratio of any deterministic, deterministic preemptive or ran-domized non-preemptive algorithm is 
(nk ) = 
(N1=kk ).{ The competitive ratio of any randomized preemptive on-line algorithm, is
(n1=2k ) = 
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