Exercise 3: Jun 12, 2023
Lecturer: Prof. Yossi Azar

Write short but full and accurate answers. Each question should start on a new separate page and each of its parts should not exceed a page.

1. We are given n jobs and m unrelated machines. The load of job i on machine j is $w_{i j}$. The load of a machine is the sum of the weights of the jobs assigned to it. In contrast to the standard problem here each job i has two copies and they should be assigned exactly to TWO different machines say $j_{1} \neq j_{2}$ (then the load of j_{1} would increase by $w_{i j_{1}}$ and the load j_{2} would increase by $w_{i j_{2}}$). The goal is to minimize the maximum load.
(a) Write the appropriate LP formulation.
(b) Round the LP and provide a 2 approximation algorithm. (recall that the two machines each job is assigned to must be different)
2. Suppose we are given a regular graph $G=(V, E)$ of degree Δ. Each vertex has a different i.d (which initially is unknown to the others) between 0 to $2^{n}-1$ where $|V|=n$. Recall that a local algorithm with k rounds is an algorithm where each vertex decides on its output after k synchronized communication rounds with its neighbors. Find a local algorithm that colors the graph in $\Delta+1$ colors in $\log ^{*} n+2^{O(\Delta)}$ rounds.
Remark: a solution in $\log ^{*} n+2^{O(\Delta \log \Delta)}$ rounds will receive almost all points.
3. You are given a set of tasks where task i has a width b_{i} and a benefit v_{i} for $i \in\{1,2, \ldots, n\}$. For some fixed k task i is associated with intervals set, $\left\{\left(x_{i}^{1}, y_{i}^{1}\right),\left(x_{i}^{2}, y_{i}^{2}\right), \ldots,\left(x_{i}^{k}, y_{i}^{k}\right)\right\}$ where $x_{i}^{j}<y_{i}^{j}$ for all $1 \leq j \leq k$. A feasible solution is a set $S \subseteq\{1,2, \ldots, n\}$ and $j_{i} \in\{1, \ldots, k\}$ for each $i \in S$ such that for any t we have $\sum_{i \in S, x_{i}^{j_{i}}<t<y_{i}^{j_{i}}} b_{i} \leq 1$. The benefit of the solution is $\sum_{i \in S} v_{i}$. The goal is to find a feasible subset with maximum benefit. Design a 5 approximation algorithm.
4. We are given a tree and requests $\left(s_{i}, t_{i}\right)$ with a bandwidth w_{i} and a value v_{i} for $1 \leq i \leq n$. The goal is to maximize the total value of requests in a feasible subset.
(a) Design a 3 approximation algorithm where a feasible set is a subset of the requests with total bandwidth at most 1 on each vertex.
(b) Modify the algorithm and the proof to design a 6 approximation algorithm where a feasible set is a subset of the requests with bandwidth at most 1 on each edge.

Exercise \# 3 is due Jun 25, 2023 at 11pm.

