1 Introduction

In this lecture we will present the Simplex algorithm, finish some unresolved linear programming related issues from the previous lecture, and present the Dual concept.

2 Linear Programming

Some basic definitions and theorems we covered in the previous lecture:

- **Polyhedron**: Intersection of half-spaces.
- **Vertex**: Feasible point which cannot be written as a convex combination of two feasible points.
- **Theorem A**: Let \(p \) be a polyhedron defined as \(p = \{ x | Ax \geq b \} \). Then \(x \) is a vertex of \(p \) iff \(x \) is a feasible solution that satisfies tightly \(n \) linearly independent constraints.
- **Theorem B**: Let \(p \) be a polytope (non-empty bounded polyhedron). Then for every \(x \in p \) there exists a vertex \(x' \) such that \(c^t x' \geq c^t x \).
- **Basic Solution**: The matrix \(A \) has \(m \) linearly independent columns. The total number of constraints is \(m + n \). Denote \(j_1 < j_2 < \ldots < j_m \) as the appropriate variable indices. Any other variable is set to 0. Let \(B \) be the matrix consist of the columns \(j_1, \ldots, j_m \) of \(A \) and \(x_B = x_{j_1}, \ldots, x_{j_m} \). The basic solution is defined as \(x_B = B^{-1}b \). If \(x_B \geq 0 \) then \(x_B \) is a basic feasible solution (bfs).

Example 1:
\[
\begin{align*}
 x_1 + x_2 + x_3 &= 8 \\
 x_2 + 2x_3 &= 6 \\
 x_1, x_2, x_3 &\geq 0
\end{align*}
\]
(2, 6, 0) and (5, 0, 3) are both bfs whereas (0, 10, −2) is not feasible.

Example 2:
\[
\begin{align*}
 x_1 + x_2 + x_3 &= 6 \\
 x_2 + 2x_3 &= 6 \\
 x_1, x_2, x_3 &\geq 0
\end{align*}
\]
(0, 6, 0) is a mutual bfs for the basis \(x_1, x_2 \) and \(x_2, x_3 \). The other bfs is (3, 0, 3).

Theorem C: \(x \) is a vertex iff \(x \) is bfs.

proof. If \(x \) is a vertex, then by Theorem A \(x \) satisfies tightly \(n \) linearly independent constraints. Let \(j_x \) be all the non-zero variable indices, and \(A_x \) be the induced matrix. Denote
Let k as the number of non-zero variables. Then $n - k$ of the variables are 0 and therefore define $n - k$ tight constraints. $\text{rank}(A_x) = k$, otherwise we will not get n linearly independent constrains. Hence $k \leq m$. If $k = m$ then x is bfs for the columns j_x of A and we are done. If $k < m$ then by adding $m - k$ independent columns we form a basis. x satisfies all the constrains defined by the sub-matrix C of A of size $m \times m$, and the rest of the variables in x are set to 0. The matrix is regular and therefore x is the bfs of the column of C.

For the other direction we include an alternative proof to the one given in class. Let x be a bfs of $Ax = b$, $x \geq 0$, and $\text{rank}(A) = m$. Suppose that $x = \lambda u + (1 - \lambda)v$ where $0 < \lambda < 1$ and $u, v \in p = \{x|Ax = b\}$, in other words, assume that x is not a vertex. Let $J \subseteq \{1, \ldots, n\}$ be the basis corresponding to x, and for $j \notin J$ $x_j = 0$. x is unique vector in p satisfying $x_j = 0$ if $j \notin J$. Therefore, there exists $j \notin J$ such that $u_j > 0$. Also, $v \geq 0$ since this is an LPS system. Therefore $\lambda u_j + (1 - \lambda)v_j > 0$ in contradiction to the fact that $x_j = 0$.

2.1 Yet, another application of linear programming

Let ℓ_1, \ldots, ℓ_m be k half-spaces in \mathbb{R}^n. Find a maximal radius ball that doesn’t intersect with any ℓ_i. ℓ_i are given in the following form,

$$\begin{cases}
a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \leq b_i \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m
\end{cases}$$

We would like that the center of such ball will be as far as it can from each half-space. We get the following linear programming system whose variables are x_1, \ldots, x_n and R:

$$\forall i \quad \frac{a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i}{\sqrt{a_{i1}^2 + a_{i2}^2 + \cdots + a_{in}^2}} \geq R; \quad \text{max} \ R.$$

3 The Simplex Algorithm [Danzig47]

In a nutshell, the algorithm traverses the vertices of the polytop, moving from one vertex to its neighbor, by modifying the basis of the bfs of the current vertex.

Example:

$$\begin{pmatrix} 1 & 0 & 2 & -1 & 0 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ 6 \end{pmatrix}; \quad x_1, x_2, x_3, x_4, x_5 \geq 0$$

$$\min 2x_1 + x_2 + x_3 + x_4 + 2x_5.$$
Using elementary row operations we get

\[
\begin{pmatrix}
1 & 2 & 0 & 1 & 0 \\
0 & -1 & 1 & -1 & 0 \\
0 & 2 & 0 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{pmatrix}
=
\begin{pmatrix}
1 \\
3 \\
3
\end{pmatrix}.
\]

We will use \(x_1, x_3, x_5\) as the basis and set the 2nd and 4th columns to 0. Note that the columns 1,3,5 form the identity matrix (or in general, permutation matrix). The appropriate bfs is \((1,0,3,0,3)\) with the target function 11. Let’s increase the value of \(x_4\) from 0 to \(\phi\). The values of \(x_1, x_3, x_5\) would change accordingly,

\[
\begin{pmatrix}
x_1 \\
x_3 \\
x_5
\end{pmatrix}
=
\begin{pmatrix}
1 \\
3 \\
3
\end{pmatrix} - \begin{pmatrix}
1 \\
-1 \\
2
\end{pmatrix} \cdot x_4.
\]

We will get the following change in the target function, \(-2\phi + 0 + \phi + \phi - 4\phi = -4\phi\). So, the target function diminishes as \(x_4\) grows bigger, but we must keep in mind the fact that we have to satisfy the constraints \(x_1, \ldots, x_5 \geq 0\) as well. It forces the constrain \(\phi \leq 1\). If, on the other hand, we set \(x_2 = \delta\) then \(x_1 = 1 - 2\delta, x_3 = 3 + \delta, x_5 = 3 - 2\delta; \delta \leq 1/2\) and the change in the target function will be \(-6\delta\).

Let’s extend the above example to general LPS.

3.1 Preliminaries

\[
\min c'x; \quad Ax = b; \quad x \geq 0
\]

Let \(B\) be the basis, \(x_B\) basis variables, \(x_N\) non-basis variables, \(A_B\) the basis columns matrix (regular matrix), \(A_N\) non-basis columns matrix. We get the following (equivalent) linear programming problem,

\[
\min(c_B'x_B + c_N'x_N); \quad A_Bx_B + A_Nx_N = b; \quad x_B, x_N \geq 0.
\]

Moreover, \(x_B = A_B^{-1}b - A_B^{-1}A_Nx_N\), and the target function can be written as

\[
\min(c_B'(A_B^{-1}b - A_B^{-1}A_Nx_N) + c_N'x_N) = \min(c_B'A_B^{-1}b + (c_N' - c_B'A_B^{-1}A_N)x_N).
\]

If we set \(x_N = 0\) then \(x_B = A_B^{-1}b\) and the value of the target function will be \(c_B'A_B^{-1}b\).

We define a weight vector \(\check{c} = c_N' - c_B'A_B^{-1}A_N\). If there exists \(\check{c}_j < 0\) then decreasing \(x_j\) (as long as \(x_B \geq 0\)) will result a decrease in the goal function value. In case there is no limit for increasing \(x_j\), the target function is unbounded, i.e \(-\infty\), otherwise we stop once some variable in the basis reaches 0. This process is called pivot step.

Theorem: If \(\check{c} > 0\) then the algorithm is optimal.

Proof. For any feasible point \(y\) we have

\[
c'y = c_B'A_B^{-1}b + (c_N' - c_B'A_B^{-1}A_N)y_N = c_B'A_B^{-1}b + \check{c}y_N \geq c_B'A_B^{-1}b
\]

since \(\check{c} \geq 0\) and \(y_N \geq 0\). Hence \(x\) is optimal.
3.2 Algorithm

1. Select a basis B that defines a bfs.
2. Calculate the proper matrices ($A_B^{-1}, A_N,...$).
3. If $\tilde{c} > 0$ then the solution is optimal, STOP.
4. Otherwise, find an index j such that $\tilde{c}_j < 0$ and increase x_j until one of the basis variables is set to 0.
 If there is no such variable the target function is unbounded.
 Otherwise include j in the basis and remove the new zero variable.

Steps 2,3,4 are the pivot steps.

A few questions arise:

- How do we select j (among all j, such that $\tilde{c}_j < 0$) and what variable is removed from the basis (among all variables that are set to 0)?
- What happens when we cannot increase x_j at all?
- Can the algorithm get stuck in a loop?

Lemma: The algorithm converges if the target function decreases.

Proof. The algorithm never returns to the same solution and the number of vertices is finite.
If, on the other hand, the target function remains the same, we stay in the same vertex and might return to the same basis.

Definition (Bland Rule):

- Add to the basis a variable with minimal j such that $\tilde{c}_j < 0$.
- Remove from the basis the zero variable with minimal index j.

The following theorem is given without a proof.

Theorem: The algorithm converges if the Bland Rule is used.

Observation: In the worst case, the algorithm traverses all the vertices, which might be exponential (in m,n).
Typically, however, the number of iterations is small and even linear.

Complexity:

1. Initialization requires handling - deciding whether some solution exists is as hard as finding an optimal solution.
2. Gauss Elimination is used in the first iteration - $O(n^3)$, otherwise $O(n^2)$.
3. $O(n)$ (values are computed by the Gauss Elimination).
4. $O(n)$.

3.3 Algorithm Initialization

\[\min c^T x, A x = b \geq 0 \] (if there’s \(b_i < 0 \) we multiply the \(i \)th row of \(A \) by \(-1\)), \(x \geq 0 \). We define a new system

\[(A - I) \begin{pmatrix} x \\ y \end{pmatrix} = b, \min \sum y_i, \ x \geq 0, y \geq 0. \]

Lemma: The original system is feasible \(\iff \) the new system has an optimum value 0.

Proof. Let \(x \) be a solution to the original system. Set \(y_i = 0 \), observe that \((x, y)\) satisfies the new system as well and the goal function attains it’s minimum value. The other direction of the proof is similar.

Hence, we can find an initial solution to the original system by solving the new system using the simplex algorithm. However, we need also to initialize the new system. Notice that \(x_i = 0, y_i = b_i \geq 0 \) is a bfs of the new system.

4 The Dual

We start with an example. Observe the following linear programming system:

\[
\begin{align*}
\text{min} & \quad 2x_1 + 4x_2 - x_3; \\
\text{subject to} & \quad (1) \quad x_1 + x_2 + x_3 \geq 10 \\
& \quad (2) \quad x_1 + 3x_2 - 2x_3 \geq 4 \\
& \quad (3) \quad 2x_2 - 3x_3 \geq -8
\end{align*}
\]

Notice that

\[
\begin{align*}
2 \times (1) + 1 \times (3) : & \quad 2x_1 + 4x_2 - x_3 \geq 12 \\
1 \times (1) + 1 \times (2) : & \quad 2x_1 + 4x_2 - x_3 \geq 14
\end{align*}
\]

Thus, we found a lower bound on the goal function. To find to find a stronger lower bound, denote by \(y_1, y_2, y_3 \) the factors on the constraints (in the last example \(y_1 = 1, y_2 = 1, y_3 = 0 \)).

Now we want to solve the system \(y^t A = c; \max y^t b; y \geq 0 \). Each feasible solution of the new system is smaller than any feasible solution in the original system. It’s clear that \(\min c^T x \geq \max y^t b \).

The constraints \(x \geq 0 \) in the original system transform to the constraints \(y^t A \leq c \) in the dual.

Yet, another example:

\[
\begin{align*}
\text{min} & \quad 3x_1 + 2x_2 + 3x_3 = G; \\
& \quad x_1 + x_2 - x_3 = 4 \\
& \quad -2x_1 - 4x_3 = -7. \\
& \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]

\[
\begin{align*}
1 \times (1) - 1 \times (2) : & \quad 3x_1 + x_2 + 3x_3 = 11 \implies G \geq 11 \\
2 \times (1) - \frac{1}{2} \times (2) : & \quad 3x_1 + 2x_2 + 0x_3 = 11.5 \implies G \geq 11.5
\end{align*}
\]

Again, to get a lower bound we need to solve \(y^t A \leq c; y \geq 0 \); \(\max y^t b \).