1 Introduction

In this lecture we will see two variants of the Load Balancing problem seen in the previous lecture:

- **Load Balancing on Related Machines** The load of a certain task is determined by its weight, as well as the power of the machine.
- **Restricted Assignment** Tasks can only be assigned to certain machines.

2 Load Balancing on Related Machines

Definition 2.1. *m* machines. Machine *j* has the speed *v*_{*j*}. Algorithm *A* assigns task *i* to machine *j*. The load on machine *j* is then defined by:

\[l_j \leftarrow l_j + \frac{w_i}{v_j} \]

Or, in a non recursive definition:

\[l_j = \frac{1}{v_j} \sum_{i | A(i) = j} w_i \]

The goal is to minimize the \(\max_j l_j \)

Possible algorithms:

1. **Pre Greedy** assign the task to the least loaded machine. That is, choose *j* so that \(l_j \) is minimized.

2. **Post Greedy** assign the task to the machine which will be the least loaded with the added task. That is, choose *j* so that \(l_j + \frac{w_i}{v_j} \) is minimized.

3. assign the task to the fastest machine.

- Algorithm 3 will not work: if we have \(m - 1 \) machines with the speed 1 and 1 machine with the speed \(1 + \epsilon \). If we get \(m \) unit tasks, \(opt \) will distribute them evenly, while \(on_3 \) will assign them all to the slightly faster machine.

\[on(\sigma) = m \]
\[opt(\sigma) = 1 \]

This yields a competitive ratio of \(m \).
• Algorithm 1 fails as well, even for $m = 2$ machines: if we gave a machine with the speed 1 and a machine with the speed M, where $M \gg 1$, and we have 2 tasks with the size 1. Note that opt will assign them both to the faster machine, while on_1 will assign one task to each machine

$$on_1(\sigma) = 1$$

$$opt(\sigma) = \frac{2}{M}$$

This yields a competitive ratio of at least $\frac{M}{2}$.

Theorem (Without Proof) 2.2. The Post Greedy algorithm is $\Theta(\log m)$-competitive.

We will now show an 8-competitive algorithm.

Step I

Lets assume that the optimal value, λ, at each step is known, or that there is a good upper bound to it. The idea is to assign the task to the slowest machine s.t. the load after the assignment is < 2λ.

w.l.o.g the machines are sorted from the slowest to the fastest by their index.

Algorithm. We will assign the task to \(\{ \min j | l_j + \frac{w_i}{v_j} \leq 2\lambda \} \)

If no such machine exists, the algorithm will fail.

This is a “utilize the weak” algorithm.

Theorem 2.3. if $\lambda \geq opt(\sigma)$ then our algorithm will never fail.

In particular, the load is $\leq 2\lambda$. We will get 2-competitiveness for $\lambda = opt(\sigma)$

Proof. Lets assume we failed on task i. Since m is the fastest machine, and each task on the fastest machine $\leq \lambda$, we get $w_i \frac{v_j}{v_m} \leq \lambda$. Hence $l_m > \lambda$.

![Figure 1: The state of the machines at the moment we failed](image)

Not all machines can be loaded $\geq \lambda$ because of the Conservation of Volume rule (otherwise, the sum total work we did would be greater than that of opt.)

We define r as the fastest machine whose load is smaller or equal than λ. i.e. for $j > r$ we have $l_j > \lambda$

According to the Conservation of Volume rule there exists at least one task, k, which the Online Algorithm assigns to a machine j such that $r + 1 \leq j \leq m$ and opt assigns to a machine $\leq r$. In particular, $\frac{w_k}{v_r} \leq \lambda$ and $l_r + \frac{w_k}{v_r} \leq \lambda + \lambda$. Hence, we should have assigned task k (whose weight is w_k) to a machine $1 \leq j \leq r$. Contradiction. \qed
Step II
Finding λ.

1. $\lambda \leftarrow \lambda_0 \leftarrow \frac{w_i}{v_m}$
2. run $A(\lambda)$
3. if failed, $\lambda \leftarrow 2\lambda$. Back to step 2.

Once $\lambda \geq opt(\sigma)$ the algorithm must stop, by Theorem 2.3.
In each iteration of the algorithm with a new λ it continues running as though there
is no load on the machines. That is because the algorithm assumes empty load on the
machines. Otherwise the algorithm will not work.

Note that $\lambda_{\text{final}} \leq 2opt(\sigma)$. Hence, the real load will be:

$$2\lambda_0 + 2(2\lambda_0) + 2(4\lambda_0) + \ldots + 2\lambda_{\text{final}} \leq 2\lambda_0 + \ldots + 2 \cdot 2opt(\sigma) \leq 8opt(\sigma)$$

Theorem 2.4. If there exists an algorithm for the Load Balancing problem, which is c-
competitive given the value of $opt(\sigma)$, then there exists a $4c$-competitive algorithm without
knowing the value of $opt(\sigma)$ (the theorem requires the assumption that we know $\lambda_0 < opt(0)$).

Proof.

$$c\lambda_0 + c(2\lambda_0) + \ldots + c\lambda_{\text{final}} \leq c\lambda_0 + \ldots + c \cdot 2opt(\sigma) \leq 4c \cdot opt(\sigma)$$

Note. The choice of multiplying λ by 2 at each iteration is exactly the path search prob-
lem we’ve seen in the first lecture. Recall that the optimal common ratio of the geometric
progression was 2.

3 Restricted Assignment

Definition 3.1. We have m identical machines. Task i has a weight w_i and $\phi \neq M(i) \subset M$
a subset of all the machines. Task i can only be assigned to some of the machines, i.e. only
to the machines $j \in M(i)$. The goal is to minimize the $\max_j l_j$

Note. This model is represented by a bi-partite graph.

Algorithm. Greedy - assign the task to the machine with the smallest load, among $M(i)$.

Theorem (Proof will be given next week) 3.2. The greedy algorithm is $\log m + 1$-
competitive.

Theorem 3.3. Every algorithm for the Restricted Assignment model is at least $\lceil \log m \rceil + 1$-
competitive.
Proof. We will build a sequence where $\forall_i w_i = 1$ and $opt = 1$.

Assume w.l.o.g that m is a power of 2. Otherwise we will take the largest power of 2 smaller than m, and use only those machines.

The first $\frac{m}{2}$ tasks with $M(i) = \{i, \frac{m}{2} + i\}, 1 \leq i \leq \frac{m}{2}$. w.l.o.g Alg will assign these tasks to i (otherwise we switch names.) opt will assign them to $\frac{m}{2} + i$.

The next $\frac{m}{4}$ tasks with $M(i) = \{i, \frac{m}{4} + i\}, 1 \leq i \leq \frac{m}{4}$ w.l.o.g Alg will assign them to i. opt will assign them to $\frac{m}{4} + i$.

We repeat this $\log m$ times.

We get one task with $M = \{1, 2\}$. Alg assigns it to 1, while opt assigns it to 2.

At last we get one last task with $M = \{1\}$, and both algorithms assign it to 1.

Why is $opt = 1$?

At each stage, opt assigns the tasks to an empty machine, while Alg assigns it tot the other machine.

Eventually, $opt(\sigma) = 1$ and $Alg(\sigma) = \log m + 1$. If m is not power of 2 then it will be $\lfloor \log m \rfloor + 1$.

\[\begin{array}{c}
\text{Figure 2: Stage 1}
\end{array} \]

\[\begin{array}{c}
\text{Figure 3: Stage 2}
\end{array} \]

\[\begin{array}{c}
\text{Figure 4: Load on opt}
\end{array} \]
Definition 3.4. A Fractional model for the Load Balancing problem is a model in which the online algorithm can split the tasks between different machines. Moreover, opt cannot split the tasks.

Theorem 3.5. The lower bound for a Fractional model is $\frac{1}{2} \log m$.

Proof. We repeat the same proof, with the difference that in every step, the algorithm assigns the bigger part of the task to i and the smaller one to $i + \frac{m}{2k}$. We lose a factor of 2 compared with the previous lower bound.

Remark. When looking at the expected value, a lower bound for the Fractional model (where optimum is non-fractional) is a lower bound for the random algorithm.

Explanation of the remark: The fractional load on a machine corresponds to the expected load of the online algorithm on that machine. In particular, the lower bound is on

$$\max_j E(l_j)$$

Since

$$E(\max_j l_j) \geq \max_j E(l_j)$$

the lower bound also holds for randomized algorithms.