
Testing versus estimation of graph properties, revisited

Asaf Shapira * Nick Kushnir� Lior Gishboliner�

Abstract

A graph G on n vertices is ε-far from property P if one should add/delete at least εn2 edges
to turn G into a graph satisfying P. A distance estimator for P is an algorithm that given G and
α, ε > 0 distinguishes between the case that G is (α− ε)-close to P and the case that G is α-far
from P. If P has a distance estimator whose query complexity depends only on ε, then P is said
to be estimable.

Every estimable property is clearly also testable, since testing corresponds to estimating with
α = ε. A central result in the area of property testing is the Fischer–Newman theorem, stating
that an inverse statement also holds, that is, that every testable property is in fact estimable. The
proof of Fischer and Newmann was highly ineffective, since it incurred a tower-type loss when
transforming a testing algorithm for P into a distance estimator. This raised the natural problem,
studied recently by Fiat–Ron and by Hoppen–Kohayakawa–Lang–Lefmann–Stagni, whether one
can find a transformation with a polynomial loss. We obtain the following results.

� We show that if P is hereditary, then one can turn a tester for P into a distance estimator
with an exponential loss. This is an exponential improvement over the result of Hoppen et.
al., who obtained a transformation with a double exponential loss.

� We show that for every P, one can turn a testing algorithm for P into a distance estimator
with a double exponential loss. This improves over the transformation of Fischer–Newman
that incurred a tower-type loss.

Our main conceptual contribution in this work is that we manage to turn the approach of Fischer–
Newman, which was inherently ineffective, into an efficient one. On the technical level, our main
contribution is in establishing certain properties of Frieze–Kannan Weak Regular partitions that
are of independent interest.

1 Introduction

1.1 Background on graph property testing

Property testers are fast randomized algorithms that can distinguish between objects satisfying some
predetermined property P and those that are ε-far from satisfying P. In most cases, ε-far means
that an ε-proportion of the object’s representation needs to be changed in order to obtain a new
object satisfying P. Hence, testing for P is a relaxed version of the classical decision problem which
asks to decide whether an object satisfies P. In this paper we study properties of graphs in the so
called adjacency matrix model (which is also sometimes referred to as the dense graph model). This
is arguably one of the most well studied models in the area of property testing. The reader is referred
to [22] for more background and references on property testing.

*School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: asafico@tau.ac.il. Supported in part
by ERC Consolidator Grant 863438 and NSF-BSF Grant 20196.

�School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel. Email: nickkushnir@mail.tau.ac.il.
�ETH Zürich. Email: lior.gishboliner@math.ethz.ch. Supported by SNSF grant 200021 196965.

1

We now introduce the model of testing graph properties in the adjacency matrix model. A graph
property P is a family of graphs closed under isomorphism. A graph G on n vertices is ε-far from P
if one should add/delete at least εn2 edges to turn G into a graph satisfying P. If G is not ε-far from
P then it is ε-close to P. A tester for P is a randomized algorithm that given ε > 0 distinguishes
with high probability (say, 2/3) between graphs satisfying P and those that are ε-far from P. We
assume the algorithm can query for each 1 ≤ i, j ≤ n whether the input G contains the edge (i, j).
The edge query complexity, denoted Q(ε), of a tester is the number of edge queries it performs. If
P has a tester whose edge query complexity depends only on ε (and is independent of n) then P
is called testable. In what follows we will mainly work with vertex query complexity which is the
smallest q = q(ε) so that we can ε-test P by inspecting a subgraph of the input graph G, induced
by a set of q randomly selected vertices. By a theorem of Goldreich and Trevisan [21] we know that
q(ε) ≤ 2Q(ε) ≤ q2(ε). In most (but not all) discussions below we will not care much about these
quadratic factors. In such cases we might use the term query complexity without mentioning if this
is vertex or edge query complexity.

Property testing in the adjacency matrix model was first introduced by Goldreich, Goldwasser and
Ron [20], who proved that every partition property (e.g. k-colorability and MAX-CUT) is testable.
There are several general results guaranteeing that a graph property is testable [3, 10]. A result of
this nature was obtained by Alon and Shapira [5] who proved that every hereditary1 graph property
is testable. Their proof applied Szemerédi’s regularity lemma [35] (see also [33]), which is one of the
most useful tools when studying properties of dense graphs. Using this tool comes with a hefty price,
since the bounds one obtains when using the regularity lemma are of tower-type2.

One of the central open (meta) problems related to testing graph properties is when can one
turn an ineffective (e.g. one with tower-type bounds) result into an efficient one, preferably with
polynomial bounds. While this is a quantitative question, what lies beneath it is in fact the following
qualitative problem; when can we prove a testability result while avoiding Szemerédi’s regularity
lemma, either by giving a direct combinatorial argument or by using a weaker variant of the regularity
lemma (e.g. the Frieze–Kannan regularity lemma [18] which we discuss below). For example, Rödl
and Duke [31] used the regularity lemma in order to (implicitly) prove that k-colorability is testable.
The tower-type bounds obtained in [31] were improved to polynomial in [20] using a direct argument
which avoided the use of the regularity lemma. A specific central open problem, due to Alon and
Fox [4], concerns hereditary properties, and asks which hereditary properties are testable with query
complexity poly(1/ε). A systematic investigation of this problem was carried out in [19].

1.2 Distance estimation

In the dense graph model we say that a graph’s distance from P is α, if α is the smallest real so
that G is α-close to P. In other words, this is the minimum number of edges one should add/delete
in order to obtain a graph satisfying P, normalised by n2. We denote this quantity by distP(G).
A distance estimator for P is a randomized algorithm that given α, ε > 0 distinguishes with high
probability (say, 2/3) between graphs that are (α − ε)-close to P and those that are α-far from P.
If for every α, ε there is a distance estimator for P whose query complexity depends only on ε, then
P is said to be estimable. Note that testing P is equivalent to distance estimation with α = ε, hence
this notion is at least as strong as testability.

Distance estimation was first studied in [30] and has since been studied in various other settings

1A graph property is hereditary if it is closed under vertex removal. Some examples are being 3-colorable, being
triangle-free and being induced H-free, for some fixed H.

2The tower function tower(x) is a tower of exponents of height x.

2

such as distributions [7], strings [6], sparse graphs [11, 13, 28], boolean functions [1, 9], error correcting
codes [23, 26] and image processing [8]. It is known that in certain settings, there are testable
properties which are not estimable [15]. One of the central and most unexpected results in the area
of graph property testing is the Fischer–Newman theorem [16], which states that in the setting of
graphs, every testable property is also estimable. As with several of the main results in this area,
the proof in [16] relied on Szemerédi’s regularity lemma [35] and thus resulted in a tower-type loss
when transforming a tester for P into a distance estimator for P. Returning to the discussion in the
last paragraph of the previous subsection, it is natural to ask if one can improve the transformation
of [16] and turn a tester for P into a distance estimator with a polynomial loss.

1.3 New results concerning hereditary graph properties

As we mentioned in the previous subsection, the family of hereditary graph properties has been
extensively studied within the setting of graph property testing. The fact that every hereditary
property is testable follows from the following statement, where we use ind(F,G) to denote the
probability that a random mapping φ : V (F) → V (G) is an injective induced homomorphism. 3

Lemma 1.1 (Induced Removal Lemma, [5]). For every ε > 0 and every hereditary P, there exists
M = M1.1(ε,P), δ = δ1.1(ε,P) > 0 and n0 = n1.1(ε,P) such that if a graph G on n ≥ n0 vertices is
ε-far from P then there is a graph F ̸∈ P with |V (F)| ≤ M such that ind(F,G) ≥ δ.

The first version of the above lemma was obtained by Alon, Fischer, Krivelevich and Szegedy [2]
who proved it when P can be characterized using a finite number of forbidden induced subgraphs.
The lemma was proved in full generality by Alon and Shapira [5]. Alternative proofs were later
obtained by Lovász and Szegedy [27], Conlon and Fox [12] and Borgs et al. [10]. It was also
extended to the setting of hypergraphs by Rödl and Schacht [32].

Note that it follows immediately from Lemma 1.1 that every hereditary property is testable with
vertex query complexity

q(ε) = max{n0,M/δ} . (1.1)

Indeed, the algorithm samples a set X of q vertices, queries about all pairs within X, and then
accepts if and only if the graph on X satisfies P. If G satisfies P then the algorithm clearly answers
correctly (with probability 1). If G is ε-far from P, then by Lemma 1.1 a random M -tuple of vertices
spans an induced copy of a graph F ̸∈ P with probability at least δ. Hence, a sample of size M/δ
contains an induced copy of F with probability at least 2/3, thus guaranteeing that the sample of
vertices does not satisfy P (since P is hereditary). Recall that [21] proved that if P is testable, then it
is testable using an algorithm as above. Hence, the bounds in Lemma 1.1 more or less determine the
query complexity of testing a hereditary P. This raises the following natural problem, introduced by
Hoppen et al. [24, 25] and by Fiat and Ron [14], asking if it is possible to estimate every hereditary
P with (roughly) the same query complexity with which it can be tested as in (1.1).

Problem 1.2. Determine if every hereditary graph property P is estimable with query complexity

n0 ·M/δ ,

where M = M1.1(ε
′,P), δ = δ1.1(ε

′,P), n0 = n1.1(ε
′,P) are given by Lemma 1.1 with ε′ = poly(ε).

Remark 1.3. There are hereditary graph properties (e.g. triangle-freeness) for which the best known
bounds for M and δ in Lemma 1.1 are of tower-type. One can argue that in such cases there is little

3A mapping φ : V (F) → V (G) is an induced homomorphism if uv ∈ E(F) if and only if φ(u)φ(v) ∈ E(G).

3

difference between the tower(M/δ) bounds given by [16] and those suggested by Problem 1.2. However,
we should emphasize that for many of these properties (e.g. triangle-freeness) the tower-type bounds
are not known to be tight (indeed, the best known lower bounds are just slightly super polynomial).
Perhaps more importantly, there are numerous hereditary graph properties for which it is known that
both M and δ in Lemma 1.1 are polynomial in ε (e.g. k-colorability, being an interval graph or being
a line graph; see the detailed discussion in [19]). For all these properties, Problem 1.2 suggests a
poly(1/ε) bound, versus the tower(1/ε) bound given by [16].

Problem 1.2 was studied by Hoppen et al. [24, 25]. Their main result was that every hereditary

P is estimable with query complexity 2poly((1/δ)
M2

,logn0). Our first main result is the following
exponential improvement of this result, making a significant step towards resolving Problem 1.2.

Theorem 1.4. Every hereditary P is estimable with query complexity

2poly(M/δ,logn0) ,

where M = M1.1(ε/2,P), δ = δ1.1(ε/2,P) and n0 = n1.1(ε/2,P) are the parameters of Lemma 1.1.

Remark 1.5. In all known cases, the best bounds in Lemma 1.1 are such that log n0 ≪ 1/δ, hence

the upper bound of [24] is 2(1/δ)
O(M2)

while the one in Theorem 1.4 is 2poly(M/δ).

In almost all cases, results concerning testing of dense graphs rely on combinatorial statements
which imply trivial algorithms. For example, the algorithm for testing a hereditary property P
is trivial once we have Lemma 1.1 at our disposal. In sharp contrast, many estimation results
involve sampling a set of vertices and then carrying out a highly non-trivial computation over this
sample. This is certainly the case in the present paper, see the proofs of Lemmas 2.4 and 2.5.
However, thanks to a well known sampling trick [20], one can transfer any estimation result into a
combinatorial statement. For example, this trick gives the following corollary of Theorem 1.4.

Corollary 1.6. Set q = 2poly(M/δ,logn0) as in Theorem 1.4. Then

Pr
X

[|distP(G[X])− distP(G)| ≤ ε] ≥ 2/3 ,

where the probability is over randomly selected subsets X of q vertices from G, and G[X] is the graph
induced by G on X.

It is interesting to note that with Corollary 1.6 at hand, we can now go back and reprove Theorem
1.4 using the “trivial/natural” algorithm which samples a set of q vertices X, computes distP(G[X]),
and then states that G is (α− ε)-close to P if distP(G[X]) ≤ α− ε/2 and is otherwise α-far from P.

Our proof of Theorem 1.4 actually gives the bound 2poly(M/εδ,logn0). One can speculate that
poly(M/εδ) = poly(M/δ) since in all known cases δ is at best polynomial in ε, and in many cases
much smaller. In order to formally be able to remove the dependence on ε from our bound, we prove
the following proposition, where P is trivial if either P contains all graphs or if it contains finitely
many graphs. The proof of this proposition relies on a subtle application of Ramsey’s theorem.

Proposition 1.7. The following holds for every non-trivial hereditary property P. If q(ε) denotes
the vertex query complexity of P then for every small enough ε, we have

M/δ ≥ q(ε) ≥ Ω(1/ε) , (1.2)

where M = M1.1(ε,P) and δ = δ1.1(ε,P) are the constants of Lemma 1.1.

4

The left inequality above follows from (1.1). Observe that the lower bound on q(ε) is best possible
since it is tight when P is the property of having no edges (in which case q(ε) = O(1/ε)).

It is of course natural to study Problem 1.2 also for specific hereditary properties. A natural
problem of this type is whether every hereditary P that is testable with query complexity poly(1/ε)
is also estimable with query complexity poly(1/ε). Such an investigation was initiated recently by
Fiat and Ron [14] who proved such a statement for many natural hereditary properties such as
Chordality and not containing an induced path on 4 vertices.

1.4 New results concerning general graph properties

Given the discussion above, the following problem seems natural.

Problem 1.8. Determine if every property P that is testable with vertex query complexity q(ε), is
estimable with query complexity q(ε′) for some ε′ = poly(ε).

Prior to this work, the only result concerning general graph properties P was the transformation
of Fischer and Newman [16] which turns a testing algorithm for a graph property P with query
complexity q(ε) into a distance estimator with query complexity tower(q(ε/2)). Using the tools we
develop in order to obtain Theorem 1.4, we also obtain the following improved bound.

Theorem 1.9. If P is testable with query complexity q(ε) then it is estimable with query complexity

2poly(1/ε)·2
q(ε/2)

.

We would like to argue at this point that since any “natural” property satisfies q(ε) ≥ log(1/ε)
the above bound can be written as exp(exp(poly(q(ε/2)))). In order to formally make such a claim,
we prove the following variant of Proposition 1.7, in which P is unnatural if there is ε0 so that the
following holds for every 0 < ε < ε0 and n ≥ n0(ε): either every n-vertex graphs is ε-close to P, or
every n-vertex graph does not belong to P. If P is not unnatural then it is (naturally) natural.

Proposition 1.10. Let P be a natural property and let q(ε) be its vertex query complexity, and Q(ε)
be its edge query complexity. Then

Q(ε) = Ω(1/ε) . (1.3)

In particular, q(ε) = Ω(
√

1/ε).

The “in particular” part above follows directly from the Goldreich–Trevisan [21] theorem men-
tioned earlier. Observe that the general lower bound given in (1.3) is best possible since it is tight
when P is the property of having no edges, where Q(ε) = O(1/ε).

1.5 Main technical contributions and comparison to previous approaches

Summary of previous approaches: The main reason why Szemerédi’s regularity lemma is so
useful when studying testing/estimation problems is that an ε-regular partition of a graph G de-
termines (approximately) the values of ind(F,G) for all small F . Hence, on a very high level, the
way one can estimate a graph’s distance to a hereditary property P is to take a single ε-regular
partition of G (one such exists by the regularity lemma) and then try to modify this partition using
the smallest possible number of edge modifications, so that the new partition “predicts” that there
are no induced copies of graphs F ̸∈ P in the new graph G′. A key “continuity” feature one has to
use at this stage is that if G has a regular partition with certain edge densities between the clusters
of the partition, and one would like to modify G so that in the new graph G′ one has a regular
partition where the edge densities between the clusters will change on average by γ, then one can

5

achieve this by modifying (γ + o(1))n2 edges of G. Fischer and Newman [16] critically relied on the
fact that regular partitions in the sense of Szemerédi have this continuity property. The approach of
[16] was ineffective since although a regular partition has constant size (i.e., depending only on ε),
this constant has tower-type dependence on ε. We should point that one of the key novel ideas of
[16] was a method for obtaining the densities of a single Szemerédi partition of the input G.

The way Hoppen et al. [24, 25] managed to improve upon [16] (for hereditary P) was by first
observing that in order to estimate ind(F,G) for all small F , one does not need the full power of
Szemerédi’s regularity lemma. Instead, one can use the weak regularity lemma of Frieze and Kannan
[17] which involves constants that are only exponential in ε. The main reason why their proof gave a
doubly exponential bound is that Frieze–Kannan regular partitions do not (seem to) have the same
continuity feature we mentioned in the previous paragraph with respect to Szemerédi partitions. To
overcome this, Hoppen et al. [24, 25] introduced a sophisticated method that somehow combines
working with Frieze–Kannan regular partitions in some parts of the proof, together with vertex
partitions that have no regularity4 features at all (these are sometimes called GGR partitions, after
[20]) in other parts of the proof.

Our main technical contribution: Our main technical contribution in this paper establishes that
Frieze-Kannan weak regular partitions “almost” satisfy the same continuity feature we mentioned
above with respect to Szemerédi partitions. What we show is that one can indeed efficiently modify
a Frieze–Kannan partition if one starts with a partition with guarantees slightly stronger than those
of Frieze–Kannan, and one is content with ending with a usual Frieze–Kannan partition. See Lemma
4.10 for the precise statement, whose proof relies on a randomized-rounding-type argument. With
the above continuity feature at hand, we can now go back to the Fischer–Newman approach and
turn it into an effective one, by taking full advantage of the Frieze–Kannan lemma. One additional
hurdle we need to overcome in order to make sure we only incur an exponential loss in our proof, is
a method for finding a Frieze–Kannan partition of a graph using a constant number of queries. Here
we introduce a variant of the method of Fischer–Newman tailored for Frieze–Kannan partitions, see
Lemma 2.4. The main tools we develop for proving Theorem 1.4 turn out to be also applicable for
proving Theorem 1.9. The reason why in Theorem 1.9 we have a double exponential loss is that it
is not enough to estimate ind(F,G) for a single F (as in Theorem 1.4 thanks to Lemma 1.1) but we
instead need to control ind(F,G) for all graphs F of order q(ε). We expect Lemmas 2.4 and 4.10 to
be applicable in future studies related to efficient testing and estimation of graph properties.

Paper overview: In Section 2 we introduce the two main lemmas in the paper, and show how they
imply Theorem 1.4. These lemmas are proved in Sections 3 and 4. In Section 5 we prove Theorem
1.9. We prove Proposition 1.7 at the end of Section 2 and Proposition 1.10 at the end of Section 5.
We use a = poly(x) to denote the fact that a is bounded from above (or below, when 0 < x < 1) by
xd for some fixed d, which is independent of n or ε. Also, when we say that “for every a = poly(x)
there is b = poly(x)” we mean that for every d there is d′ so that if a ≤ xd then there is a b ≤ xd

′
.

4Working with partitions that have no regularity requirements has the advantage that they trivially have the
continuity property. Indeed, if we want to change the edge density between two sets A,B by γ we just add/remove
γ|A||B| edges. Needless to say that working with such partitions has various disadvantages resulting from their lack of
regularity features.

6

2 The Key Lemmas and Proof of Theorem 1.4

Our goal in this section is to state Lemmas 2.4 and 2.5 and then use them to derive Theorem 1.4.
We prove these lemmas in Sections 3 and 4. At the end of this section we also prove Proposition 1.7.

To state Lemmas 2.4 and 2.5 we need some definitions. We first recall that given a graph G =
(V,E), an equipartition A = {V1, . . . , Vk} of V (G) is a partition satisfying ||Vi| − |Vj || ≤ 1. Given a
graph G and subsets X,Y ⊆ V (G), we use e(X,Y) to denote the number of edges between X and
Y , and d(X,Y) = e(X,Y)/|X||Y | to denote the density between them.

Definition 2.1 (Signature). For an equipartition A = {V1, . . . , Vt} of V (G), a (γ, ε)-signature of A
is a sequence of reals S = (ηi,j)1≤i<j≤t, such that |d(Vi, Vj)− ηi,j | ≤ γ for all but at most ε

(
t
2

)
of the

pairs i < j. A (γ, γ)-signature is referred to as γ-signature.

Definition 2.2 (Index of a partition). For an equipartition A of a graph V (G) into t sets, we define
the index of A to be

ind(A) =
1

t2

∑
1≤i<j≤t

d2(Vi, Vj) .

Definition 2.3 (Final partition). For a function f : N → N and γ > 0, we say that an equipartition
A of G consisting of t sets is (f, γ)-final if there exists no equipartition B of V (G) with at least t
and up to f(t) sets for which ind(B) ≥ ind(A) + γ .

The above notion of a final partition is useful since (as we show later) every graph has such a
partition and furthermore, we can design an algorithm for finding a signature of one such partition
of an input G. The first key lemma leading to the proof of Theorem 1.4 does exactly that.

Lemma 2.4. For every k, ζ > 0, and every γ = poly(ζ) and fζ(x) = x · 2poly(1/ζ), there are
q = q2.4(ζ, k), N = N2.4(ζ, k) and T = T2.4(ζ, k) so that

q,N, T ≤ poly(k) · 2poly(1/ζ)

and such that the following holds. If G is a graph on at least N vertices then there is an algorithm
making at most q queries to G, computing with probability at least 2

3 a γ-signature of an (fζ , γ)-final
partition of G into at least k and at most T sets.

We prove the above lemma is Section 3. The following is the second key lemma, which we prove
in Section 4. In its statement we use the notion ind(F,G) which we defined before the statement
of Lemma 1.1. What it roughly states, is that having a signature of G (with good parameters) is
enough for estimating G’s distance to satisfying P.

Lemma 2.5. For every h, ε, δ > 0, there are γ = γ2.5(h, ε, δ), s = s2.5(h, ε, δ) and f
(h,ε,δ)
2.5 : N → N

so that
γ = poly(εδ/h), s = poly(h/εδ), f2.5(x) = x · 2poly(h/εδ)

and the following holds. For every family H of graphs, each on at most h vertices, there exists a
deterministic algorithm, that receives as an input a γ-signature S of an (f2.5, γ)-final partition A
into t ≥ s sets of a graph G with n ≥ N2.5(h, ε, δ, t) = poly(t) · 2poly(h/εδ) vertices, and distinguishes
given any α between the following two cases:

(i) G is (α− ε) close to some graph G′ for which ind(H,G′) = 0 for every H ∈ H.

(ii) G is α-far from every G′ for which ind(H,G′) < δ for every H ∈ H.

7

Proof (of Theorem 1.4). Suppose P is a hereditary graph property, and let α, ε > 0. Lemma 1.1
with inputs ε/2 and P asserts that there are

h = M1.1(ε/2), δ = δ1.1(ε/2), n0 = n1.1(ε/2) ,

so that if a graph G on at least n0 vertices is ε/2-far from P, then ind(H,G) ≥ δ for some H /∈ P with
|V (H)| ≤ h. We need to describe an algorithm making 2poly(h/δ,logn0) queries to G and distinguishes
with probability at least 2/3 between the case that G is (α − ε)-close to P and the case that G is
α-far from P. Set

γ = γ2.5(h, ε/2, δ), s = s2.5(h, ε/2, δ), f = f
(h,ε/2,δ)
2.5 .

Finally, set ζ = δε/h and observe that

γ = γ2.5(h, ε/2, δ) = poly(εδ/2h) = poly(ζ) ,

that
f(x) = f

(h,ε/2,δ)
2.5 (x) = x · 2poly(2h/εδ) = x · 2poly(1/ζ) ,

that
s = s2.5(h, ε/2, δ) = poly(2h/εδ) = poly(1/ζ) .

Also, note that by Proposition 1.7 we have poly(1/ζ) = poly(h/δ). Let q,N, T be the parameters
given by Lemma 2.4 when applied with k = s, and ζ, γ, f defined above. (note that γ and f satisfy
the assumptions of the lemma). Lemma 2.4 then guarantees that q,N, T ≤ 2poly(1/ζ) ≤ 2poly(h/δ).

If G has less than N vertices then we can just ask about all the edges of G and answer correctly
with probability 1. The number of queries is then at most N2 ≤ 2poly(h/δ) as needed. If G has more
than N vertices then we can use the algorithm of Lemma 2.4 with the parameters k, ζ, γ, f defined
above. The algorithm makes at most q ≤ 2poly(h/δ) queries and with probability at least 2/3 returns
a γ-signature S of an equipartition of G into s ≤ t ≤ T sets that is (f, γ)-final. Let

N ′ = N2.5(h, ε/2, δ, T) = poly(T) · 2poly(h/εδ) = 2poly(h/δ) .

Again, if G has less than N1 = max{N ′, n0} vertices then we can just ask about all the edges of G and
answer correctly with probability 1. The number of queries is then at most (N1)

2 ≤ 2poly(h/δ,logn0)

as needed.

Suppose then that G has at least max{N,N1} vertices. Let H be the family of graph on at most h
vertices which do not satisfy P. Then we can now run the algorithm of Lemma 2.5 on the signature
S, with respect to H, with α′ = α−ε/2 and with ε/2 instead of ε (note that we chose the parameters
with ε/2). If the algorithm says that case (i) holds (namely that G is (α′ − ε/2)-close to some G′

with ind(H,G′) = 0 for every H ∈ H) then we declare that G is (α − ε)-close to P, and if the
algorithm says that case (ii) holds (namely that G is α′-far from every G′ with ind(H,G′) < δ for
every H ∈ H) then we declare that G is α-far from P.

Let us prove the correctness of the above algorithm. If G is (α− ε)-close to P then it is (α− ε)-
close to a graph G′ satisfying ind(H,G′) = 0 for every H ∈ H. Since α− ε = α′ − ε/2 the algorithm
will say that case (i) holds, hence the algorithm answers correctly in this case. Suppose now that G
is α-far from P. Then any G′ that is α′-close to G must be ε/2-far from P. Hence, by Lemma 1.1
in any such G′ we have ind(H,G′) ≥ δ for at least one H ∈ H. We conclude that G is α′-far from
every G′ satisfying ind(H,G′) < δ for every H ∈ H. Hence, the algorithm of Lemma 2.5 will say
that case (ii) holds , so our algorithm will answer correctly in this case as well.

8

Proof (of Proposition 1.7): Recall that a blowup of a graph H on h vertices is the graph obtained
from H by replacing every vertex i ∈ V (H) with an independent set of vertices Si, and replacing
every edge (i, j) with a complete bipartite graph between Si and Sj . A b-blowup is a blowup where
every Si is of size b. Suppose Hb is a b-blowup of H and f : [h] → {0, 1} is a 0/1 assignment to H’s

vertices. Then Hf
b is the graph obtained by taking Hb and then turning every set of vertices Si into

a clique if and only if f(i) = 1.

Let us say that H is good if there is a b = b(H) so that for every f as above, we have Hf
b ̸∈ P.

We first observe that if H ̸∈ P then H is good, since we can take b = 1. We also note that a single
vertex cannot be good, since if a vertex is good, then there must be a clique and an independent set
which do not satisfy P, implying by Ramsey’s theorem, that every large enough graph is not in P,
contradicting our assumption that P is non-trivial.

Let H be a graph not satisfying P (one exists since P is non-trivial). By the previous paragraph,
H is good. If one of the induced subgraphs of H on |V (H)| − 1 vertices is also good, then replace
H with this induced subgraph. Suppose H is the (minimally) good graph we end up with. By the
previous paragraph we know that h ≥ 2. Let H ′ be the graph obtained by removing vertex h from
H. Then H ′ is not good.

Fix 0 < ε < 1
10|H| and large n and let Gn be the blowup of H where the vertex set that replaces

vertex h ∈ V (H), call it Vh, is of size εn and all the other h− 1 sets, call them V1, . . . , Vh−1, are of
equal size (n− εn)/(h− 1). Since H ′ is not good, we know that given b = (n− εn)/(h− 1) there is

an f ′ : [h− 1] → {0, 1} so that Hf
b ∈ P. For every 1 ≤ i ≤ h− 1 we turn Vi into a clique if and only

if f(i) = 1. Observe that every induced subgraph of Gn that has no vertex in Vh satisfies P.

Let b0 = b(H) be the constant from the definition of a good graph, and let r(b0) be the Ramsey
number of b0, that is, the smallest integer so that every graph on r vertices has a clique or an
independent set on b0 vertices. We now claim that Gn is ε/C-far from P, where C = 2h4r2. In fact,
we claim that if one changes less than εn2/C edges between the sets V1, . . . , Vh then (no matter what
changes one performs within the sets V1, . . . , Vh) the resulting graph does not satisfy P. Since P is
hereditary, it is enough to show that there is still an induced subgraph not satisfying P. Indeed,
consider an (h · r)-tuple v1, . . . , vh·r of vertices, obtained by picking, for every 1 ≤ i ≤ h, a set of r
vertices from Vi uniformly at random. Fix i < j. Since |Vi||Vj | ≥ εn2/h2 then we modified at most
a 1

2r2h2 fraction of the pairs between Vi, Vj . Therefore, the probability that our sample contains a

modified pair of vertices is at most 1
2h2 . Hence, by the union bound, the probability that our sample

contains some modified pair of vertices between some pair Vi, Vj is at most 1/2. We infer that there
is a choice of h ·r vertices so that the induced graph on them is an r-blowup of H. By the choice of r,
we can find in this set a b0-blowup of H so that each set of b0 vertices is a clique or an independent
set. Since H is good, this means that this is graph does not satisfy P.

Now, as we noted in the introduction (see equation (1.1)), by the definition of M and δ, a sample
of M/δ vertices contains, with probability at least 1/2, a graph not in P. As we noted earlier, every
subgraph of Gn not containing a vertex from Vh satisfies P. But to hit Vh with probability at least
1/2 one must sample at least 1/ε vertices. This means that we must have M/δ ≥ 1/ε.

3 Proof of Lemma 2.4

The proof is similar to one in [16]. What they have shown is that for every f, γ, one can find an
(f, γ)-final partition with a constant, albeit huge tower-type, query complexity. What we do here is
show that for restricted types of f , one can get a much better bound. To do this we also need to
rely on a recent result of [34].

9

3.1 Preliminary lemmas

In this subsection we describe some preliminary lemmas that will be used in the next subsection in
which we prove Lemma 2.4. We will need the following Chernoff-type large deviation inequality.

Lemma 3.1. Suppose X1, . . . , Xm are m independent Boolean random variables, so that for every
1 ≤ i ≤ m we have Pr[Xi = 1] = pi. Let E =

∑m
i=1 pi. Then, Pr[|

∑m
i=1Xi − E| ≥ θm] ≤ 2e−2θ2m.

Definition 3.2. (Partition Properties) A partition property is a triple π = (s, ℓ, u) where s is an
integer (the size of the partition property), ℓ is a vector of

(
s
2

)
reals 0 ≤ αi,j ≤ 1 for each 1 ≤ i < j ≤ s,

and u is a vector of
(
s
2

)
reals 0 ≤ βi,j ≤ 1 for each 1 ≤ i < j ≤ s. We say that a graph G satisfies π if

there is an equipartition {V1, . . . , Vs} of V (G), such that αij ≤ d(Vi, Vj) ≤ βij for every 1 ≤ i < j ≤ s.

Given s and µ we use π(s, µ) to denote the family of partition properties π of size s in which every

αi,j and βi,j is an integer multiple of µ (so π(s, µ) contains {0, µ, 2µ, . . . , 1}2(
s
2) partition properties).

Finally, define Π(t, µ) =
⋃

s≤t π(s, µ)

Note that each π as above is one of the partition properties studied in [20], where it was shown
that they are µ-testable with query complexity (1/µ)poly(s). This was improved recently to poly(s/µ)
in [34]. The next lemma states that with (roughly) the same query complexity we can in fact
simultaneously test all properties in Π(t, µ).

Lemma 3.3. For every t and µ > 0 there is q = q3.3(t, µ) = poly(t/µ) satisfying the following.
There is a randomized algorithm, that given a graph G, makes q queries to G and with probability at
least 2/3, for every π ∈ Π(t, µ), distinguishes between the case that G satisfies π and the case that G
is µ-far from π.

Proof. A result of [34] states that every π ∈ Π(s, µ) is µ-testable with query complexity q′ =

poly(s/µ). Set b = |Π(t, µ)| ≤ (1/µ)t
2
. Fix π ∈ Π(t, µ). If we execute the µ-testing algorithm

10 log(b) times and then take the majority outcome5, then by a standard application of Lemma 3.1
we get a new algorithm making log b ·poly(s/µ) ≤ log b ·poly(t/µ) queries, that distinguishes between
the case that G satisfies π and the case that G is µ-far from π, and errs with probability at most 1/3b.
Note that to do this we may sample a set Q of size q′ ·10 log(b) and then execute the standard µ-tester
for π on 10 log(b) disjoint sets of size q′ (thus guaranteeing full independence between the 10 log(b)
iterations). Since for each π, the random set Q is such that the algorithm errs with probability at
most 1/3b, we get by the union bound that the probability that it errs for some π ∈ Π(t, µ) is at
most 1/3. Finally, the query complexity of this algorithm is log b · poly(t/µ) = poly(t/µ).

Proof (of Lemma 2.4): Given k, ζ, γ and fζ as in the statement of the lemma, we define T0 = k
and for i ≥ 1 define Ti = fζ(Ti−1). Now set the following parameters.

N = N2.4(k, ζ) = T2/γ = k · 2poly(1/ζ), T = T2.4(k, ζ) = T2/γ = k · 2poly(1/ζ) ,

and

t = fζ(T) = k · 2poly(1/ζ), µ =
γ

48(fζ(T))2
=

1

poly(k) · 2poly(1/ζ)
.

We now describe the algorithm for finding a signature S satisfying the requirement of the lemma.
For what follows let π′(s, µ) be the partition properties in which βi,j = αi,j+µ for every 1 ≤ i < j ≤ s.
Also for each π ∈ π′(s, µ) define the index of π to be ind(π) = 1

t2
∑

1≤i<j≤t α
2
ij . In the Step-1 we run

the algorithm of Lemma 3.3 with the parameters t, µ defined above. This is the only randomized
part of the algorithm. In the Step-2 of the algorithm we do the following.

5That is, we are doing the standard error reduction trick.

10

(i) For each k ≤ s ≤ t set M(s) = maxπ ind(π) where the maximum is taken over all π ∈ π′(s, µ)
which the algorithm of Step-1 accepted.

(ii) Let s⋆ be the smallest number in {k, . . . , T} such that M(s′) ≤ M(s⋆) + 3
4γ for every s′ ∈

{s⋆ + 1, . . . , fζ(s
⋆)}. If there exists such an s⋆, output the signature S⋆ that achieves the

maximum over s⋆. Otherwise, the algorithm fails.

Note that the query complexity of the algorithm is q = q3.3(t, µ) = poly(t/µ) = poly(k) ·2poly(1/ζ),
as needed. Also, Lemma 3.3 guarantees that Step-1 of the above described algorithm succeeds with
probability at least 2/3. It thus remains to show that assuming this event holds, Step-2 of the
algorithm will return an (fζ , γ)-final partition. First of all note that if it succeeds then it returns a
partition of size at least k and at most T , as required.

The proof that if Step-1 succeeded, then Step-2 returns an (fζ , γ)-final partition is identical to the
proof of Claim 5.5 in [16], so we give a sketch of the proof. First, the reader might be wondering why
every graph necessarily has an (fζ , γ)-final partition as in the statement of the lemma. Let us actually
explain why every G has an (fζ , γ/2)-final partition, while using the definitions we introduced above.
Start from an arbitrary equipartition A0 of G into T0 = k sets, and let ind0 = ind(A0) denote
the index of A0 as in Definition 2.2. If A0 is (fζ , γ/2)-final then we are done. If not, then there
must be another partition A1 of G with at least T0 and at most f(T0) = T1 parts, with index
ind(A1) ≥ ind(A0)+ γ/2. Since 0 ≤ ind(A) ≤ 1 for every equipartition, we see that this process will
eventually end up with a partition A of size k ≤ s ≤ T so that all partitions of G into at least s and
at most f(s) parts have index less than ind(A)+ γ/2. But this means that A is (fζ , γ/2)-final. Note
that we thus get that G has a (fζ , γ/2)-final partition A of size s ≤ T .

Let us now explain how to turn the above existential proof into a proof of correctness of the
algorithm describe earlier. Let MG(s) denote the largest index of an equipartition of G of size s.
First we claim that for every k ≤ s ≤ t,

M(s)− γ/8 ≤ MG(s) ≤ M(s) + γ/8. (3.1)

For the second inequality in (3.1), let A be an equipartition with s parts such that MG(s) = ind(A).
Let π ∈ π′(s, µ) be the partition property obtained from A by rounding down the densities to the
closest integer multiple of µ. Then we have |ind(A)− ind(π)| ≤ 3µ ≤ γ/8. Hence, M(s) ≥ ind(π) ≥
ind(A)− γ/8 = MG(s)− γ/8.

For the first inequality in (3.1), let π ∈ π′(s, µ) be a partition property which the algorithm
accepted and such that M(s) = ind(π). Then G must be µ-close to π (as otherwise π should have
been rejected). Let G′ be a graph µ-close to G that satisfies π, and let A be the vertex partition of G′

witnessing thatG′ satisfies π. Note that when turningG intoG′, for each pair of parts of A, we change
the density between this pair by at most µs2. Hence, inG, the partition property π is a 2µs2-signature
of A (here and in what follows, we view π as a signature). So |ind(A)− ind(π)| ≤ 6µs2 ≤ γ/8, using
our choice of µ. Now, MG(s) ≥ ind(A) ≥ ind(π)− γ/8 = M(s)− γ/8. This proves (3.1).

It follows from the existential proof above that there is k ≤ s⋆ ≤ T and an equipartition A ofG into
s⋆ parts which is (fζ , γ/2)-final. We can assume that MG(s

⋆) = ind(A), because the equipartition
satisfying this must also be final. We have MG(s

′) ≤ MG(s
⋆) + γ/2 for every s⋆ ≤ s′ ≤ fζ(s

⋆). By
(3.1), this implies that M(s′) ≤ M(s⋆) + 3γ/4 for every s⋆ ≤ s′ ≤ fζ(s

⋆). So the algorithm will
return a partition.

Note that the algorithm does not necessarily return the same signature/partition-property as
above π that is µ-close to the above partition A. The reason for the algorithm to choose a different
partition is that there might be another partition of size s with a larger index (which is of course
also (fζ , γ)-final) or there might be an s∗ < s with the same properties, or there might be other

11

partitions with the same index. However, one can invert the reasoning in the previous paragraph
and show that if a π is returned then it must be the γ-signature of an (fζ , γ)-final partition.

4 Proof of Lemma 2.5

4.1 Preliminary lemmas

In this subsection we describe some preliminary lemmas that will be used in the next subsection in
which we prove Lemma 2.5. We start with introducing the Frieze–Kannan regularity lemma [17, 18].
We first state their notion of γ-regularity.

Definition 4.1 (Frieze–Kannan Regularity [18]). Let G = (V,E) be a graph and A = {V1 . . . , Vk}
be an equipartition of V (G). For a subset X ⊆ V and 1 ≤ i ≤ k denote Xi = X ∩ Vi. We say that
A is γ-Frieze–Kannan-regular if:

dA□(G) := max
S,T⊆V

1

n2

∣∣∣∣ ∑
i,j∈[k]2

(
d(Si, Tj)− dij

)
|Si||Tj |

∣∣∣∣ < γ (4.1)

Roughly speaking, a partition A is γ-Frieze–Kannan-regular, or γ-FK-regular for short, if we can
estimate the number of edges between large sets S, T from the intersection sizes S ∩ Vi and T ∩ Vi.
We will also need the following slightly stronger notion of weak regularity that was introduced in
[29].

Definition 4.2 (Frieze–Kannan Regularity⋆ [29]). In the setting of Definition 4.1, we say that A is
γ-Frieze–Kannan Regular⋆ if:

d⋆A□ (G) := max
S,T⊆V

1

n2

∑
i,j∈[k]2

∣∣∣∣d(Si, Tj)− dij

∣∣∣∣|Si||Tj | < γ (4.2)

The translation between these two notions will be crucial in Lemma 4.10 below. Suppose A =
{V1, . . . , Vk} is an equipartition of V (G). Then an equipartition B = {W1, ...,Wℓ} of V (G) is said to
refine A if each Wi ∈ B is contained in some Vj ∈ A. The following lemma is proved in [29] using a
simple variant of the original proof of Frieze and Kannan [18].

Lemma 4.3 (Frieze–Kannan Weak Regularity Lemma [18],[29]). For every k0 and γ > 0 there is
T = T4.3(k0, γ) = k0 · 2poly(1/γ) so that the following holds for every graph G on at least T vertices.
If A is an equipartition of V (G) into at most k0 sets, then there is a refinement B of A into at most
T sets such that d⋆B□ (G) < γ.

Let us now extend the definition of d□ to distance between pairs of weighted graph, where a
weighted graph R is a complete graph, so that every edge (i, j) is assigned a weight 0 ≤ R(i, j) ≤ 1.

If R,R′ are two weighted graphs on n vertices then we define

d1(R,R′) =
1

n2

∑
i<j

|R(i, j)−R′(i, j)| , (4.3)

and

d□(R,R′) = max
α,β

1

n2

∣∣∣∣∣∣
∑
i<j

α(i)β(j)(R(i, j)−R′(i, j))

∣∣∣∣∣∣ , (4.4)

where the maximum is taken over all functions α, β : [n] → [0, 1].

12

Definition 4.4 (ind(F,R)). Let R be a weighted graph on [k] and let φ be an injective function
φ : V (F) → [k]. We set

indφ(F,R) =
∏

i<j∈E(F)

R(φ(i), φ(j))
∏

i<j ̸∈E(F)

(1−R(φ(i), φ(j)))

In the case of φ not being injective, we define

indφ(F,R) = 0

Denoting by Φ the set of functions from V (F) to [k], we define

ind(F,R) =
1

|Φ|
∑
φ∈Φ

indφ(F,R) . (4.5)

Note that we can think of a signature S = (ηi,j)1≤i<j≤t as a weighted graph on t vertices. This
means that for a pair of signatures S, S′ we can define d1(S, S

′) and d□(S, S
′) as in (4.3) and (4.4)

respectively, and we can also define ind(F, S) as in (4.5). We will need the following lemmas from
[24]

Lemma 4.5. Suppose R,R′ are two weighted graphs on n vertices, and H is a graph on h vertices.
Then for any γ ≥ d□(R,R′) and n ≥ 2

γ , we have |ind(H,R)− ind(H,R′)| ≤ 2h2 · γ

Proof. Let us define a similar notion to ind(F,R), but with respect to non injective functions as
well. For every φ ∈ Φ (we defined Φ before (4.5)) we set

ind′φ(F,R) =
∏

i<j∈E(F)

R(φ(i), φ(j))
∏

i<j ̸∈E(F)

(1−R(φ(i), φ(j))) ,

and

ind′(F,R) =
1

|Φ|
∑
φ∈Φ

ind′φ(F,R) .

Lemma 3.2 in [24] states that if R,R′ are two weighted graphs on n vertices, and H is a graph on h
vertices, then |ind′(H,R) − ind′(H,R′)| ≤ h2 · d□(R,R′). Now set some γ ≥ d□(R,R′) and assume
that n ≥ 2

γ . By Bernoulli’s inequality (n > h) we have

|ind′(H,R)− ind(H,R)| ≤ 1− (n− h)h

nh
= 1− (1− h

n
)h ≤ h2

n
.

Thus,

|ind(H,R)− ind(H,R′)| ≤ |ind′(H,R)− ind′(H,R′)|+ 2h2

n
≤ h2 · d□(R,R′) + h2γ ≤ 2h2 · γ ,

as desired.

Given a graph G on n vertices, and an equipartition A = {V1, . . . , Vk}, we define the graph GA

on V (G) to be the weighted graph with weights GA(u, v) = d(Vi, Vj) for every u ∈ Vi and v ∈ Vj .
Let SA be the 0-signature of A, that is, the weighted graph on k vertices with S(i, j) = d(Vi, Vj).
Observe that if k divides n (so all sets of A are of equal size) then ind(H,GA) is almost the same
as ind(H,SA). It is not hard to see that for general equipartitions these quantities do not differ my
much.

13

Lemma 4.6. Given a graph G on n vertices, and an equipartition A = {V1, . . . , Vk}, let GA and SA

be defined as above. Then |ind(H,GA)− ind(H,SA)| ≤ 2h2

k + 2kh
n for every graph H on h vertices.

Proof. We use the definition of ind′(F,R) introduced in the proof of Lemma 4.5. By Inequality (5)
in [24] we have |ind′(H,GA) − ind′(H,SA)| ≤ 2kh

n . Note that with the definitions above, as in the
proof of Lemma 4.5,

|ind′(H,GA)− ind(H,GA)| ≤
h2

n
and |ind′(H,SA)− ind(H,SA)| ≤

h2

k
.

Thus, we have

|ind(H,GA)− ind(H,SA)| ≤
2h2

k
+

2kh

n
,

as desired.

We now combine the above facts to conclude that a signature of a γ-FK-partition of a graph gives
a good approximation of ind(H,G).

Lemma 4.7. For every h, k and δ > 0 there are

γ = γ4.7(h, δ) = poly(δ/h), r = r4.7(h, δ) = poly(h/δ), N = N4.7(h, k, δ) = poly(hk/δ) ,

so that if G is a graph on at least N vertices, and A is a γ-FK-regular partition of G with at least r
and up to k parts, then for every γ-signature S of A, we have |ind(H,G)− ind(H,S)| ≤ δ for every
H on h vertices.

Proof. We set γ = δ
8h2 , r ≥ 2/γ and N = max{2/γ, 2k2h , 16khδ }. Let GA and SA be as defined before

Lemma 4.6. If we view G as a weighted 0/1 graph (so G(x, y) = 1 if and only if (x, y) ∈ E(G)) then
we have

d□(G,GA) = max
α,β

1

n2

∣∣∣∣∣∣
∑

x,y∈V (G)

α(x)β(y)(G(x, y)−GA(x, y))

∣∣∣∣∣∣
= max

S,T⊆V

1

n2

∣∣∣∣ ∑
i,j∈[k]2

∑
x∈Si,y∈Tj

(G(x, y)− dij)

∣∣∣∣
= max

S,T⊆V

1

n2

∣∣∣∣ ∑
i,j∈[k]2

e(Si, Tj)− dij |Si||Tj |
∣∣∣∣

= max
S,T⊆V

1

n2

∣∣∣∣ ∑
i,j∈[k]2

(d(Si, Tj)− dij)|Si||Tj |
∣∣∣∣

= dA□(G) ≤ γ

where in the second equality we used the fact that the maximum is always achieved by Boolean6

valued α, β. We may thus infer from Lemma 4.5 (applied with the above defined γ; note that N ≥
2/γ) that |ind(H,G)−ind(H,GA)| ≤ 2h2·γ for everyH. By Lemma 4.6, for everyH on h vertices, we

have |ind(H,GA)−ind(H,SA)| ≤ 2h2

k + 2kh
n . By our choice of r, γ and N , we have that |ind(H,GA)−

6Indeed, assume without loss of generality that the maximum is positive. Then we can round to 1 every α(x) if
increasing it increases the outcome. We can round to 0 all the rest. We can then do the same rounding process with
respect to β.

14

ind(H,SA)| ≤ δ/4. Hence by the triangle inequality, and our choice of γ, we have |ind(H,G) −
ind(H,SA)| < δ/2. Finally, since S is a γ-signature of A we have d□(S, SA) ≤ d1(S, SA) ≤ γ so
by another application of Lemma 4.5 (again with γ) we also have |ind(H,S) − ind(H,SA)| ≤ δ/2.
Hence, by another application of the triangle inequality we deduce that |ind(H,G)− ind(H,S)| ≤ δ
thus completing the proof.

Definition 4.8 (Extension). Given a signature S = (ηij)1≤i<j≤t of an equipartition A, and a refine-
ment B = {W1, . . . ,Ws} of A, the extension of S to B is the sequence S′ = (η′ij)1≤i<j≤s defined as
η′i,j = ηk,l if there exist k ̸= l such that Wi ⊆ Vk and Wj ⊆ Vl, and setting η′i,j = 0 if Wi and Wj are
both subsets of the same Vk.

Claim 4.9. For every ε and s there exists r = r4.9(ε) = poly(1/ε) and N = N4.9(ε, s) = poly(s/ε)
so that the following holds for every pair of graphs G,G′ on the same set of n ≥ N vertices. If G,G′

are α-close and S, S′ are γ, γ′-signatures of G,G′ respectively, of the same equipartition A of the
vertex set of G,G′ into s ≥ r sets, then d1(S, S

′) ≤ α+ ε+ 2(γ + γ′).

Proof. We set r = 2/ε. Let SA, S
′
A be the 0-signatures of A with respect to G,G′. Then assuming

n > N4.9(ε, s) = poly(s/ε) is large enough we clearly have d1(SA, S
′
A) ≤ α+ε. Since S is a γ-signature

of A we have (by definition) d1(S, SA) ≤ 2γ, and by the same reasoning we have d1(S
′, S′

A) ≤ 2γ′.
Hence, by the triangle inequality we have d1(S, S

′) ≤ α+ ε+ 2(γ + γ′).

Lemma 4.10. For every ε and t there exists γ = γ4.10(ε) = poly(ε) and N = N4.10(t, ε) = poly(t/ε),
so that for every graph G on n ≥ N vertices, if S is a γ-signature of a γ-FK-regular⋆ partition A of
G with t sets, then for every signature S′ satisfying d1(S, S

′) ≤ δ for some δ, there is a graph G′ that
is (δ + ε)-close to G, so that A is an ε-FK-regular partition of G′, and S′ is an ε-signature of A.

Proof. The idea is very simple; we randomly modify G so that the densities will be those of S′.
However, showing that A will be an ε-FK-regular partition of G′ will require a subtle argument that
will employ the fact that A is an γ-FK-regular⋆ partition of G.

We set γ = γ4.10(ε) = ε/6 and N = N4.10(t, ε) = 960t3/γ5. Given G, A = {V1, . . . Vt}, S =
(ηij)1≤i<j≤t and S′ = (η′ij)1≤i<j≤t as in the statement of the lemma, we obtain G′ from G using the
following process, in which all random choices are done independently:

� For every i, the edges within Vi are unchanged.

� For i < j such that η′i,j < d(Vi, Vj), every edge of G between Vi and Vj is removed with

probability 1− η′i,j
d(Vi,Vj)

.

� For i < j such that η′i,j > d(Vi, Vj), every vertex pair of G between Vi and Vj that is not an

edge, becomes an edge with probability 1− 1−η′i,j
1−d(Vi,Vj)

.

In what follows we use e′(X,Y) to denote the number of edges inG′ betweenX and Y and d′(X,Y)
to denote the densities between these sets in G′. Note that the way we generate G′ guarantees that
for every i < j we have

E[d′(Vi, Vj)] = η′i,j . (4.6)

We first prove that with probability at least 1/2, for every i < j and every X ⊆ Vi, Y ⊆ Vj

satisfying |X| ≥ 2γ|Vi|, |Y | ≥ 2γ|Vj |, we have

|e′(X,Y)− E[e′(X,Y)]| ≤ γ

4
|X||Y |. (4.7)

15

Note also that it is equivalent to

|d′(X,Y)− E[d′(X,Y)]| ≤ γ/4 . (4.8)

It suffices to show that for fixed i < j and subsets X ⊆ Vi, Y ⊆ Vj as above we have

Pr
[
|e′(X,Y)− E[e′(X,Y)]| ≥ γ

4
|X||Y |

]
<

2−3n/t

4t2
<

2−2(n/t+1)

4t2
,

since we could then conclude by taking a union bound over all i < j and choices of X,Y . So from
this point we fix i, j,X, Y . We first treat the case d(Vi, Vj) > η′ij . If d(X,Y) < γ/4 then both
e′(X,Y),E[e′(X,Y)] ≤ γ

4 |X||Y | so (4.7) holds with probability 1. Assume now that d(X,Y) ≥ γ/4.

By Lemma 3.1, with m = d(X,Y)|X||Y | ≥ γ3(n/t− 1)2 ≥ γ3 n2

4t2
and θ = γ

4d(X,Y) we get

Pr[|e′(X,Y)− E[e′(X,Y)]| > γ

4
|X||Y |] < 2e−2θ2m < 2e

−2(γ
4d(X,Y)

)2· γ
3n2

4t2 ≤ 2e−
1
32

(γ
5n2

t2
) ≤ 2−3n/t

4t2
,

where in the last inequality we used our assumption on n. We now assume that d(Vi, Vj) < η′ij . If
d(X,Y) > 1 − γ/4 then again (4.7) holds with probability 1. Assume now that d(X,Y) ≤ 1 − γ/4.

As above, by Lemma 3.1, with m = (1− d(X,Y))|X||Y | ≥ γ3(n/t− 1)2 ≥ γ3 n2

4t2
and θ = γ

4(1−d(X,Y))
we get

Pr[|e′(X,Y)− E[e′(X,Y)]| > γ

4
|X||Y |] < 2e−2θ2m < 2e

−2(γ
4(1−d(X,Y))

)2· γ
3n2

4t2 ≤ 2e−
1
32

(γ
5n2

t2
) ≤ 2−3n/t

4t2

Since the statement clearly holds for the case of d(Vi, Vj) = η′ij (in this case we do nothing), we
have thus proved that (4.8) holds with probability at least 1/2 for all i, j and every X ⊆ Vi, Y ⊆ Vj

satisfying |X| ≥ 2γ|Vi|, |Y | ≥ 2γ|Vj |. We will now prove that this fact implies all the assertions of
the lemma.

We first observe that using X = Vi and Y = Vj in (4.8) we see that for every i < j we have

|d′(Vi, Vj)− E[d′(Vi, Vj)]| = |d′(Vi, Vj)− η′i,j | ≤ γ/4 , (4.9)

where the first equality is (4.6).

We now claim that for every i < j and X ⊆ Vi, Y ⊆ Vj , we have

|E[d′(X,Y)]− η′i,j | ≤ |d(X,Y)− di,j | (4.10)

where we use di,j = d(Vi, Vj). This clearly holds if di,j = η′i,j , so assume first that di,j > η′i,j . Setting
qij = η′i,j/di,j , we see that every edge between Vi and Vj is kept in G′ with probability qi,j , hence

|E[d′(X,Y)]− η′i,j | = |qij · d(X,Y)− η′i,j | = qij |d(X,Y)− di,j | ≤ |d(X,Y)− di,j | .

Similarly, if di,j < η′i,j , then setting q′ij = 1 − p′ij = (1 − η′i,j)/(1 − di,j) we see that every edge
missing between Vi and Vj is added to G′ with probability p′i,j , hence

|E[d′(X,Y)]− η′ij | = |d(X,Y) + p′ij(1− d(X,Y))− η′ij |
= |q′ij · d(X,Y) + p′ij − η′i,j |
= |q′ij · d(X,Y)− q′ij + (1− η′i,j)|

16

= q′ij |d(X,Y)− di,j | ≤ |d(X,Y)− di,j | .

Fix now a pair of sets S, T and let L be the set of pairs i, j for which |Si| ≥ 2γ|Vi| and |Tj | ≥ 2γ|Vj |.
Then ∣∣∣∣ ∑

i,j∈[k]2
(d′(Si, Tj)− d′ij) · |Si||Tj |

∣∣∣∣ ≤ 4γn2 +

∣∣∣∣∑
i,j∈L

(d′(Si, Tj)− d′ij) · |Si||Tj |
∣∣∣∣

≤ 5γn2 +

∣∣∣∣∑
i,j∈L

(E[d′(Si, Tj)]− η′i,j) · |Si||Tj |
∣∣∣∣

≤ 5γn2 +
∑
i,j∈L

∣∣∣∣(E[d′(Si, Tj)]− η′i,j)

∣∣∣∣ · |Si||Tj |

≤ 5γn2 +
∑
i,j∈L

∣∣∣∣d(Si, Tj)− dij)

∣∣∣∣ · |Si||Tj |

≤ 5γn2 +
∑

i,j∈[k]2

∣∣∣∣d(Si, Tj)− dij

∣∣∣∣ · |Si||Tj |

≤ 6γn2 = εn2 ,

where the first inequality holds by the definition of L, the second inequality holds due to (4.9) and
(4.8) (applied to (Si, Tj)), the third inequality is the triangle inequality, the fourth inequality is (4.10)
and the sixth inequality is the assumption that d⋆A□ (G) ≤ γ. Since the above holds for every S, T we
deduce that dA□(G

′) ≤ ε so A is indeed an ε-FK-regular partition of G′.

Since γ < ε, inequality (4.9) implies that S′ is an ε-signature of A with respect to G′, establishing
the third assertion of the lemma. We also deduce from (4.9) that

1

k2

∑
i,j∈[k]2

|d′(Vi, Vj)− η′i,j | ≤ γ ≤ ε/2 .

By the lemma’s assumption we also have

1

k2

∑
i,j∈[k]2

|ηi,j − η′i,j | = d(S, S′) ≤ δ .

By the lemma’s assumption, S is a γ-signature of A with respect to G, implying that

1

k2

∑
i,j∈[k]2

|d(Vi, Vj)− ηi,j | ≤ 2γ ≤ ε/2

Finally, since

|d′(Vi, Vj)− d(Vi, Vj)| ≤ |d′(Vi, Vj)− η′i,j |+ |ηi,j − η′i,j |+ |ηi,j − d(Vi, Vj)|,

we infer that
n2

k2

∑
i,j∈[k]2

|d′(Vi, Vj)− d(Vi, Vj)| ≤ (δ + ε)n2 .

Since the left hand side above is the precise number of edge modifications we made when changing
G to G′, we deduce that G′ is (δ + ε)-close to G, establishing the first assertion of the lemma.

17

We will also need the following lemmas.

Lemma 4.11. ([2] Lemma 3.7) For every ε, t there exists γ = γ4.11(ε) = poly(ε) and N =
N4.11(t, ε) = poly(t/ε) satisfying the following. Assume A is an equipartition into s sets of a graph
G with n ≥ N vertices, and that B is a refinement of A into at most t sets. Assume further that S
is any γ-signature of A, and that T is its extension to B. If B satisfies ind(B) ≤ ind(A) + γ, then
T is an ε-signature for B.

Lemma 4.12. ([16] Lemma 6.6) For every ε, t there exists N = N4.12(t, ε) = poly(t/ε) so that for
every equipartition A of G with n ≥ N vertices into s sets, and every refinement B of A into at most
t sets, ind(B) ≥ ind(A)− ε.

The next observation is implicit in the proof of the Frieze–Kannan Regularity Lemma (i.e. Lemma
4.3). The main step of the proof involves showing that if A is an equipartition of G into t parts and

A is not ε-FK-regular⋆, then A has a refinement B into k ≤ 16t/ε4 sets so that ind(B) ≥ ind(A)+ ε4

2
(see, e.g., the proof of Theorem 1.1 in [33] and the proof of Theorem 6 in [29]).

Lemma 4.13. For every ε > 0 there exists γ = γ4.13(ε) = poly(ε) and f = f
(ϵ)
4.13 : N → N satisfying

f(x) = poly(1/ε) · x and such that every (f, γ)-final partition of a graph is also ε-FK-regular⋆.

Lemma 4.14. For every s and ε > 0 there are γ = γ4.14(ε), T = T4.14(s, ε), f = f
(ε)
4.14 and

N = N4.14(ε, s) so that

γ = poly(ε), T = s · 2poly(1/ε), f(x) = x · 2poly(1/ε), N = poly(s) · 2poly(1/ε)

and the following holds. Suppose G has at least N vertices and A is an (f, γ)-final partition of G
into at most s sets and that S is a γ-signature of A. Then for every G′ on the same vertex set of G,
there exists a refinement A′ of A into t ≤ T sets so that

(i) A′ is an ε-FK-regular⋆ partition of G′.

(ii) Every refinement A′′ of A with t ≤ T sets (and in particular A′), is an ε-FK-regular⋆ partition
of G.

(iii) For every refinement A′′ of A with t ≤ T sets, the extension S′′ of S (in the sense of Definition
4.8) with respect to A′′ is an ε-signature of A′′ with respect to G (note that A′ is such an A′′).

Proof. Given s and ε we define

γ = min{1
2
γ4.13(ε), γ4.11(ε)} = poly(ε) , T = T4.3(s, ε) = s · 2poly(1/ε) ,

f(x) = f
(ε)
4.13(T4.3(x, ε)) = 2poly(1/ε) · x · 2poly(1/ε) = x · 2poly(1/ε) ,

and
N = max{T,N4.12(T, γ), N4.11(T, ε)} = poly(s) · 2poly(1/ε) .

Given an (f, γ)-final partition A, and assuming thatN ≥ N4.3(s, ε), Lemma 4.3 produces a refinement
A′ of A that partitions G′ into at most T4.3(s, ε) sets and is ε-FK-regular⋆ with respect to G′. It
remains to prove Items (ii)-(iii). Lemma 4.12 asserts that with respect to G, every partition A′′

that refines A with at most T sets, satisfies ind(A′′) ≥ ind(A) − γ ≥ ind(A) − 1
2γ4.13(ε) (since

N > N4.12(T, γ)). This implies that in G, the partition A′′ is (f
(ε)
4.13, γ4.13(ε))-final. Indeed, if there

18

was a partition C with at most f
(ε)
4.13(T4.3(x, ε)) sets for which ind(C) > ind(A′′) + γ4.13(ε) in G,

then this would imply that ind(C) > ind(A) + γ4.13(ε)− 1
2γ4.13(ε) contradicting the (f, γ)-finality of

A. We may thus infer via Lemma 4.13, that A′′ is also an ε-FK-regular⋆ partition with respect to
G, establishing item (ii). Finally (pun intended), the (f, γ)-finality of A in G ensures that for every
partition A′′ of G into at most T sets (and in particular for every refinement of A into this many
sets) we have ind(A′′) ≤ ind(A) + γ4.11(ε). Hence, by Lemma 4.11, the extension S′′ of S to such an
A′′ is an ε-signature of A′′ with respect to G, establishing item (iii).

4.2 Proof of Lemma 2.5

Given h, ε and δ we first choose

γ0 = min{ε/10, γ4.7(h, δ/6), γ4.10(min{ε/2, γ4.7(h, δ/6)})} = poly(εδ/h) ,

and then define

γ = γ4.14(γ0) = poly(εδ/h), s = max{r4.7(h, δ/6), r4.9(ε/10), 20h2/δ} = poly(h/εδ) ,

f(x) = f
(γ0)
4.14 (x) = x · 2poly(1/γ0) = x · 2poly(h/εδ) ,

to be the constants and function in the statement of Lemma 2.5, noting that they satisfy the guar-
antees of that lemma. Given t as in the statement of Lemma 2.5, we set

T = T4.14(t, γ0)

and define

N = max{N4.7(h, T, δ/6), N4.9(ε/10, T), N4.14(γ0, s), N4.10(t, γ0)} = poly(t) · 2poly(h/εδ) ,

to be the constant in Lemma 2.5.

Given a family of graphs H on at most h vertices, we define a family of signatures as follows

Cδ,H,T = {C : |C| ≤ T and ind(H,C) ≤ δ/2 for every H ∈ H} .

In order for Cδ,H,T to be finite, we only put in it signatures C with edge weights ηi,j that are integer
multiples of β = min{ε/10, δ/10h2}. Intuitively, this is the set of signatures “certifying” (hence C)
that a graph with that signature is close to being induced H-free. We also define ST to be the set of
all signatures on up to T parts, that are extensions7 of S. Intuitively, these are the signatures one
can obtain by refining A into at most T sets (recall that the crucial point is that the algorithm only
has access to S and not to G).

Suppose now that we are given a γ-signature S of some (f, γ)-final (with the above defined f, γ)
partition A of a graph G, so that S has t ≥ s parts and G has at least N vertices. The algorithm
checks if there are S′ ∈ ST and C ∈ Cδ,H,T satisfying d1(S

′, C) ≤ α − ε
2 . If there is such a pair,

the algorithm says that case (i) holds, otherwise it says that case (ii) holds. We now prove the
correctness of the algorithm.

7Note that strictly speaking, an extension per Definition 4.8 must be relative to a partition A and its refinement B,
while here we only have the signature S. So what we mean here is that if one takes some graph that has a partition A
whose 0-signature is S, then ST is the family of all signatures that one obtains by taking all refinements of A into at
most T sets, and then taking the extension of S to these refinements. Of course we do not need any graph in order to
produce ST ; we just break the “parts” of S into a total of at most T new “parts”, and then define the densities η′

i,j

between the new vertices as in Definition 4.8.

19

Proof of first direction: Suppose there is a graph G′ which is (α − ε)-close to G, and satisfies
ind(H,G′) = 0 for every H ∈ H. We will show that the algorithm will declare that case (i) holds.

Recall that A is an (f, γ)-final partition of G into t ≥ s sets and that S is a γ-signature of A.
By Lemma 4.14, there exists a refinement A′ of A into at most T sets so that A′ is γ0-FK-regular⋆

for both G and G′. Moreover, denoting by S′ the corresponding extension of S to A′, we have that
S′ is a γ0-signature of A′ with respect to G. Note that S′ ∈ ST . By the choice of γ0, this implies
that A′ is γ4.7(h, δ/6)-FK-regular⋆ for both G and G′, and that S′ is a 1

10ε-signature of A′ with
respect to G. Let C ′ be the 0-signature of A′ over G′. Lemma 4.7 (using A′ and G′) implies that
|ind(H,G′)− ind(H,C ′)| ≤ δ/6 for all H ∈ H. Thus ind(H,C ′) ≤ δ/6 for all H ∈ H. Clearly there
is a signature C of size C ′ so that all of C’s weights are constant multiples of β and d1(C

′, C) ≤ β.

Since d□(C
′, C) ≤ d1(C

′, C) ≤ δ/10h2 we infer from Lemma 4.5 (applied on δ
10h2 , as s ≥ 20h2

δ) that
ind(H,C) ≤ δ/6 + δ/5 < δ/2 for all H ∈ H, so C ∈ Cδ,H,T . In addition, by Claim 4.9 (since A′

has at least r4.9(ε/10) parts and assuming that n is large enough), we infer that d1(S
′, C) ≤ α − ε

2
(since G and G′ are (α− ε)-close and d1(C,C

′) ≤ ε/10). Thus, S′ and C provide a witness that the
algorithm will indeed declare that case (i) holds.

Proof of second direction: Suppose the algorithm declares that case (i) holds. We show that in
this case there is a graph G′, which is α-close to G, and satisfies ind(H,G′) < δ for all H ∈ H

Indeed, if the algorithm declared that case (i) holds then there are signatures S′ ∈ ST and
C ∈ Cδ,H,T satisfying d1(S

′, C) ≤ α − ε
2 . As S′ ∈ ST , there is a refinement A′ of A, so that S′ is

the extension of S according to A′. Lemma 4.14 (regarding A′ as a possible refinement of A with
respect to G) asserts that S′ is a γ0-signature of A′ (with respect to G), which by the choice of
γ0 means that it is a γ4.10(min{ ε

2 , γ4.7(h, δ/6)})-signature for A′ with respect to G. Now, Lemma
4.10 (applied with A′ as the γ0-FK-regular⋆ partition of G, and with S′ as S and C as S′) implies
that there is a graph G′ that is (α − ε

2 + ε
2)-close to G, namely α-close to G, and for which C is

a γ4.7(h, δ/6)-signature of A′, which in turn is γ4.7(h, δ/6)-FK-regular over G′ . Lemma 4.7 implies
that |ind(H,G′)− ind(H,C)| ≤ δ/6 for all H ∈ H. Thus, ind(H,G′) < δ/2 + δ/6 < δ for all H ∈ H
as required. Hence we have found the required G′.

5 Proof of Theorem 1.9

The proof of Theorem 1.9 is very similar to that of Theorem 1.4. In order to assist the reader who is
already familiar with the proof of Theorem 1.4, we mention in several places where certain lemmas
are analogous to lemmas we introduced in one of the previous sections. The idea is the following: by
a theorem of Goldreich and Trevisan [21], every testable property is testable by a canonical tester,
which samples a set of vertices of size q = qP(ε) and accepts/rejects based on the graph induced
by these q vertices. Hence the acceptance/rejection of the algorithm only depends on the number
of induced copies in G of graphs on q vertices. Hence, turning a graph into a graph satisfying P is
equivalent to turning it into a graph with a certain number of copies of certain graphs on q vertices.
As evident, this is very similar to the case of Theorem 1.4 where we wanted to have a very small
number of copies of graphs not in P. The reason why there is an additional exponential factor is
that we need to control the number of induced copies of all graphs on q vertices.

We now state the key lemmas, which are variants of lemmas we used in the proof of Theorem 1.4.

Definition 5.1. Given two distributions µ and ν over a finite family H of combinatorial structures,
their variation distance is defined as: |µ− ν| = 1

2

∑
H∈H |Prµ(H)− Prν(H)|

20

Lemma 5.2. If two distributions µ and ν over a finite family H of combinatorial structures satisfy
|µ− ν| ≤ δ , then for any set A ⊂ H we have |Prµ(A)− Prν(A)| ≤ δ

Lemma 5.3. Suppose that µ and ν are two probability distributions over graphs with set of vertices
{v1, . . . , vq}, where each edge vivj is independently chosen to be an edge with probability µi,j and νi,j
respectively. If |µi,j − νi,j | ≤ ϵ/

(
q
2

)
for every 1 ≤ i < j ≤ q, then the variation distance between µ

and ν is bounded by ϵ.

Definition 5.4 (q-statistic). The q-statistic of a graph G is the probability distribution over all
(labeled) graphs with q vertices that result from picking at random q distinct vertices of G and con-
sidering the induced subgraph. For a given graph H we denote the probability for obtaining H when
drawing a graph according to the q-statistic by PrG(H).

Definition 5.5. For an equipartition A = {V1, . . . , Vt} of G, and a signature S = (ηi,j)1≤i<j≤t of
A, the perceived q-statistic according to S is the following distribution PrS over labelled graphs with
q vertices v1, . . . , vq. Start by choosing a uniformly random sequence without repetitions of indices
i1, . . . , iq from 1, . . . , t. Then, independently, take every vkvl for k < l to be an edge with probability
ηik,ilif ik < il and with probability ηil,ik if il < ik. Then PrS(H) is defined as the probability that the
resulting labelled graph equals H.

The following lemma will replace Lemma 1.1 in the proof of Theorem 1.9.

Lemma 5.6 (see [21]). If there is an ε-test for a graph property P that makes Q = Q(ε) edge queries,
then there exists an appropriate family H of labeled graphs on q = 2Q vertices such that any graph
G which satisfies P, satisfies also PrG(H) ≥ 2

3 , and any graph G that is ε-far from satisfying P,
satisfies also PrG(H) < 1

3 .

We now introduce a variant of Lemma 4.7 that is suited for the proof of Theorem 1.9.

Lemma 5.7. For every q, ε there are γ = γ5.7(q, ε), r = r5.7(q, ε) so that

γ = poly(ε · 2−q2), r = poly(1/ε · 2q2)

and for every γ-signature S of a γ-FK-regular equipartition A into t ≥ r sets, of a graph G on
n ≥ N5.7(q, ε, t) = poly(t/ε)2poly(q) vertices, we have |PrS −PrG | ≤ ε, where PrG is the q-statistic
and PrS is the perceived q-statistic according to S.

Proof. We set

γ =
ε

56q22(
q
2)

= poly(ε · 2−q2), r ≥ 2

γ
= poly(1/ε · 2q2), N =

2t

γ
.

Let H be any family of q-vertex graphs. We need to show that |PrG(H)−PrS(H)| ≤ ε. Note that for

every graph H on q vertices, it follows that PrG(H) = nq ·(n−q)!
n! ·ind(H,G). Let SA be the 0-signature

of A. It follows that PrSA
(H) = nq ·(n−q)!

n! · ind(H,SA), for every graph H ∈ H. By Lemma 4.6, we
have that

|ind(H,GA)− ind(H,SA)| ≤
2q2

t
+

2tq

n
≤ 2q2γ

for every H ∈ H. Also, by Lemma 4.5, we have

|ind(H,GA)− ind(H,G)| ≤ 2q2γ

21

for every H ∈ H. Thus, by triangle inequality, we conclude that

|PrG(H)− PrSA
(H)| ≤ 4q2γ · n

q · (n− q)!

n!
≤ 8q2γ ≤ ε

7 · 2(
q
2)

for everyH ∈ H. By counting over all 2(
q
2) options ofH on q vertices, we get |PrG(H)−PrSA

(H)| < ε
7 .

Denote S = (ηi,j)1≤i<j≤t. We have |ηi,j − d(Vi, Vj)| < γ ≤ ε
7q2

for all pairs but γ
(
t
2

)
, because S is

a γ-signature of A. Hence, with probability at least 1 − 4ε
7 we will sample distinct indices i1, . . . iq

from 1, . . . , t such that every pair i, j ∈ {i1, . . . , iq} satisfies |ηi,j − d(Vi, Vj)| < ε
7q2

. Thus by Lemmas

5.2 and 5.3, we get |PrS(H) − PrSA
(H)| < 5ε

7 . All together, |PrG(H) − PrS(H)| < 6ε
7 < ε as

requested.

We now introduce a variant of Lemma 2.5 that is suited for the proof of Theorem 1.9.

Lemma 5.8. For every q and ε there exist γ = γ5.8(q, ε), s = s5.8(q, ε) and f
(q,ε)
5.8 : N → N, such that

γ = poly(ε · 2−q2), s = poly
(2q2

ε

)
, f

(q,ε)
5.8 (x) = x · 2poly

(
2q

2

ε

)
with the following property. For every family H of graphs with q vertices, there exists a deterministic
algorithm, that receives as an input a γ-signature S of an (f, γ)-final partition A into t ≥ s sets of

a graph G with n ≥ N5.8(q, ε, t) = t · 2poly(1/ε)·2poly(q) vertices and distinguishes given any α between
the following two cases:

(i) G is (α− ε)-close to some graph G′ for which PrG′(H) ≥ 2
3 .

(ii) G is α-far from every G′ for which PrG′(H) ≥ 1
3 .

Proof. We define the following parameters, as we did in the proof of Lemma 2.5.

γ0 = min

{
ε/10, γ5.7(q,

1

12
), γ4.10(min{ε/2, γ5.7(q,

1

12
)})

}
= poly(ε · 2−q2),

and further define,

γ = γ4.14(γ0) = poly(γ0) = poly(ε · 2−q2)

s = max{r5.7(q, 1/12), r4.9(ε/10)} = poly
(2q2

ε

)
T = T4.14(t, γ0) = t · 2poly(1/ε)·2poly(q)

f = f
(γ0)
4.14 (x) = x · 2poly(1/γ0) = x · 2poly

(
2q

2

ε

)
N = max{N5.7(q, 1/12, t)), N4.9(ε/10, T4.14(t, γ0)), N4.14(s, γ0), N4.10(γ0, t)} = t · 2poly(1/ε)·2poly(q)

Given a family of graphs H on at most q vertices, we defined a family of signatures as follows

C′
H,T = {C : |C| ≤ T and Pr

C
(H) ≥ 1/2} .

In order for C′
H,T to be finite, we only put in it signatures C with edge weights ηi,j that are integer

multiples of β = ε
12q2

.

Suppose now that we are given a γ-signature S of some (f, γ)-final (with the above define f, γ)
partition A of a graph G, so that S has t ≥ s parts and G has at least N vertices. Define ST to be
the set of all signatures on up to T parts that are extensions of S. The algorithm checks if there are
S′ ∈ ST and C ∈ C′

H,T satisfying d1(S
′, C) ≤ α − ε

2 . If there is such a pair, the algorithm says that
case (i) holds, otherwise it says that case (ii) holds. We now prove the correctness of the algorithm.

22

Proof of first direction: Suppose that G′ is some graph (α − ε)-close to G, and for which
PrG′(H) ≥ 2/3. We will show that the algorithm will declare that case (i) holds. Recall that A is
an (f, γ)-final partition of G into t ≥ s sets, and that S is a γ-signature of A. By Lemma 4.14, there
exists a refinement A′ of A into at most T sets so that A′ is γ0-FK-regular⋆ for both G and G′.
Moreover, denoting by S′ the corresponding extension of S to A′, we have that S′ is a γ0-signature
of A′ with respect to G. Note that S′ ∈ ST . By the choice of γ0 this implies that A′ is γ5.7(q, 1/12)-
FK-regular⋆ for both G and G′, and that S′ is a 1

10ε-signature of A
′ with respect to G. Let C ′ be the

0-signature of A′ over G′. Lemma 5.7 (using A′ and G′) implies that |PrG′(H)−PrC′(H)| < 1
12 . Thus

PrC′(H) ≥ 2/3 − 1/12 ≥ 7/12. Clearly, there is a signature C so that all C’s weights are constant
multiples of β, and |cij − c′ij | ≤ β. Thus, by Lemma 5.3, we infer that PrC(H) ≥ 7/12− 1/12 ≥ 1/2
so, C ∈ C′

H,T . In addition, by Claim 4.9 (since A′ has at least r4.9(
ε
10) sets and assuming that n is

large enough), d1(S
′, C) ≤ (α− ε

2) on account of G and G′ being (α− ε)-close graphs. Thus, S′ and
C provide a witness that the procedure above accepts G.

Proof of second direction: Suppose the algorithm declares that case (i) holds. We show that in
this case, there is a graph G′, which is α-close to G, and satisfies, PrG′(H) > 1/3.

Indeed, if the algorithm declared that case (i) holds then there are signatures S′ ∈ ST and
C ∈ C′

H,T satisfying d1(S
′, C) ≤ α − ε

2 . As S′ ∈ ST , there is a refinement A′ of A, so that S′ is the
extension of S according to A′. Lemma 4.14 (regarding A′ as a possible refinement of A with respect
to G) asserts that S′ is a γ0-signature of A

′ (with respect to G), which by the choice of γ0 means that
it is a γ4.10(min{ ε

2 , γ5.7(q,
1
12)})-signature for A′ with respect to G. Now, Lemma 4.10 (applied with

A′ as the γ0-FK-regular⋆ partition of G, and with S′ as S and C as S′) implies that there is a graph
G′ that is (α− ε

2+
ε
2)-close to G, namely α-close to G, and for which C is a γ5.7(q,

1
12)-signature of A

′,
which in turn is γ5.7(q,

1
12)-FK-regular over G′ . Lemma 5.7 implies that |PrG′(H)− PrC(H)| < 1

12 .
Thus PrG′(H) ≥ 1/2− 1/12 > 1/3 as required. Hence we have found the required G′.

We are ready to derive Theorem 1.9 from Lemmas 2.4 and 5.8. The proof is similar to the way
we derived Theorem 1.4 from Lemmas 2.4 and 2.5.

Proof (of Theorem 1.9): Suppose P is a testable graph property, and let α, ε > 0 the constants
for which we would like to (α, ε)-estimate P. As P is ε/2-testable, there is a testing algorithm
that given ε/2 and a graph G makes Q(ε/2) queries. Lemma 5.6 asserts us that there exists a
constant q = q5.6(ε/2) = poly(Q(ε/2)) and a family of graphs H on q vertices such that for every
G ∈ P,PrG(H) ≥ 2/3, and for every graph G that is ε/2-far from satisfying P, PrG(H) ≤ 1/3. We
thus set,

γ = γ5.8(q, ε/2) = poly(ε · 2−q2),

f = f
(q,ε/2)
5.8 (x) = x · 2poly

(
2q

2

ε

)
,

k = s5.8(q, ε/2) = poly
(2q2

ε

)
Now, define ζ = ε · 2−q2 and apply the algorithm provided by Lemma 2.4 with parameters k, ζ, γ, f
on the input graph G. This algorithm makes up to q2.4(k, ζ) queries, and from the assumptions of
the lemma, we have that

q2.4(k, ζ) = poly(k)2poly(1/ζ) = 2poly(1/ε)·2
poly(q)

.

With probability at least 2/3 the algorithm returns a γ-signature of an (f, γ)-final equipartition of
G with at least s and at most T2.4(k, γ, f) sets. We now apply the algorithm provided by Lemma

23

5.8 with parameters q, ε/2, α − ε/2, to the signature S. Due to the choice of parameters, it is
guaranteed by Lemma 5.8 that we can distinguish between the case that there is a graph G′ that
is (α − ε)-close to G and for which PrG′(H) ≥ 2/3, and that G is (α − ε/2)- far from any G′

for which PrG′(H) > 1/3. In the first case G is accepted, and in the second case it is rejected.
For the above to work we require N ≥ max{N2.4(k, γ, f), N5.8(q,

ε
2 , T2.4(k, γ, f))}. For a smaller

n we can just read the entire input and compute its distance from the property to be estimated,

with query complexity N2 ≤ 2poly(1/ε)·2
poly(q)

. We now claim that the algorithm above is indeed an
(α, ε)-estimation algorithm for P for every n ≥ N .

If G is (α− ε)-close to P, then it is also (α− ε)-close to some graph G′ for which PrG′(H) ≥ 2/3.
And so the first case above will hold as long as S is in fact a γ-signature of an (f, γ)-final partition
of G, which happens with probability at least 2/3. Thus G is accepted with probability at least 2/3.

On the other hand, if G is α-far from P, then by the triangle inequality it is (α − ε/2)-far from
any G′ for which PrG′(H) > 1/3. And so the second case above will hold as long as S is in fact a
γ-signature of an (f, γ)-final partition of G, which happens with probability at least 2/3. Thus G is
rejected with probability at least 2/3.

Proof (of Proposition 1.10): Recall that we use distP(G) to denote the minimal number of edge
additions/deletions one needs to perform in order to turn G into a graph satisfying P, normalized
by |V (G)|2. If P is natural, then there is a positive sequence {εt}∞t=1 tending to zero, so that for
every εt there is a sequence of integers {nk}∞k=1 so that for every k there is a graph Gk on nk vertices
satisfying εt ≤ distP(Gk) ≤ 1. We will now show that for every t and every k, every εt-tester for P
must make at least 1

40εt
edge queries when operating on nk-vertex graphs.

Fix a t as above. The key observation is that the graphs Gk defined above can be further assumed
to satisfy distP(Gk) ≤ 2εt. Indeed, since for large enough nk, we have that εt · n2

k ≥ 1, modifying
one edge of Gk, changes distP(G) (additively) by at most εt. Hence, we can start with the graph Gk

which satisfies εt ≤ distP(G) ≤ 1, and then modify its edges one by one until we obtain a new graph
G′

k satisfying εt ≤ distP(G
′
k) ≤ 2εt. For each such Gk on nk vertices, since distP(Gk) ≤ 2εt, there is

a graph Hk on nk vertices which satisfies P and such that Gk△Hk (the symmetric difference of the
graphs) has at most 2εt · n2

k edges. The key observation now is that an εt-tester for P which makes
less than 1

40εt
edge queries has probability at most 1/10 of querying one of the edges of Gk△Hk.

Hence, the probability that it distinguishes between Gk and Hk is at most 1/10, and so it cannot be
an εt-tester for P.

References

[1] N. Alon, B. Chazelle, S. Comandur, and D. Liue, Estimating the distance to a monotone func-
tion, Random Struct Algorithms 31 (2007), 371–383. 1.2

[2] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combina-
torica 20 (2000), 451–476. 1.3, 4.11

[3] N. Alon, E. Fischer, I. Newman, and A. Shapira, A combinatorial characterization of the testable
graph properties: it’s all about regularity, SIAM J. Comput, 39 (2009), 143—167. 1.1

[4] N. Alon and J. Fox, Easily testable graph properties, Combin. Probab. Comput 24 (2015),
646–657. 1.1

[5] N. Alon and A. Shapira, A Characterization of the (natural) graph properties testable with
one-sided error, SIAM J. Comput. 37 (2008), 1703–1727. 1.1, 1.1, 1.3

24

[6] T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and R. Sami, A
sublinear algorithm for weakly approximating edit distance, ACM Comput. Surv. 35 (2003),
316–324. 1.2

[7] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith and P. White, Testing closeness of discrete
distributions, Journal of the ACM 60 (2013), 1-25. 1.2

[8] P. Berman, M. Murzabulatov, and S. Raskhodnikova, Tolerant testers of image properties, Proc.
of ICALP 2016, 1–14. 1.2

[9] E. Blais, C. Canonne, T. Eden, A. Levi, and D. Ron, Tolerant junta testing and the connection
to submodular optimization and function isomorphism, ACM Trans. Comput. Theory 11 (2019),
Article 24. 1.2

[10] C. Borgs, J. Chayes, L. Lovász, V.T. Sós, B. Szegedy, and K. Vesztergombi, Graph limits and
parameter testing, Proc. of STOC 2006, 261—270. 1.1, 1.3

[11] A. Campagna, A. Guo, and R. Rubinfeld, Local reconstructors and tolerant testers for connec-
tivity and diameter, Proc. of APPROX 2013, 411–424. 1.2

[12] D. Conlon and J. Fox, Bounds for graph regularity and removal lemmas, Geom. Funct. Anal.
22 (2012), 1191–1256. 1.3

[13] T. Eden, R. Levi, and D. Ron, Testing bounded arboricity, Proc. of SODA 2018, 2081–2092. 1.2

[14] N. Fiat and D. Ron, On efficient distance approximation for graph properties, Proc. of SODA
2021, 1618–1637. 1.3, 1.3

[15] E. Fischer and L. Fortnow, Tolerant versus intolerant testing for boolean properties, Theory
Comput. 2 (2006), 173—183. 1.2

[16] E. Fischer and I. Newman, Testing versus estimation of graph properties, SIAM J. Comput. 37
(2007), 482–501. 1.2, 1.3, 1.4, 1.5, 3, 3.1, 4.12

[17] A. Frieze and R. Kannan, The regularity lemma and approximation schemes for dense problems,
Proc. of FOCS 1996, 12–20. 1.5, 4.1

[18] A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19
(1999), 175–220. 1.1, 4.1, 4.1, 4.1, 4.3

[19] L. Gishboliner and A. Shapira, Removal lemmas with polynomial bounds, Proc. of STOC 2017,
510–522. 1.1, 1.3

[20] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and
approximation, J. ACM 45 (1998), 653–750. 1.1, 1.3, 1.5, 3.1

[21] O. Goldreich and L. Trevisan, Three theorems regarding testing graph properties, Random
Struct. Algorithms 23 (2003), 23–57. 1.1, 1.3, 1.4, 5, 5.6

[22] O. Goldreich, Introduction to Property Testing, Cambridge University Press (2017). 1.1

[23] V. Guruswami and A. Rudra, Tolerant locally testable codes, Proc. of RANDOM 2005, 306—
317. 1.2

25

[24] C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann and H. Stagni, On the query complexity
of estimating the distance to hereditary graph properties, SIAM J. Discret. Math. 35 (2021),
1238–1251. 1.3, 1.3, 1.5, 1.5, 4.1, 4.1, 4.1

[25] C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann and H. Stagni, Estimating parameters asso-
ciated with monotone properties, Comb. Probab. Comput. 29 (2020), 616–632. Also, Proc. of
APPROX-RANDOM 2016. 1.3, 1.3, 1.5

[26] S. Kopparty and S. Saraf, Tolerant linearity testing and locally testable codes, Proc. of RAN-
DOM 2009, 601–614. 1.2

[27] L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst, Geom. Funct. Anal. 17 (2007),
252–270. 1.3

[28] S. Marko and D. Ron, Distance approximation in bounded-degree and general sparse graphs,
ACM Trans. Algorithms 5 (2009), 22:1–22:28. 1.2

[29] G. Moshkovitz and A. Shapira, A sparse regular approximation lemma, Trans. Amer. Math.
Soc. 371 (2019), no.10, 6779–6814. 4.1, 4.2, 4.1, 4.3, 4.1

[30] M. Parnas, D. Ron, and R. Rubinfeld, Tolerant property testing and distance approximation,
J. Comput. Syst. Sci. 72 (2006), 1012–1042. 1.2

[31] V. Rödl and R. Duke, On graphs with small subgraphs of large chromatic number, Graphs and
Combinatorics 1 (1985), 91–96. 1.1

[32] V. Rödl and M. Schacht, Generalizations of the removal lemma, Combinatorica 29 (2009),
467–501. 1.3

[33] V. Rödl and M. Schacht, Regularity lemmas for graphs, Fete of Combinatorics and Computer
Science, vol. 20 series (2010) Bolyai Soc. Math. Stud., 287-325. 1.1, 4.1

[34] A. Shapira and H. Stagni, A tight bound for testing partition properties, submitted, 2023. 3,
3.1, 3.1

[35] E. Szemerédi, Regular partitions of graphs, In: Proc. Colloque Inter. CNRS (J. C. Bermond, J.
C. Fournier, M. Las Vergnas and D. Sotteau, eds.), 1978, 399–401. 1.1, 1.2

26

	Introduction
	Background on graph property testing
	Distance estimation
	New results concerning hereditary graph properties
	New results concerning general graph properties
	Main technical contributions and comparison to previous approaches

	The Key Lemmas and Proof of Theorem 1.4
	Proof of Lemma 2.4
	Preliminary lemmas

	Proof of Lemma 2.5
	Preliminary lemmas
	Proof of Lemma 2.5

	Proof of Theorem 1.9

