1 Introduction

In this Lecture we will introduce the Local Ratio Technique. We will show applications of this method to the following problems:

- Vertex cover
- Interval scheduling
- Interval scheduling with deadlines
- Interval scheduling with intervals of various widths.

2 Vertex Cover

Introducing the problem:
Input: Graph $G = (V,E)$, weight function $w : V \rightarrow R^+$
Feasible solution: $S \subseteq V \text{ s.t } \forall e = (v,u) \in E. u \in S \text{ or } v \in S$
Goal Function: Minimize $\sum_{v \in S} w(v)$.

Claim 1: The value of the solution is 0 \iff the group of all the vertexes with weight 0 is a valid cover $\iff \forall e = (u, v) \in E u \in S \text{ or } v \in S$
Proof: follows by definition.

2.1 First Solution:
Given input: $G = (V,E)$, $w(v) \rightarrow R^+$, choose an edge $e=(u,v) \in E$ and subtract $X = \min \{w(u), w(v)\}$ from $w(v)$ and $w(u)$. The result is graph G with a new weight function w'.

Figure 1: An example of G with weights w & w':

Notice that:
(1) \(\text{OPT}(G,w') \leq \text{OPT}(G,w) - X \)
(2) \(A(G,w) \leq A(G,w') + 2X \)

Explanations:
(1) if \(S \) is a feasible solution to \((G,w)\) with value \(V \), it will also be a feasible solution to \((G,w')\) with value at most \(V - X \).
(2) if \(S \) is a feasible solution to \((G,w')\) with value \(V \), it will also be a feasible solution to \((G,w)\) with value at most \(V + 2X \) (if both \(v \) and \(u \) are in \(S \), we add \(2X \)).

Claim 2: We can achieve a 2-approximation algorithm by recursion on \((G,w')\):
The Algorithm: choose an edge \(e \in E \) and generate \((G,w')\). Continue until the weight of at least one of the vertexes of each edge is 0.

Proof: By induction: (on the number of edges \((u,v)\) s.t \(w(u) > 0 \) and \(w(v) > 0 \))
Base case: At least one of the vertexes of each edge is 0 \(\rightarrow \) the value of the solution is 0 (we will take all the vertexes with weight 0). The solution is optimal, and therefore 2-approximate.
Induction Step: \(A(G,w') \leq A(G,w') + 2x \leq \text{induction} 2\text{OPT}(G,w') + 2x = 2(\text{OPT}(G,w') + x) \leq (1) 2\text{OPT}(G,w) \)

Figure 2: An Example of the recursive algorithm:

2.2 An alternative approach:

We divided the weight function \(w \) into 2 functions: \(w_1:V \rightarrow R^+ \) and \(w_2:V \rightarrow R^+ \) s.t \(w = w_1 + w_2 \).

Figure 3: The division of \(W \) in our example:

The Local Ratio Theorem: If solution \(S \) is \(\alpha \)-approximate for \((G,w_1) \) and \((G,w_2) \), \(S \) is also \(\alpha - \)approximate for \((G,w)\)
Proof: \(w(S) = w_1(S) + w_2(S) \leq \alpha OPT(G, w_1) + \alpha OPT(G, w_2) = \alpha (OPT(G, w_1) + OPT(G, w_2)) \leq \alpha OPT(G, w + w) = \alpha OPT(G, w) \)

The local Ratio Theorem applied to the Vertex Cover:

The algorithm: If a zero-cost solution can be found, return one. Otherwise, decompose \(w \) into \(w_1 \) & \(w_2 \), and solve the problem recursively, using \(w_1 \) as the weight function in the recursive call.

Claim 3: The algorithm is 2-approximate.

Proof: By Induction: (on the number of edges \((u,v) \) s.t \(w(u) > 0 \) and \(w(v) > 0 \))

Base case: The algorithm returns a VC of zero cost, which is optimal.

Inductive step: consider the solution returned by the recursive call. In \((G, w_1) \) there is one edge \((u,v) \) less s.t \(w(u) > 0 \) and \(w(v) > 0 \), by the inductive hypothesis it is 2-approximate with respect to \(w_1 \). We claim that it is also 2-approximate with respect to \(w_2 \). In fact, every feasible solution is 2-approximate with respect to \(w_2 \): \(OPT(G, w_2) \geq x \) and \(Alg(G, w_2) = \sum_{v \in S} w_2(v) \leq \sum_{v \in V} w_2(v) = 2x \). \((G, w_1) \) and \((G, w_2) \) is 2-approximate \(\rightarrow (G, w) \) is 2-approximate.

3 Interval Scheduling

Introducing the problem:

Input: A set of intervals: \(I_i = (s_i, t_i, v_i) \) \(s_i \leq t_i \) \(v_i \) - the value of interval \(i \)

Feasible solution: subset \(S \) of non-conflicting intervals.

Goal Function: maximize the sum of values of \(S \).

Figure 4: Example of Interval scheduling problem:

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

3.1 Simple Case: \(\forall i. v_i = 1 \):

The Goal is to maximize the number of intervals in \(S \).

The Algorithm: Choose the interval that ends first, and remove all of its conflicting intervals. Repeat until there are no more intervals.

Claim 4: The Algorithm gives an optimal solution.

Proof: The chosen interval is better than any other interval, because it can be replaced by any of the other intervals we removed.

3.2 The General Case \(\forall i. v_i \geq 0 \):

3.2.1 Solution using dynamic programming:

Sort the intervals by the ending time \((t_i) : I_1 \leq I_2 \ldots \leq I_n \)

definition: \(F(I) = \) the maximum gain from intervals ending until the ending if the \(i \)-th interval ; \(F(0) = 0 \).
Definition: \(J_i = \) the interval with maximum index that ends before the beginning of interval \(i \).

\[F(I) = \{ F(i-1), v(i) + F(j_i) \} \]

3.2.2 Solution using Local Ratio technique:

1. If there are intervals such that \(v_i < 0 \), remove them. If the input is \(\phi \), return \(\phi \).

2. The weight function \(w_1 \): Select the interval that ends first - \(I_1 \) with value \(v \) and remove \(v \) from all of \(I_1 \)’s conflicting intervals. (The weight function \(w_2 = w - w_1 \). Remove \(I_1 \).

3. Solve recursively.

4. Take the recursive solution and add \(I_1 \) to it if possible (= if interval \(I_1 \) doesn’t conflict with the other intervals in the solution).

Claim 5: The algorithm returns an optimal solution.

Proof: By induction (on the number of intervals):

Base case: If the input is \(\phi \), return \(\phi \), optimal solution.

Inductive step: First, notice that the all the intervals with value > \(0 \) are conflicting with each other, and \(\text{OPT} = v \). Consider the solution \(S \) returned by the recursive call. In \(w_1 \) there is at least one interval less than in \(w \). By the inductive hypothesis \(S \) is optimal with respect to \(w_1 \).

If \(S \) contains an interval conflicting with \(I_1 \): There is an interval conflicting with \(I_1 \) in the solution \(\rightarrow \) the value of the solution in Alg(\(w_2 \)) = \(v \) \(\rightarrow \) optimal.

If \(S \) doesn’t contain an interval conflicting with \(I_1 \) we add it to the solution: Alg(\(w_2 \)) = \(v \) \(\rightarrow \) optimal. \(S \) is optimal with respect to \(w_1 \) and \(w_2 \) \(\rightarrow \) \(S \) is optimal with respect to \(w = w_1 + w_2 \).

4 Interval Scheduling with deadlines

Introducing the problem:

Input: A set of intervals: \(I_i = (s_i, t_i, d_i, v_i) \): interval \(i \) can be placed in the range \([s_i, t_i]\), the interval’s length is \(d_i \), and its value - \(v_i \).

Feasible solution: Subset \(S \) of non-conflicting intervals, and the starting location for each selected interval in its range.

Goal Function: Maximize the sum of values of \(S \).

Remark: The problem is NP-Complete (can be proved by reduction to Bin Packing problem).

Assumption: \(s_i, t_i, d_i \) are Integer.

The technique: Let’s open each interval to a set of all of it’s possible locations within the range \([s_i, t_i]\), and apply the algorithm described in section 3.2.2.

The Algorithm:

1. If there are intervals such that \(v_i < 0 \), remove them. If the input is \(\phi \), return \(\phi \).
2. The weight function w_1: Select the interval that that ends first - I_1 with value v and remove v from: (1) all of I_1's conflicting intervals. (2) all the copies of I_1. (the weight function $w_2 = w - w_1$). Remove I_1.

3. Solve recursively.

4. Take the recursive solution and add I_1 to it if possible (= if interval I_1 doesn’t conflict with the other intervals in the solution, and there isn’t any copy of I_1 in the solution).

Claim 6: The algorithm is 2-approximate.

Claim 7: Optimal solution for $w_2 \leq 2v$.

Proof (of Claim 7): We take v from all the intervals conflicting with I_1, and v from a copy of I_1. We get $2v$.

Claim 8: The value of every maximal solution with respect to $I_1 \geq v$.

Proof (of Claim 8): By definition: If we take a copy of I_1 we get v. If we take a copy of an interval conflicting with I_1 we get v. Otherwise, we can add I_1 to the solution - we get v.

Corollary 1: From claims 7 and 8 we get that any feasible solution to w_2 is 2-approximate.

Proof (of Claim 6): By induction (on the number of intervals):

Base case: If the input is ϕ - return ϕ - optimal solution (and 2-approximate).

Inductive step: Consider the solution S returned by the recursive call. In w_1 there is at least one interval less than in w. By the inductive hypothesis S is optimal with respect to w_1. We have also shown (in corollary 1) that any feasible solution to w_2 is 2-approximate. S is optimal with respect to w_1 and $w_2 \rightarrow S$ is optimal with respect to $w = w_1 + w_2$.

5 Interval Scheduling with intervals of various widths:

Introducing the problem:

Input : A set of intervals: $I_i = (s_i, t_i, w_i, v_i)$: s_i - the start of the interval, t_i - the end of the interval, w_i - the interval’s width, v_i - the interval’s value.

Feasible solution: Subset S of intervals, s.t at any given time, the sum of the widths of the intervals is at most 1.

Goal Function: Maximize the sum of values of S.

Figure 5: An example of Interval Scheduling with intervals of various widths:

The Algorithm:

Phase 1: Separate the input into 2 groups: $I_1 = \{i | w_i > \frac{1}{2}\}; I_2 = \{i | w_i \leq \frac{1}{2}\}$

Phase 2: Solve each group separately:
Solution to I₁ : since \(w_i > \frac{1}{2} \), at each given moment, there can be placed at most 1 interval. This is the regular Interval Scheduling problem- we have shown how to solve this problem optimally.

Solution to I₂ :

1. If there is an interval s.t \(v_i < 0 \) - remove item. If the input is \(\phi - return \phi \).

2. The weight function \(w_1 \): Select the interval that that ends first - \(I_1 \) with value \(v \) and weight \(w \), and remove \(\frac{w}{1-w} \) from all of \(I'_1 \) conflicting intervals. \((w_i \) is the weight of the conflicting interval). The weight function \(w_2 = w - w_1 \). Remove \(I_1 \).

3. Solve recursively.

4. Take the recursive solution and add \(I_1 \) to it if possible (= if interval \(I_1 \) adding interval \(I_1 \) doesn't result in a time \(t \) s.t the sum of the weights at that time is over 1).

Claim 9: Optimal solution for \(I_2, w_2 \leq 2v \).

Proof: \(OPT \leq max\{v \sum_{\frac{w}{1-w}}, v + v \sum_{\frac{w}{1-w}}\} \leq max\{v \frac{1}{1-w}, v + v \frac{1}{1-w}\} = max\{2v, 2v\} = 2v \). Explanation: The first option - \(OPT \leq v \sum_{\frac{w}{1-w}} \) represents the case where we didn’t add \(I_1 \) to the solution. In this case \(\sum w_i \leq 1 \) since it’s a valid solution, and since \(w_i > \frac{1}{2} \) we get \(OPT \leq 2v \). The second option(we add \(I_1 \) to the solution): \(OPT \leq v + v \sum_{\frac{w}{1-w}} - v \) for \(I_1 \) and \(v \sum_{\frac{w}{1-w}} \) for all of \(I'_1 \)'s conflicting intervals. We can add \(I_1 \), so \(\sum w_i + w \leq 1 \rightarrow \sum w_i \leq 1 - w \). We get \(OPT \leq 2v \).

Claim 10: the value of every maximal solution with respect to \(I_1, w_2 \geq v \).

Proof: \(\text{Alg} \geq min\{v, v \sum_{\frac{w}{1-w}}\} \geq min\{v, v \frac{1}{1-w}\} = min\{v, v\} = v \).

Explanation: The first option - \(\text{Alg} \geq v \) represents the case where we add \(I_1 \) to the solution-the solution value is at least \(v \) . The second option(we can’t add \(I_1 \) to the solution):

\(OPT \geq v \sum_{\frac{w}{1-w}} \). We can’t add \(I_1 \), so \(\sum w_i + w \geq 1 \rightarrow \sum w_i > 1 - w \). We get \(\text{Alg} \geq v \).

Corollary 2: From claims 9 and 10 we get that any feasible solution to \(w_2 \) is 2-approximate.

Claim 11: The solution to \(I_2 \) is 2-approximate.

Proof: The proof of claim 6 (the algorithm for interval scheduling with deadlines) also applies here.

Phase 3: We solve the problem for \(I_1 \) and \(I_2 \) and take the best solution.

Claim 12: The algorithm is 3-approximate.

Proof: \(OPT \leq OPT(I_1) + OPT(I_2) \). If \(OPT(I_1) \geq \frac{1}{3}OPT \) : \(\text{Alg}(I_1) \) returns an optimal solution, so we get : \(\text{Alg}(I_1) = OPT(I_1) \geq \frac{1}{3}OPT \). We get a 3-approximation. Otherwise, \(OPT(I_2) \geq \frac{2}{3}OPT \). We got a 2-approximation to \(I_2 \), so we get \(\text{Alg}(I_2) \geq \frac{1}{2}OPT(I_2) \geq \frac{1}{2} \cdot \frac{2}{3}OPT = \frac{1}{3}OPT \). In both cases we get 3-approximation.