Write short but full and accurate answers. Each question should start on a new separate page and each of its parts should not exceed a page.

1. We are given \(n \) jobs and \(m \) unrelated machines. The load of job \(i \) on machine \(j \) is \(w_{ij} \). The load of a machine is the sum of the weights of the jobs assigned to it. In contrast to the standard problem here each job \(i \) has two copies and they should be assigned exactly to TWO different machines say \(j_1 \neq j_2 \) (then the load of \(j_1 \) would increase by \(w_{ij_1} \) and the load \(j_2 \) would increase by \(w_{ij_2} \)). The goal is to minimize the maximum load.

 (a) Write the appropriate LP formulation.
 (b) Round the LP and provide a 2 approximation algorithm. (recall that the two machines each job is assigned to must be different)

2. Suppose we are given a regular graph \(G = (V, E) \) of degree \(\Delta \). Each vertex has a different i.d (which initially is unknown to the others) between 0 to \(2^n - 1 \) where \(|V| = n \). Recall that a local algorithm with \(k \) rounds is an algorithm where each vertex decides on its output after \(k \) synchronized communication rounds with its neighbors. Find a local algorithm that colors the graph in \(\Delta + 1 \) colors in \(\log^* n + 2^{O(\Delta)} \) rounds.
 Remark: a solution in \(\log^* n + 2^{O(\Delta \log \Delta)} \) rounds will receive almost all points.

3. You are given a set of tasks where task \(i \) has a width \(b_i \) and a benefit \(v_i \) for \(i \in \{1, 2, \ldots, n\} \). For some fixed \(k \) task \(i \) is associated with intervals set, \(\{(x^1_i, y^1_i), (x^2_i, y^2_i), \ldots, (x^k_i, y^k_i)\} \) where \(x^j_i < y^j_i \) for all \(1 \leq j \leq k \). A feasible solution is a set \(S \subseteq \{1, 2, \ldots, n\} \) and \(j_i \in \{1, \ldots, k\} \) for each \(i \in S \) such that for any \(t \) we have \(\sum_{i \in S, x^j_i < t < y^j_i} b_i \leq 1 \). The benefit of the solution is \(\sum_{i \in S} v_i \). The goal is to find a feasible subset with maximum benefit. Design a 5 approximation algorithm.

4. We are given a tree and requests \((s_i, t_i)\) with a bandwidth \(w_i \) and a value \(v_i \) for \(1 \leq i \leq n \). The goal is to maximize the total value of requests in a feasible subset.
 (a) Design a 3 approximation algorithm where a feasible set is a subset of the requests with total bandwidth at most 1 on each vertex.
 (b) Modify the algorithm and the proof to design a 6 approximation algorithm where a feasible set is a subset of the requests with bandwidth at most 1 on each edge.

Exercise # 3 is due Jun 25, 2023 at 11pm.