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Abstract

The triangle removal states that if G contains εn2 edge-disjoint triangles, then G contains
δ(ε)n3 triangles. Unfortunately, there are no sensible bounds on the order of growth of δ(ε), and
at any rate, it is known that δ(ε) is not polynomial in ε. Csaba recently obtained an asymmetric
variant of the triangle removal, stating that if G contains εn2 edge-disjoint triangles, then G
contains 2− poly(1/ε) · n5 copies of C5. To this end, he devised a new variant of Szemerédi’s
regularity lemma. We obtain the following results:

• We first give a regularity-free proof of Csaba’s theorem, which improves the number of copies
of C5 to the optimal number poly(ε) · n5.

• We say that H is K3-abundant if every graph containing εn2 edge-disjoint triangles has
poly(ε) · n|V (H)| copies of H. It is easy to see that a K3-abundant graph must be triangle-
free and tripartite. Given our first result, it is natural to ask if all triangle-free tripartite
graphs are K3-abundant. Our second result is that assuming a well-known conjecture of
Ruzsa in additive number theory, the answer to this question is negative.

Our proofs use a mix of combinatorial, number-theoretic, probabilistic, and Ramsey-type argu-
ments.

1 Introduction

1.1 Background and previous results

An n-vertex graph is said to be ε-far from triangle-free if it cannot be made triangle-free by deleting
fewer than εn2 edges1. A fundamental result in extremal graph theory is the triangle removal lemma
of Ruzsa and Szemerédi [20], which states that if an n-vertex graph is ε-far from triangle free, then it
contains at least δn3 triangles, where δ = δ(ε) > 0 depends only on ε. Despite its simple statement,
this is a deep result, and it has applications in graph theory, number theory, and theoretical computer
science. For more on the triangle removal lemma, we refer to the survey [7].

Despite decades of study, very little is known about the quantitative behavior of δ(ε) in the
triangle removal lemma. The original proof of Ruzsa and Szemerédi used Szemerédi’s regularity
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1Note that if G contains εn2 edge-disjoint triangles, then it is ε-far from triangle-free, as one must delete at least

one edge from each triangle in this collection. Conversely, if G is not (3ε)-far from triangle-free, then any maximal
collection of edge-disjoint triangles has less than 3εn2 edges, and thus G does not contain εn2 edge-disjoint triangles.
Therefore, the two notions are equivalent up to a constant factor, and we freely move between them throughout this
paper.
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lemma, and consequently obtained a bound on 1/δ that was of tower type in poly(1/ε). The best
known bound is due to Fox [12], who improved the bound on 1/δ to a tower of height O(log(1/ε))
by finding a new proof which avoids the use of the regularity lemma. While a major improvement,
this bound is still enormous, and it is a major open problem to improve it further.

In the other direction, the best known lower bound on 1/δ is due to Ruzsa and Szemerédi [20],
who proved that 1/δ ≥ (1/ε)Ω(log(1/ε)). In particular, this implies that δ(ε) can not be taken to be a
polynomial function of ε. Ruzsa and Szemerédi proved this by relating the triangle removal lemma
to a problem in additive combinatorics, namely the problem of finding subsets of [n] containing no
three-term arithmetic progression, and using a well-known construction of Behrend [5] of such a
subset.

If one examines the usual proof of the triangle removal lemma, one sees that it immediately gives
the following stronger “asymmetric” statement (see e.g. [13, Theorem 1.13]).

Theorem 1.1. For every graph H with χ(H) ≤ 3 and every ε > 0, there exists δ = δ(ε,H) > 0 such
that the following holds. If an n-vertex graph G is ε-far from triangle-free, then it contains at least
δn|V (H)| copies of H.

It is easy to see that the assumption χ(H) ≤ 3 is necessary in Theorem 1.1, as a balanced complete
tripartite graph on n vertices has no copies of any H with χ(H) > 3, but is 1

9 -far from triangle-free.

The standard proof of Theorem 1.1 gives tower-type bounds on δ, as it uses Szemerédi’s regularity
lemma. But it is natural to ask whether, for certain graphs H, one can get a stronger bound in
Theorem 1.1. It turns out that in certain instances, one can.

Theorem 1.2 (Csaba [9, Theorem 5.2]). If an n-vertex graph G is ε-far from triangle-free, then it
contains at least 2− poly(1/ε) · n5 copies of C5.

In other words, Csaba showed that in the special case H = C5, one can replace the tower-type
bound in Theorem 1.1 by a single-exponential bound. To prove this, Csaba developed a new variant
of Szemerédi’s regularity lemma, somewhat akin to the weak regularity lemmas of Frieze–Kannan [14]
and Duke–Lefmann–Rödl [10], which does not yield tower-type dependencies between the parameters
and is nonetheless strong enough to prove results like Theorem 1.2. We also mention a recent result
of Conlon, Fox, Sudakov, and Zhao [8, Corollary 1.4], who proved that if G has zero copies of C5,
then it can be made triangle-free by deleting o(n3/2) edges; this result was proved via new techniques
in the regularity method for sparse graphs.

1.2 An optimal result for odd cycles

Our first main result is an improvement of Theorem 1.2, which reduces the single-exponential bound
to a polynomial bound. In fact, we prove a more general result, which holds for all pairs of odd cycles;
our improvement to Theorem 1.2 corresponds to the case k = 1, ` = 2 of the following theorem.
Extending the terminology above, one says that an n-vertex graph G is ε-far from satisfying a graph
property P if one must add or delete at least εn2 edges to G in order to create a graph satisfying
property P.

Theorem 1.3. Let 1 ≤ k < ` be integers and let ε > 0. If G is ε-far from C2k+1-free, then it
contains at least (c`ε

4`+2)n2`+1 copies of C2`+1, where c` > 0 is a constant depending only on `.

In contrast to the earlier proofs of Theorems 1.1 and 1.2, which used complicated regularity-type
arguments, our proof of Theorem 1.3 uses elementary but subtle counting arguments. Note that
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the dependence on ε in Theorem 1.3 is best possible up to a factor of 2 in the exponent. Indeed, a
random n-vertex graph with edge density ε has Θ`(ε

2`+1) · n2`+1 copies of C2`+1, and is Θk(ε)-far
from C2k+1-free. This observation, as well as Theorem 1.3, motivates the following definition.

Definition 1.4 (K3-abundant). Let H be a graph. We say that H is K3-abundant if there exists
some CH > 0 such that for all 0 < ε ≤ 1

2 , all integers n, and any n-vertex graph G which is ε-far

from triangle-free, the number of copies of H in G is at least εCH · n|V (H)|.

Informally, this definition says thatH isK3-abundant if we may take δ = polyH(ε) in Theorem 1.1.
In this language, Theorem 1.3 implies that C2`+1 is K3-abundant for all ` ≥ 2.

By the discussion above, any graph H with χ(H) > 3 cannot be K3-abundant, as Theorem 1.1
is simply false for such graphs. At the other extreme, it is easy to see that every bipartite graph H
is K3-abundant, but for a fairly uninteresting reason: if an n-vertex graph G contains fewer than
εCH · n|V (H)| copies of some bipartite H, then G has fewer than εn2 edges, and thus is certainly not
ε-far from triangle-free. This follows from a convexity argument originally due to Kővári, Sós, and
Turán [18] (see also [2]).

On the other hand, K3 itself is not K3-abundant, thanks to the Ruzsa–Szemerédi result that one
does not have polynomial bounds in the triangle removal lemma. Moreover, if H is K3-abundant,
then so is any subgraph of it. This immediately implies that if H contains a triangle, then H cannot
be K3-abundant. So any K3-abundant graph must be tripartite and triangle-free. The simplest
examples of such graphs are odd cycles (of length at least 5), which are indeed K3-abundant by
Theorem 1.3. Moreover, it is easy to see2 that any graph which is homomorphic to a K3-abundant
graph is also K3-abundant, hence any graph homomorphic to an odd cycle of length at least 5 is
K3-abundant.

Based on all of this, it is natural to ask whether all triangle-free tripartite graphs are K3-abundant.

1.3 Not all graphs are abundant

Our second main result is that not all triangle-free tripartite graphs are K3-abundant, assuming a
well-known conjecture of Ruzsa [19] in additive combinatorics. To state this conjecture, we need to
set up some notation. Consider a linear equation

∑k
i=1 aixi = 0, where the coefficients a1, . . . , ak

are integers. Following Ruzsa [19], one says that this equation has genus one if
∑k

i=1 ai = 0, but∑
i∈T ai 6= 0 for all ∅ ( T ( [k]. We say that integers y1, . . . , yk form a non-trivial solution3 to this

equation if
∑k

i=1 aiyi = 0 and the yi are not all equal. We denote by rE(m) the maximum size of a
subset of [m] containing no non-trivial solution to an equation E.

With this notation in place, Ruzsa’s genus conjecture4 says the following.

Conjecture 1.5 (Ruzsa [19]). If E is a linear equation of genus one, then rE(m) ≥ m1−o(1).

We can now state our second main theorem.

Theorem 1.6. Assuming that Conjecture 1.5 holds, there exists a triangle-free tripartite graph H
which is not K3-abundant.

2Indeed, if H1 is homomorphic to H2 and an n-vertex graph G contains δn|V (H2)| copies of H2, then it contains
poly(δ)n|V (H1)| copies of H1, which implies that H1 is K3-abundant if H2 is. This follows from the hypergraph analogue
of the Kővári–Sós–Turán theorem due to Erdős [11].

3For general equations, there are other types of trivial solutions, but these are the only ones one needs to consider
if an equation has genus one.

4In fact, Ruzsa formulated a more general conjecture, predicting the rough behavior of rE(m) for any equation E,
as a function of its genus. But we do not need this more general statement.
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The proof of Theorem 1.6 is based on Ruzsa and Szemerédi’s proof [20] that super-polynomial
bounds are necessary in the triangle removal lemma (i.e. that K3 itself is not K3-abundant), but
with several important differences. To explain the idea of the proof, let us briefly recall Ruzsa and
Szemerédi’s construction. Given an integer m and a set R ⊆ [m], they define a tripartite graph Γ
such that triangles in Γ correspond to solutions in R to the equation x+ z = 2y; note that solutions
to this equation are three-term arithmetic progressions in R, and that trivial solutions are trivial
arithmetic progressions. The upshot of this construction is twofold. First, if R contains no non-
trivial arithmetic progressions, then Γ has few triangles, and second, if R is large, then Γ is far from
triangle-free (as the many trivial arithmetic progressions in R yield many edge-disjoint triangles in
Γ). To finish the proof, Ruzsa and Szemerédi use Behrend’s [5] construction of a set R ⊆ [m] with
no non-trivial arithmetic progressions and of size |R| ≥ m1−o(1). Using this set R in the construction
described above, one obtains a graph Γ with at most δn3 triangles that is ε-far from triangle-free,
where δ is smaller than any fixed power of ε, because |R| is larger than any fixed power of m less
than 1.

For our proof of Theorem 1.6, we use the same construction to build a graph Γ out of any R ⊆ [m].
For the same reason as above, if R is large, then Γ is far from triangle-free. We would now like to
show that Γ has few copies of H, for some triangle-free tripartite graph H. As before, we can use
the structure of Γ to parameterize copies of H in Γ: there is a correspondence between copies of
H in Γ and solutions in R to a certain system of equations S arising from the cycles in H, whose
variables are indexed by the edges of H. To prove Theorem 1.6, it suffices to find a set R ⊆ [m]
with |R| ≥ m1−o(1) containing no non-trivial solutions to S. Unfortunately, as H is triangle-free, this
is impossible if we only use a single equation from S: no single equation in this family has genus
one, and therefore the largest set R ⊆ [m] avoiding non-trivial solutions to any single equation from
S has size |R| = O(

√
m) [19, Theorem 3.6]. The key idea in the proof is that if H is sufficiently

“complicated”, then the system of equations S, generated from the cycle space of H, does have genus
one5, and thus Conjecture 1.5 implies that there exists a set R satisfying our desired properties.

The heart of the proof, then, is showing that if H is an appropriately chosen tripartite triangle-free
graph, the set of equations arising from its cycles has genus one. Since the variables in the equations
in S correspond to the edges of H, a set which witnesses that S does not have genus one can be
viewed as a two-coloring of the edges of H with a certain properties. We now use a Ramsey-theoretic
argument to show that if H satisfies a number of carefully chosen pseudorandomness conditions, such
a coloring cannot exist. To conclude the proof, it suffices to find a tripartite triangle-free graph that
is pseudorandom in this sense; we do this by picking a random tripartite graph of an appropriate
density and deleting one edge from each triangle.

1.4 An application of Theorem 1.3 to property testing

Recall that an n-vertex graph G is ε-far from satisfying a graph property P if one must add or delete
at least εn2 edges to G in order to create a graph satisfying property P.

Given a monotone6 graph property P, let wP(ε) denote the smallest integer so that if G is ε-far
from satisfying P, then a randomly selected set X of wP(ε) vertices spans a subgraph not satisfying P
with probability at least 1/2. Note that a priori it is not clear that the function wP(ε) is well-defined
for all (or indeed any) P. In this terminology, if P is the property of being triangle-free, then the
triangle removal lemma implies that wP(ε) is well-defined, and that in fact wP(ε) ≤ 1/δ(ε).

5We formally define what it means for a system of equations (rather than one equation) to have genus one in
Section 3.

6A graph property is called monotone if it is closed under removal of vertices and edges.
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As discussed above, Ruzsa and Szemerédi [20] proved that the bounds for the triangle removal
lemma are not polynomial in ε. In the notation of the previous paragraph, this means that wP(ε) is
super-polynomial in 1/ε when P is the property of being triangle-free. Alon [2] later extended this
result to all non-bipartite graphs H, and thus in particular to all odd cycles: if P is the property
of being C2`+1-free, then wP(ε) is super-polynomial in 1/ε. It is natural to ask at this point what
happens if instead of forbidding a single odd cycle, we take a family of odd cycles L and consider the
property of not containing any cycle from L. It is not hard to show that Alon’s method can be used
to show that wP(ε) is super-polynomial in 1/ε for every finite family of odd cycles. At the other
extreme, if we take L to be the family of all odd cycles, then we have the following influential result
of Goldreich, Goldwasser, and Ron [16].

Theorem 1.7 ([16]). If P is the property of being 2-colorable, then wP(ε) ≤ poly(1/ε).

The poly(1/ε) bound obtained in [16] improved a tower-type bound obtained by Bollobás, Erdős,
Simonovits and Szemerédi [6]. It is interesting to compare the proofs in [6] and [16]. The former
proof relied on the fact that if G is far from being bipartite then G is also far from being C2`+1-free
where ` is an integer of order 1/ε. They then used the graph removal lemma to show that G must
contain many copies of C2`+1. The proof in [16] used a completely different approach, which crucially
relied on interpreting this property as bipartiteness, rather than {C3, C5, . . . }-freeness. In particular,
the proof of [16] works not only for bipartiteness but for k-colorability for any fixed k.

It is natural at this point to ask what happens for general infinite families of odd cycles. We
answer this question in Section 2. In particular, our proof shows that one can prove Theorem 1.7
using a removal-type argument similar to that of [6], but with an important twist. After concluding
that G is far from being C2`+1-free, we do not prove that it has many copies of C2`+1, but rather
that it has many copies of C2`+3. Thanks to Theorem 1.3, we may take this “many” to only be
polynomial in 1/ε, rather than super-polynomial as in [6].

It would be very interesting to prove efficient asymmetric removal lemmas like Theorem 1.3
for pairs of graphs of chromatic number larger than 3, and then use them to prove a version of
Theorem 1.7 which holds for k-colorability for any fixed k. We discuss a version of this problem in
the next subsection.

1.5 Larger cliques and higher chromatic numbers

There is a natural generalization of the triangle removal lemma, known as the clique removal lemma,
which states that for any t ≥ 3, if an n-vertex graph is ε-far from Kt-free, then it contains at least
δnt copies of Kt, for some δ = δ(ε, t) > 0. Similarly to Theorem 1.1, the usual proof of the clique
removal lemma immediately gives the following asymmetric version.

Theorem 1.8. Let t ≥ 3 and let H be a graph with χ(H) ≤ t. If an n-vertex graph G is ε-far from
Kt-free, then G contains at least δn|V (H)| copies of H, for some δ = δ(ε,H, t) > 0.

Because of this, one can naturally extend the definition of K3-abundance to Kt-abundance for any
t ≥ 3. Namely, we say that H is Kt-abundant if we may take δ = polyH,t(ε) in Theorem 1.8. Note
that if G is ε-far from Kt-free for some t ≥ 4, then G is also ε-far from triangle-free. Therefore, if
H is K3-abundant, then it is automatically Kt-abundant for all t ≥ 4. This shows that all bipartite
graphs, as well as all odd cycles of length at least 5, are Kt-abundant for all t ≥ 4.

In order to rule out such examples, it is natural to ask about Kt-abundant graphs with chromatic
number equal to t. As in the case of K3-abundance, one can use the Ruzsa–Szemerédi argument to
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show that if H contains a triangle, then H is not Kt-abundant for any t ≥ 3 (see e.g. [4, Lemma 4.2]
for a proof of a very similar result).

However, once t ≥ 4, there are other “simple” reasons why a graph may be non-Kt-abundant.
To define these, let H be a graph with χ(H) = t. Given a proper coloring c : V (H) → [t], let us
define a c-increasing cycle to be a cycle v1, . . . , vs in H with c(v1) < c(v2) < · · · < c(vs). Note that a
c-increasing cycle necessarily has length at most t. Let us say that H is increasing-cycle-unavoidable
if, for every proper coloring c : V (H) → [t], there is a c-increasing cycle in H. For example, if H
contains a triangle, then it is necessarily increasing-cycle-unavoidable.

It again follows from standard techniques (e.g. by combining [19, Theorem 2.3] and [2, Lemma 3.4])
that if H has chromatic number t and is increasing-cycle-unavoidable, then H is not Kt-abundant.
In particular, we again find that any graph containing a triangle is not Kt-abundant. However,
this also includes other graphs. For example, the Grötzsch graph is the smallest triangle-free 4-
chromatic graph, and one can check (by tedious casework, or with a computer), that the Grötzsch
graph is increasing-cycle-unavoidable. Therefore, the Grötzsch graph is an example of a triangle-free
4-chromatic graph that is not K4-abundant.

Therefore, to get to a genuinely interesting question, it makes sense to restrict our attention to
t-chromatic graphs with girth greater than t (as any c-increasing cycle has length at most t, so there
are no such cycles in a graph of girth larger than t). We believe that, with appropriate modifications,
the technique used to prove Theorem 1.6 shows that for every t ≥ 3, there exists a t-chromatic non-
Kt-abundant graph with girth greater than t, assuming that Conjecture 1.5 holds. Namely, one can
obtain such a graph by sampling an appropriate random graph, then deleting all cycles of length at
most t.

Thus, we have many ways of finding non-Kt-abundant graphs, and no examples of t-chromatic
graphs that are Kt-abundant for t ≥ 4. This motivates the following question.

Problem 1.9. Let t ≥ 4. Does there exist a Kt-abundant graph with chromatic number t?

The simplest 4-chromatic graph whose status is unknown is the Brinkmann graph; this is a 21-
vertex graph with chromatic number 4 and girth 5, so the techniques we have cannot be used to rule
out its K4-abundance.

Paper organization: The rest of this paper is organized as follows. In Section 2, we prove
Theorem 1.3 and use it to deduce Theorem 1.7. In Section 3, we prove Theorem 1.6, apart from the
proof that there exists a graph satisfying certain pseudorandomness assumptions. In Section 4, we
prove that an appropriate random graph satisfies these assumptions. We end in Section 5 with some
concluding remarks.

2 Many edge-disjoint (2k + 1)-cycles imply many (2`+ 1)-cycles

In this section, we prove Theorem 1.3. We actually prove a stronger sampling version, saying that a
sample of size poly(`/ε) contains a copy of C2`+1 with high probability.

Lemma 2.1. Let 1 ≤ k < `, let ε > 0 and let G be a graph on n ≥ 200`k2/ε2 vertices containing a

collection C of εn2 edge-disjoint copies of C2k+1. Then a sample of 100k2(2`+1) log(10`)
ε2

vertices of G
(taken uniformly and independently) contains a copy of C2`+1 with probability at least 2

3 .

Note that, as discussed above, the properties of being ε-far from C2k+1-free and having εn2 edge-
disjoint copies of C2k+1 are equivalent up to a constant factor.
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Proof of Lemma 2.1. There exists a collection C0 ⊆ C such that |C0| ≥ εn2/2 and each vertex
v ∈ V (G) belongs to either 0 or at least εn/2 of the cycles in C0. Indeed, to obtain C0, we repeatedly
delete from C all cycles containing a vertex v which belongs to fewer than εn/2 of the cycles in C
(without changing the graph). The set of cycles left at the end is C0. In this process, we delete at
most εn2/2 cycles altogether (because each vertex is contained in at most n cycles from C); hence
|C0| ≥ εn2/2. Let V0 be the set of vertices contained in at least εn/2 cycles from C0. Then |V0| ≥ εn
because the cycles containing a given v ∈ V0 are edge-disjoint and contained in V0.

Set q := 100k2 log(10`)
ε2

. We sample 2` + 1 sets S0, . . . , S2` of size q each, where each Si contains
q vertices sampled uniformly at random and independently with repetition7. The probability that
S0 ∩ V0 = ∅ is at most (1 − ε)q ≤ e−εq ≤ 1

10 . From now on, we assume that S0 ∩ V0 6= ∅ and fix
v0 ∈ S0 ∩ V0. Let N be the set of vertices u such that v0u ∈ E(C) for some C ∈ C0. Then |N | ≥ εn.
Let C(v0) be the set of cycles C ∈ C0 such that V (C)∩N 6= ∅ and v0 /∈ V (C). The number of cycles
C ∈ C0 intersecting N is at least εn/2 · |N |/(2k + 1) ≥ ε2n2/(4k + 2), and the number of cycles
containing v0 is at most n. Hence, |C(v0)| ≥ ε2n2/(4k + 2) − n ≥ ε2n2/(7k), using our assumption
that n ≥ 200`k2/ε2.

We denote by C2k+1 the labeled cycle on vertices 1, . . . , 2k + 1. For each C ∈ C(v0), fix an
isomorphism fC : C2k+1 → C mapping 1 to a vertex in V (C)∩N . For a vertex u and 1 ≤ j ≤ 2k+1,
denote by dj(u) the number of cycles C ∈ C(v0) with fC(j) = u. As long as there is 1 ≤ j ≤ 2k+1 and
a vertex u with 0 < dj(u) < ε2n/(50k2), then delete from C(v0) all cycles C with fC(j) = u (without
changing the graph). In this process, we delete at most (2k+ 1) ·n · ε2n/(50k2) ≤ ε2n2/(14k) cycles.
Let C∗(v0) be the set of cycles left at the end of the process. Then |C∗(v0)| ≥ |C(v0)| − ε2n2/(14k) ≥
ε2n2/(14k). At the end, we have that dj(u) = 0 or dj(u) ≥ ε2n/(50k2) for every vertex u and every
1 ≤ j ≤ 2k + 1. Let Uj be the set of vertices u with dj(u) ≥ ε2n/(50k2). Observe that each u ∈ Uj
has at least ε2n/(50k2) neighbors in Uj−1 and Uj+1, with indices taken modulo 2k+1. In particular,
|Uj | ≥ ε2n/(50k2) for every 1 ≤ j ≤ 2k + 1. Also, U1 ⊆ N ⊆ N(v0) by definition, where N(v0)
denotes the neighborhood of v0.

Let P2`−1 be the path with vertices 1, . . . , 2`. Fix a homomorphism ϕ : P2`−1 → C2k+1 such that
ϕ(1) = ϕ(2`) = 1. This is possible because 2k+1 is odd and k < `. We claim that with probability at
least 4

5 , there are vertices ui ∈ Si, 1 ≤ i ≤ 2`, such that u1, . . . , u2` is a path and ui ∈ Uϕ(i). Observe
that if this happens then v0, u1, . . . , u2` is a copy of C2`+1 because u1, u2` ∈ U1 ⊆ N(v0). First, since

|U1| ≥ ε2n/(50k2), the probability that S1 contains no vertex of U1 is at most (1− ε2

50k2
)q ≤ 1

10` . So
suppose that there is u1 ∈ S1 ∩ U1. For 2 ≤ i ≤ 2`, suppose that we already found u1, . . . , ui−1; in
particular, ui−1 ∈ Uϕ(i−1). We saw that ui−1 has at least ε2n/(50k2) neighbors in Uϕ(i). Out of these
neighbors, at most 2`−1 are on the path u1, . . . , ui−1. Hence, at least ε2n/(50k2)−2` ≥ ε2n/(100k2)
are not in {u1, . . . , ui−1}. The probability that Si contains none of these neighbors is at most

(1− ε2

100k2
)q ≤ 1

10` . So suppose that there is ui ∈ Si∩Uϕ(i) and continue the process. The probability

that this process fails to produce u1, . . . , u2` is at most 2` · 1
10` = 1

5 , as required. In total, the
probability that S0 ∪ · · · ∪ S2`+1 contains no copy of C2`+1 is at most 1

10 + 1
5 <

1
3 . This completes

the proof.

This immediately implies Theorem 1.3, which we restate as the following corollary.

Corollary 2.2. Let 1 ≤ k < `, let ε > 0 and let G be a graph on n ≥ 200`k2/ε2 vertices with εn2

edge-disjoint copies of C2k+1. Then G has Ω`(ε
4`+2)n2`+1 copies of C2`+1.

Proof. Let M denote the number of copies of C2`+1 in G. The probability that a sample of size q

7i.e. it is possible that |Si| < q for some i, as we may sample the same vertex multiple times.
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contains a copy of C2`+1 is at most M · (q/n)2`+1. By Lemma 2.1, this probability is at least 2/3 for
q = O`(ε

−2). The result follows.

We now turn to removal bounds for infinite families of odd cycles. For a sequence of positive
integers L, let wL(ε) be the smallest integer q such that if a graph G on n ≥ n0(ε) vertices is ε-far
from being {C` : ` ∈ L}-free, then with probability at least 2/3, a sample of q vertices from G
contains a copy of C` for some ` ∈ L. A result of [15] gave tight bounds on wL(ε) as a function of
the growth-rate of the sequence L. We state a variant of this result as follows.

Theorem 2.3. Let g : Nodd → Nodd be an increasing function satisfying g(x) > x. Let `1 ≥ 3 be an
odd number and define a sequence (`i)i≥1 inductively by setting `i+1 = g(`i). For L = {`i : i ≥ 1},
we have wL(ε) ≤ O(ε−8) · g(4/ε) · log(g(4/ε)).

Note that Theorem 1.7 follows immediately from Theorem 2.3, by setting g(x) = x + 2 and
`1 = 3, so that L consists of all odd integers greater than 1. This implies that if G is ε-far from
being bipartite then a sample of size poly(1/ε) contains an odd cycle with probability at least 2/3.
We note that the dependence on ε that we get is not tight; indeed, it is known [3] that a sample of
Õ(1/ε) suffices.

Here we give a new simpler proof of Theorem 2.3. We need the following easy fact, observed
already in [6]. For completeness, we give a proof.

Lemma 2.4. For every 0 < ε ≤ 1/2, every graph G which is ε-far from being bipartite contains an
odd cycle of length at most 2/ε.

Proof. Repeatedly delete from G vertices of degree less than εn, until no such vertices are left. Let
W be the set of remaining vertices. The total number of edges deleted in this process is less than
εn2, hence G[W ] is not bipartite. Also, each vertex in G[W ] has degree at least εn. Let C be a
shortest odd cycle in G[W ]. If C is a triangle then we are done, so suppose |C| ≥ 5. By minimality,
C is an induced cycle. For x, y ∈ V (C), denote by distC(x, y) the distance between x and y along C.
Observe that if x, y ∈ V (C) have a common neighbor v ∈ W \ V (C), then distC(x, y) = 2. Indeed,
suppose otherwise, and let P1, P2 be the two paths between x, y along C. Without loss of generality,
suppose that P1 is odd and P2 is even. We have |P2| > 2 because distC(x, y) 6= 2. Now, replacing P2

with the path xvy, we obtain a shorter odd cycle, a contradiction. It follows that every v ∈ W has
at most 2 neighbors on C. Indeed, if x, y, z ∈ V (C) are neighbors of v, then any two among x, y, z
are at distance 2, implying that C has length 6, a contradiction. Now, summing over the degrees of
vertices in C, we get |C| · εn ≤

∑
x∈V (C) dW (x) ≤ 2|W | ≤ 2n. It follows that |C| ≤ 2/ε.

Proof of Theorem 2.3. Let G be a graph which is ε-far from being {C`i : i ≥ 1}-free. We claim

that there is an odd integer 1 ≤ 2k + 1 ≤ 4
ε such that G is ε2

4 -far from being C2k+1-free. Indeed,

otherwise we could destroy all odd cycles in G of length at most 4
ε by deleting at most 2

ε ·
ε2

4 n
2 = ε

2n
2

edges. Let G′ be the resulting graph. By Lemma 2.4, G′ is not ε
2 -far from being bipartite. This

implies that G is not ε-far to being {C`i : i ≥ 1}-free, a contradiction.

So fix 1 ≤ 2k + 1 ≤ 4
ε such that G is ε2

4 -far from being C2k+1-free. Then G contains ε2

4(2k+1)n
2 ≥

ε2

20kn
2 edge-disjoint copies of C2k+1. Fix i ≥ 1 such that `i ≤ 2k+1, and denote ` := `i+1 = g(`i). By

Lemma 2.1 with ε2

20k in place of ε, a sample of q vertices of G contains a copy of C` with probability
at least 2

3 , where

q = O

(
k4` log(`)

ε4

)
= O(ε−8) · ` log(`) ≤ O(ε−8) · g(4/ε) · log(g(4/ε)).
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Here we used that ` = g(`i) and `i ≤ 2k + 1 ≤ 4/ε. This completes the proof.

We remark that Komlós [17] improved Lemma 2.4 by showing that every graph that is ε-far
from bipartite contains an odd cycle of length O(ε−1/2), which is best possible. Using this result
in place of Lemma 2.4 in the above proof, one can improve the bound in Theorem 2.3 to wL(ε) ≤
O(ε−4) · g(`) · log(g(`)), where ` = O(ε−1/2). As was shown in [15], this is essentially tight.

3 Proof of Theorem 1.6

In this section, we prove Theorem 1.6, which states that there exist triangle-free tripartite non-K3-
abundant graphs. To prove this, we need to construct a triangle-free and tripartite graph H, and a
sequence of graphs G, such that G is ε-far from being triangle-free and contains εω(1)n|V (H)| copies
of H, where ω(1) tends to infinity as ε→ 0.

Our proof naturally splits into three parts. First, we construct G: it is a variant of the Ruzsa–
Szemerédi construction which gives super-polynomial bounds for the triangle removal lemma. In
Section 3.1, we recall the relevant notions from additive combinatorics and give the construction of
G. In Section 3.2, we define what it means for a graph H to be strongly genus-one: this is a combi-
natorial condition which guarantees that G contains few copies of H, thanks to the number-theoretic
structure of G. Finally, in Section 3.3, we prove that a graph satisfying certain pseudorandomness
conditions is strongly genus-one. With this, all that remains is showing that there exist triangle-free
graphs satisfying these pseudorandomness conditions, for which we pick an appropriate random graph
and remove one edge from each triangle. Verifying that this graph satisfies the pseudorandomness
conditions consists of standard arguments in random graph theory, which we do in Section 4.

3.1 Additive combinatorics and the Ruzsa–Szemerédi construction

In the introduction, we defined what it means for an equation to have genus one; the following
definition is a natural extension of this to families of equations.

Definition 3.1. Let S be a set of s equations with integer coefficients and k variables, namely

S =

{
k∑
i=1

ai,jxi = 0 : 1 ≤ j ≤ s

}
.

We assume that each equation in S is translation-invariant, meaning that
∑k

i=1 ai,j = 0 for all j ∈ [s].
One says that S has genus one if for all ∅ ( T ( [k], there exists some j ∈ [s] so that

∑
i∈T ai,j 6= 0.

Let S be a set of equations with genus one on k variables. As in the case of a single equation, we
say that integers y1, . . . , yk form a non-trivial solution to S if y1, . . . , yk are not all equal, and if they
satisfy all equations in S. We denote by rS(m) the maximum size of a subset of [m] containing no
non-trivial solution to S. A simple argument shows that Conjecture 1.5 implies the corresponding
result for sets of equations, as stated in the following lemma.

Lemma 3.2. Assume that Conjecture 1.5 holds. If S is a set of linear equations of genus one, then
rS(m) ≥ m1−o(1).

Proof. Let S consist of s equations E1, . . . , Es in k variables. Let b1, . . . , bs be independent and
uniformly random numbers from [2k], and let E = b1E1 + · · · + bsEs. Let the coefficients of E be
a1, . . . , ak, where ai =

∑s
j=1 bjai,j .
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Fix a set ∅ ( T ( [k]. We claim that the probability that
∑

i∈T ai = 0 is at most 2−k. Indeed,
since S has genus one, there exists some j ∈ [s] so that

∑
i∈T ai,j 6= 0. For any fixed values of

b1, . . . , bj−1, bj+1, . . . , bs, there is at most one choice of bj ∈ [2k] so that
∑

i∈T ai = 0. This shows
that the probability that

∑
i∈T ai = 0 is at most 2−k. As there are fewer than 2k such sets T , we

conclude that with positive probability, E has genus one. We now fix b1, . . . , bs such that E has
genus one.

We now observe that rS(m) ≥ rE(m). Indeed, a non-trivial solution to S is also a non-trivial
solution to E, so a set avoiding non-trivial solutions to E necessarily also avoids non-trivial solutions
to S. By Conjecture 1.5, we have that rE(m) ≥ m1−o(1), yielding the claim.

Additionally, it is easy to see that Conjecture 1.5 implies the following result for multiple sets of
equations.

Lemma 3.3. Assume that Conjecture 1.5 holds. Let S1, . . . , St be sets of equations, such that each
Si has genus one. Then there exists R ⊆ [m] with |R| ≥ m1−o(1) such that R has no non-trivial
solutions to Si, for all 1 ≤ i ≤ t.

Remark 3.4. This is stronger than saying that the union of genus-one sets of equations also has
genus one. Indeed, avoiding a solution to some set S of equations means that for any non-trivial
assignment of the variables, at least one equation in S is not satisfied. Here, we are insisting that at
least one equation in each Si is not satisfied.

Proof of Lemma 3.3. By Lemma 3.2, for each i, there is an Ri ⊆ [m] with |Ri| ≥ m1−o(1) con-
taining no non-trivial solutions to Si. Let s be the sum of the absolute values of the coefficients in
all the equations in S1, . . . , St, and let M = 2sm. Then if we view Ri as a subset of the cyclic group
Z/MZ, then Ri still contains no non-trivial solutions to Si, as M was chosen sufficiently large to not
introduce any “wraparound” solutions.

Let a2, . . . , at be independent and uniformly random elements of Z/MZ, and let

R = R1 ∩ (R2 + a2) ∩ · · · ∩ (Rt + at).

As all equations are translation-invariant, R has no non-trivial solutions to Si for all 1 ≤ i ≤ t.
Additionally, as R ⊆ R1, we may view R as a subset of [m]. Finally,

E[|R|] =
∑
x∈R1

t∏
i=2

Pr(x ∈ Ri + a2) = |R1| ·
t∏
i=2

|Ri|
M
≥ m1−o(1),

using the facts that |Ri| ≥ m1−o(1) for each i and that M = 2sm = OS(m). Thus, there is some
R ⊆ [m] with the desired properties.

Fix an integer m and a set R ⊆ [m]. We define the Ruzsa–Szemerédi graph RS(m,R) to be the
following graph. It has three parts A,B, C, each of which we identify with [3m]. The edges are given
by

(a, b) ∈ A× B : b− a ∈ R (b, c) ∈ B × C : c− b ∈ R (c, a) ∈ C × A : c− a ∈ 2R.

The following property of the Ruzsa–Szemerédi graph is well-known. We include the proof for
completeness.
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Lemma 3.5. Let m be an integer and let R ⊆ [m]. Then RS(m,R) contains a collection of m|R|
edge-disjoint triangles.

Proof. For every a ∈ [m] and r ∈ R, we have a triangle (a, a + r, a + 2r) ∈ A × B × C. Given any
two vertices in this triangle, we can recover the values of a and r, so these triangles are edge-disjoint.
As they are indexed by pairs (a, r) ∈ [m]×R, there are m|R| such triangles.

3.2 Strongly genus-one graphs

We now define what it means for a graph H to be strongly genus-one. This is a Ramsey-theoretic
condition that implies that a certain set of equations S associated to the cycles in H has genus one.
Using this, we can show that an appropriate Ruzsa–Szemerédi graph RS(m,R) contains few copies
of H, by choosing R ⊆ [m] to be a set of integers containing no non-trivial solutions to S.

Definition 3.6 (tagged cycle). Let H be a tripartite graph with tripartition A∪B∪C, and suppose
that the edges of H are colored white or black. We say that a cycle x1, x2, . . . , x`, x1 in H is tagged
if one of the following two conditions hold:

• Some edge xixi+1 is black and the remaining edges are white (or this holds after swapping the
colors).

• Two consecutive edges xi−1xi and xixi+1 are both black, all remaining edges are white, and
xi−1, xi, xi+1 all lie in different parts A,B,C (or this holds after swapping the colors).

Recall that a graph is uniquely 3-colorable if it has a unique partition into three independent sets.

Definition 3.7 (strongly genus-one graph). We say that a graph H is strongly genus-one if it is
uniquely 3-colorable and if, no matter how we color the edges of H white or black such that there is
at least one edge of each color, there is a tagged cycle.

Note that the definition of a tagged cycle depends on the tripartition A ∪ B ∪ C. However, the
definition of strongly genus-one requires H to be uniquely 3-colorable, removing this ambiguity.

The Ruzsa–Szemerédi construction gives us a way of associating a set of equations S to a tripartite
graph H, in such a way that copies of H in RS(m,R) are related to solutions of S in R. We now
define this set of equations.

Let H be a tripartite graph with tripartition A∪B∪C. We assign every edge from A to B weight
1, every edge from B to C weight 1, and every edge from C to A weight −2. Note that we view the
edges of H as oriented, so an edge going from B to A receives weight −1, for example. For every
edge e ∈ E(H), we introduce a variable xe. Every cycle in H now naturally gives us an equation
whose variables are xe for edges e in the cycle, and whose coefficients are ±1,±2: we simply write
down the (signed) weights we see as we follow the cycle around the graph. Formally, given a cycle
v1, . . . , v` with (oriented) edges ei = vivi+1, i = 1, . . . , `, we get the equation

∑`
i=1w(ei) · xei = 0,

where w(ei) is the signed weight of ei. We now form a set of equations SA,B,C(H) by including all
such equations, one equation for every cycle in the graph. Note that, as is reflected in the notation,
this set of equations depends on H and on the tripartition A ∪B ∪ C.

The definition of tagged cycles implies that if H is strongly genus-one, then SA,B,C(H) is a set of
equations of genus one, as stated in the following lemma.
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Lemma 3.8. Let H be a strongly genus-one graph. Then for every tripartition8 A ∪ B ∪ C of H,
the set of equations SA,B,C(H) has genus one.

Proof. Suppose for contradiction that there is some set ∅ ( T ( E(H) so that in every equation in
SA,B,C(H), the sum of the coefficients on the edges in T is zero. Color the edges in T black, and all
remaining edges white. As we assume ∅ ( T ( E(H), we have at least one edge of each color. So by
the definition of a strongly genus-one graph, we must have at least one tagged cycle. By swapping
the colors if necessary9, we find a cycle with either exactly one black edge, or two consecutive black
edges going between two different pairs of parts. Consider the equation corresponding to this cycle.

In case there is exactly one black edge, then the sum of the coefficients on the edges in T is ±1
or ±2. In particular, this sum is non-zero, contradicting our assumption on T . Similarly, if there
are two consecutive black edges going between two different pairs of parts of H, then the sum of the
coefficients on edges in T is ±(1 + 1) = ±2 or ±(−2 + 1) = ±1, both of which are non-zero, another
contradiction.

Remark 3.9. The definition of a tagged cycle is stronger than what is strictly needed for Lemma 3.8.
Indeed, all we need is a cycle in H such that the sum of the weights on the black edges in the cycle
is non-zero. However, our construction of a strongly genus-one graph H naturally yields a tagged
cycle, rather than a more general “non-canceling cycle”. This is the reason we use the term strongly
genus-one for such graphs: the combinatorial condition we require is stronger than what is needed
simply to guarantee that SA,B,C(H) is a genus-one set of equations.

We now have all the pieces in place to prove that strongly genus-one graphs are not K3-abundant,
assuming that Conjecture 1.5 holds.

Lemma 3.10. Assume that Conjecture 1.5 holds.

Let H be a strongly genus-one graph, and let ε > 0 be sufficiently small. For every sufficiently
large N , there exists an N -vertex graph G which is ε-far from being triangle-free and which contains
at most δNv(H) copies of H, where δ ≤ εω(1) and the ω(1) tends to infinity as ε→ 0.

In other words, H is not K3-abundant.

Proof. As H is uniquely 3-colorable, it has six tripartitions A∪B∪C (namely the six permutations of
(A,B,C)). By Lemma 3.8, each of the sets of equations SA,B,C(H) has genus one. So by Lemma 3.3,
for every integer m, there is a set R ⊆ [m] with |R| ≥ m1−o(1) which has no non-trivial solutions to
any of these sets of equations.

Let m be the maximum integer so that there exists such a set R of size |R| ≥ 1000εm, and note
that m = ε−ω(1). Let Γ = RS(m,R). By Lemma 3.5, Γ has 9m vertices and contains a collection of
m|R| ≥ 1000εm2 edge-disjoint triangles, so Γ is ε-far from being triangle-free.

The key claim is that there are at most 18m2 homomorphisms H → Γ. Indeed, note that a
homomorphism H → Γ in particular yields a proper 3-coloring of H, and since H is uniquely 3-
colorable, there are exactly six such colorings. Fix one of them, and say that it maps the parts
A,B,C of H into the parts A,B, C of Γ, respectively. Every edge e of H gets mapped into some
edge of Γ, and edges of Γ are naturally labeled by elements of R. So this homomorphism gives us
an assignment of the variables {xe}e∈E(H) to values in R. Moreover, as every cycle in H must map

8Of course, up to isomorphism, there is only one tripartition of H. But the set of equations SA,B,C(H) depends on
the specific labeling we use of the sets, as this determines which edges receive which weights.

9Note that if T is such a “bad” set, then so is its complement, so we may swap the colors.
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to a closed walk in Γ, we see that for every cycle in H, the corresponding equation in SA,B,C(H) is
satisfied by this assignment of the variables.

But we assumed that R has no non-trivial solutions to SA,B,C(H), so we must have that every
edge of H is actually assigned to the same value of R. But having fixed this value, we see that it
corresponds to at most 3m homomorphisms: once we determine where in A to send a single vertex
of A, the locations of all remaining vertices are uniquely determined by the connectivity of H (H
is connected since it is uniquely 3-colorable). So in total, there are at most 6 · 3m|R| ≤ 18m2

homomorphisms H → Γ. Note that we used the fact that R has no non-trivial solutions to any of
the six sets of equations arising from permuting A,B,C, so the argument above works regardless of
how {A,B,C} are mapped into {A,B, C} (and the union over all these contributions gives us the
extra factor of six in the count of homomorphisms).

To conclude the proof, let N be sufficiently large, and suppose for simplicity that N is a multiple
of 9m, say N = 9mt. Let G the balanced blowup Γ[t], which has N vertices. G is still ε-far from
being triangle-free. Indeed, suppose we delete fewer than εN2 edges from G. Sample a random copy
of Γ in G by picking one uniformly random vertex from each blowup part of G. In expectation, we
delete fewer than ε|V (Γ)|2 from this copy of Γ, so there exists a copy of Γ in G from which we deleted
fewer than ε|V (Γ)|2 edges. As Γ is ε-far from being triangle-free, this yields a triangle in G which
survives the edge-deletion, proving that G is also ε-far from being triangle-free.

Moreover, every homomorphism H → Γ yields at most t|V (H)| copies of H in G. So the total
number of copies of H in G is at most

18m2 · t|V (H)| =
18m2

(9m)|V (H)|N
|V (H)| =: δN |V (H)|,

where δ = O(m2−|V (H)|) ≤ O(1/m) = εω(1), as claimed.

3.3 Pseudorandom graphs are strongly genus-one

Given Lemma 3.10, all that remains to prove Theorem 1.6 is to show that there exist triangle-free
strongly genus-one graphs. In fact, we show that any tripartite graph satisfying appropriate pseudo-
randomness conditions is strongly genus-one; the main difficulty is finding a set of pseudorandomness
conditions which are satisfied by an appropriate random graph, and which are strong enough to imply
that the graph is strongly genus-one. The following proposition summarizes this set of pseudoran-
domness conditions. In a tripartite graph with parts A,B,C, given X ⊆ A, Y ⊆ B, let N(X,Y )
be the set of all vertices in C with at least one neighbor in X and at least one neighbor in Y . For
Z ⊆ C, let NA(Z) denote the set of vertices in A adjacent to at least one vertex of Z.

Proposition 3.11. For all sufficiently large n, there exists a tripartite graph H with parts A,B,C
with |A| = |B| = |C| = n, having the following properties.

(i) If F is a subgraph of H[A ∪ B] with at least half the edges of H[A ∪ B], then there exist
A′ ⊆ A,B′ ⊆ B with F [A′ ∪B′] connected and |A′|, |B′| ≥ n/10.

(ii) For all subsets X ⊆ A, Y ⊆ B,Z ⊆ C of order at least n/10, we have that |N(X,Y )| ≥ 99n/100,
and similarly for |N(X,Z)| and |N(Y,Z)|.

(iii) For all subsets X ⊆ A, Y ⊆ B,Z ⊆ C of order at most n/12, we have that |NA(Z)| > 2|Z|,
and similarly for all other pairs.

13



(iv) H is triangle-free.

(v) Up to permuting the colors, H has a unique proper 3-coloring.

We prove Proposition 3.11 by considering a random tripartite graph with edge density p = n−3/4,
and then deleting one edge from each triangle; we defer the proof to Section 4. We remark that many
other pseudorandom graphs would work; for example, there is nothing special about p = n−3/4, and
edge density p = n−1+θ for any 0 < θ < 1/3 would work as well. As another example, the tripartite
triple cover of Alon’s explicit pseudorandom triangle-free graph [1] gives an explicit family of graphs
satisfying the properties of Proposition 3.11.

The key claim, which completes the proof of Theorem 1.6, is that this set of pseudorandomness
conditions is enough to guarantee that H is strongly genus-one.

Lemma 3.12. If H satisfies the conditions of Proposition 3.11, then H is strongly genus-one.

From Proposition 3.11 and Lemma 3.12, we find that there exists a triangle-free strongly genus-
one graph. Combined with Lemma 3.10, this implies that there exists a triangle-free tripartite graph
which is not K3-abundant (assuming Conjecture 1.5), which proves Theorem 1.6.

The rest of this section is dedicated to proving Lemma 3.12. So suppose we are given a tripartite
graph H which satisfies the conditions of Proposition 3.11, and we wish to prove that H is strongly
genus-one. By Proposition 3.11(v), we know that H is uniquely 3-colorable, so we only need to prove
that in any two-coloring of E(H) with at least one edge of each color, there is a tagged cycle.

The following are two useful lemmas allowing us to find tagged cycles.

Lemma 3.13. Let H be a tripartite graph with parts A,B,C, and suppose that the edges of H are
colored white or black. Suppose that X ⊆ A, Y ⊆ B are such that X∪Y lies in a connected component
of the white subgraph of H. If there is no tagged cycle, then every edge in X × Y is white.

Proof. Suppose for contradiction that there is a black edge xy. Pick a white path connecting x and
y, which exists since we assumed that X ∪Y lies in a connected component of the white graph. This
yields a cycle with exactly one black edge, which is tagged.

Lemma 3.14. Let H be a tripartite graph with parts A,B,C, and suppose that the edges of H are
colored white or black. Suppose that X ⊆ A, Y ⊆ B are such that the X ∪ Y lies in a connected
component of the white subgraph of H. Let Z = N(X,Y ) ⊆ C. If there is no tagged cycle, then every
edge in (X × Z) ∪ (Y × Z) is white.

Proof. Suppose for contradiction that there is a black edge yz ∈ Y × Z. By the definition of
Z = N(X,Y ), we know that z has some neighbor x ∈ X. Pick a white path x = v0, v1, . . . , vk = y
connecting x and y. Suppose first that z is not on this path, i.e. z /∈ {v1, . . . , vk}. Then we have a
cycle x, v1, . . . , vk−1, y, z, x. In this cycle, the edge yz is black, the edge zx may be black or white,
and all remaining edges are white. Regardless of the color of zx, we obtain a tagged cycle.

On the other hand, suppose that vi = z for some i. Note that i < k − 1 as the edge yz is black
and we assumed that the edge vk−1y is white. This implies that we get a cycle z, vi+1, . . . , vk−1, y, z.
In this cycle, the edge yz is black and the remaining edges are white, so we again find a tagged cycle.

The same argument, upon interchanging the roles of X and Y , shows that no edge xz ∈ X × Z
can be black.

We are now ready to complete the proof. The basic idea is to repeatedly use Lemmas 3.13
and 3.14, as well as the pseudorandomness conditions guaranteed by Proposition 3.11 to gradually
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improve our understanding of the coloring, until we eventually show that if there is no tagged cycle,
then all the edges must be of the same color.

Proof of Lemma 3.12. Let H be a graph satisfying the conditions of Proposition 3.11, and suppose
for contradiction that there is a coloring of H with no tagged cycle. We will show that H is colored
monochromatically.

Suppose without loss of generality that at least half the edges in H[A ∪B] are white. By Propo-
sition 3.11(i), there exist A1 ⊆ A,B1 ⊆ B such that the white graph on H[A1 ∪ B1] is connected,
with |A1|, |B1| ≥ n/10. Let C1 = N(A1, B1). By Proposition 3.11(ii), we know that |C1| ≥ 99n/100.
Moreover, by Lemmas 3.13 and 3.14, we have that H[A1 ∪B1 ∪ C1] is white, since the connectivity
of the white graph on H[A1 ∪ B1] implies that A1 ∪ B1 lies in a connected component of the white
subgraph.

Now, let A2 = N(B1, C1). Note that B1∪C1 lies in a connected component of the white subgraph,
since every vertex in C1 has at least one neighbor in B1, and since B1 lies in a connected component of
the white subgraph. Therefore, H[A2 ∪B1 ∪ C1] is white by Lemmas 3.13 and 3.14. As |B1|, |C1| ≥
n/10, we also see that |A2| ≥ 99n/100 (again by Proposition 3.11(ii)). Similarly, letting B2 =
N(A2, C1), we find that |B2| ≥ 99n/100 and H[A2 ∪B2 ∪ C1] is white.

Now, let (A′, B′, C ′) be a maximal triple of sets so that H[A′ ∪ B′ ∪ C ′] is white. By the above,
we know that |A′|, |B′|, |C ′| ≥ 99n/100. We claim that in fact, |A′| = |B′| = |C ′| = n, meaning that
H is monochromatically white. So suppose this is not the case. Without loss of generality, assume
that |C ′| ≤ |A′|, |B′|, and let W = C \ C ′.

Suppose there is a vertex w ∈W with at least one neighbor in A′ and at least one neighbor in B′.
Then w ∈ N(A′, B′), so by Lemma 3.14, all edges in {w} × (A′ ∪B′) are white. This means that we
may add w to C ′, contradicting maximality of (A′, B′, C ′). So every vertex in W is non-adjacent to
at least one of A′, B′. Without loss of generality, there is W ′ ⊆ W with |W ′| ≥ 1

2 |W | so that every
vertex in W ′ is non-adjacent to A′. This means that NA(W ′) ⊆ A \A′. But by Proposition 3.11(iii)
(which we may apply since |W ′| ≤ |W | ≤ n/100 ≤ n/12),

|C \ C ′| = |W | ≤ 2|W ′| < |NA(W ′)| ≤ |A \A′|,

which contradicts our assumption that |A′| ≥ |C ′|. This contradiction completes the proof.

4 Proof of Proposition 3.11

To complete the proof of Theorem 1.6, it remains to prove Proposition 3.11. The various parts of
Proposition 3.11 are essentially independent of one another, so the proof more or less breaks down
into a number of lemmas about random graphs, which we now state and prove. Recall that an event
E is said to happen with high probability (w.h.p.) if Pr(E) → 1 as n → ∞, where the implicit
parameter n will always be clear from context.

Lemma 4.1. Let H be a random bipartite graph with vertex set A∪B, where |A| = |B| = n, and with
edge density p = n−3/4. The following holds w.h.p. as n → ∞. If F ⊆ H satisfies e(F ) ≥ 1

3e(H),
then there exist A′ ⊆ A,B′ ⊆ B with |A′|, |B′| ≥ n/10 such that F [A′ ∪B′] is connected.

Proof. By the Chernoff bound, H has at least 3
4pn

2 edges w.h.p. We now condition on this event
happening.

Suppose for contradiction that there exists an F without this property, and let its connected
components be F1, . . . , F`. For 1 ≤ i ≤ `, let the vertex set of Fi be Ai ∪Bi, where Ai ⊆ A,Bi ⊆ B.
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By assumption, we know that min{|Ai|, |Bi|} < n/10 for each i, and that

1

4
pn2 ≤ 1

3
e(H) ≤ e(F ) =

∑̀
i=1

eF (Ai, Bi) ≤
∑̀
i=1

eH(Ai, Bi).

So to upper-bound the probability that such an F exists, it suffices to upper-bound the probability
that there exist disjoint A1, . . . , A` ⊆ A,B1, . . . , B` ⊆ B with the properties that min{|Ai|, |Bi|} <
n/10 for each i and that

∑
i eH(Ai, Bi) ≥ 1

4pn
2.

Fix disjoint sets A1, . . . , A` ⊆ A,B1, . . . , B` ⊆ B with min{|Ai|, |Bi|} < n/10 for each i. Let I be
the set of indices i with |Ai| ≤ n/10, and let J = [`] \ I. We have that

∑̀
i=1

|Ai||Bi| =
∑
i∈I
|Ai||Bi|+

∑
i∈J
|Ai||Bi| ≤

n

10

∑
i∈I
|Bi|+

n

10

∑
i∈J
|Ai| ≤

n

10
(|B|+ |A|) =

n2

5
.

Let X denote the random variable
∑`

i=1 eH(Ai, Bi). By the computation above, we see that X is
upper-bounded in distribution by Bin(n2/5, p). By the Chernoff bound,

Pr

(
X ≥ 1

4
pn2

)
≤ Pr

(
Bin

(
n2

5
, p

)
≥ pn2

4

)
≤ exp

(
−pn

2

250

)
.

There are at most nn partitions of an n-element set10, so this error probability of e−Ω(pn2) = e−Ω(n5/4)

is enough to union-bound over at most n2n = eO(n logn) choices for A1, . . . , A`, B1, . . . , B`.

Recall that for X ⊆ A, Y ⊆ B, we denote by N(X,Y ) the set of all vertices in C with at least
one neighbor in X and at least one neighbor in Y .

Lemma 4.2. Let H be a tripartite random graph on parts A,B,C with |A| = |B| = |C| = n,
where each edge appears with probability p = n−3/4. The following holds w.h.p. as n → ∞. For all
X ⊆ A, Y ⊆ B with |X|, |Y | ≥ n/10, we have that |N(X,Y )| ≥ n− o(n).

Proof. Fix X,Y . For c ∈ C, let Ec be the event that c has no neighbor in X or no neighbor in Y .
Then

Pr(Ec) ≤ (1− p)|X| + (1− p)|Y | ≤ 2(1− p)n/10 ≤ 2e−n
1/4/10 ≤ e−n1/5

for all sufficiently large n.

Note that the events Ec are independent for different choices of c. Therefore, for an integer k, the
probability that Ec happens for at least k different choices of c is at most(

n

k

)
Pr(Ec)

k ≤ nke−kn1/5 ≤ e−kn1/6

since n1/5 − log n ≥ n1/6 for sufficiently large n. Now let k = n7/8, so that the probability that
this happens is at most e−n

25/24
. This is enough to beat the union bound over all 22n choices of

X ⊆ A, Y ⊆ B. In particular, we find that for every such pair, |N(X,Y )| ≥ n− k = n− o(n).

Lemma 4.3. Let H be a bipartite random graph on parts A,B with |A| = |B| = n, where each edge
appears with probability p = n−3/4. The following holds w.h.p. as n→∞. For all non-empty W ⊆ B
with |W | ≤ n/12, we have that |NA(W )| > 6|W |.

10Much more precise bounds are known on the number of partitions of [n], also known as the Bell numbers. The
simple upper bound of nn follows by noting that every function [n] → [n] yields a partition of the domain.
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Proof. Summing over all choices for w = |W |, the probability that all edges from W go to another
set of size at most 6w is at most

n/12∑
w=1

(
n

w

)(
n

6w

)
(1− p)w(n−6w) ≤

n/12∑
w=1

n7we−pwn/2 =

n/12∑
w=1

exp

(
w

(
7 log n− 1

2
n1/4

))
= o(1).

Lemma 4.4. Let H be a tripartite random graph on parts A,B,C with |A| = |B| = |C| = n, where
each edge appears with probability p = n−3/4. Then w.h.p. there are at most n4/5 triangles, and every
vertex lies in at most four triangles.

Proof. The expected number of triangles in H is p3n3 = n3/4, so the first result follows by Markov’s
inequality.

For the second, first note that by the Chernoff bound, w.h.p. every vertex has degree at most
2pn = 2n1/4. We now condition on this event. There is a bijection between triangles containing a
vertex v and edges inside N(v), so it suffices to prove that w.h.p. N(v) spans at most four edges.
For fixed v, the probability that e(N(v)) ≥ 5 is at most((|N(v)|

2

)
5

)
p5 ≤

(
2n1/2

5

)
p5 ≤ 32(n1/2p)5 = 32n−5/4.

By the union bound, the probability that this happens for any vertex v is at most O(n−1/4) =
o(1).

Lemma 4.5. Let H be a bipartite random graph on parts A,B with |A| = |B| = n, where each edge
appears with probability p = n−3/4. The following holds w.h.p. as n → ∞. For all X ⊆ A, Y ⊆ B
with |X|, |Y | ≥ n/100, we have that e(X,Y ) ≥ n.

Proof. The expected number of edges between X and Y is p|X||Y | ≥ pn2/104 ≥ 2n for sufficiently
large n. Therefore, by the Chernoff bound, the probability that e(X,Y ) < n is at most e−pn

2/105 =

e−Ω(n5/4). This is small enough to union-bound over all ≤ 22n choices for X,Y .

We are finally ready to prove Proposition 3.11.

Proof of Proposition 3.11. We sample a random tripartite graphH0 on vertex setA∪B∪C, where
each edge appears with probability p = n−3/4. With high probability, the outcomes of Lemmas 4.1
to 4.5 hold. We now delete a single edge from every triangle in H0. In so doing, we delete at most
n4/5 edges, and for any vertex, we delete at most four of its incident edges, both by Lemma 4.4. Let
H be the resulting graph. We claim that H satisfies all the desired properties.

Certainly, H is triangle-free, proving Proposition 3.11(iv). For Proposition 3.11(iii), note that
every vertex in Z lost at most four incident edges when passing from H0 to H, so |NA(Z)| decreased
by at most 4|Z| when passing from H0 to H. As Lemma 4.3 gives that |NA(Z)| > 6|Z| in H0, we get
Proposition 3.11(iii). For Proposition 3.11(ii), recall that we delete at most n4/5 edges when passing
from H0 to H, so for any fixed sets X,Y , the value of |N(X,Y )| decreases by at most n4/5 when
passing from H0 to H. As |N(X,Y )| ≥ n − o(n) in H0 by Lemma 4.2, we get Proposition 3.11(ii).
Finally, for Proposition 3.11(i), note that if F has at least half the edges of H[A∪B], then it has at
least one-third the edges of H0[A ∪B], so the result follows immediately from Lemma 4.1.

We now note that for all subsets X ⊆ A, Y ⊆ B of order at least n/100, there is at least one edge
between X and Y . Indeed, Lemma 4.5 guarantees at least n edges in H0 between X and Y , and at
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most n4/5 of these are deleted when passing to H0, so at least one remains. Similarly, for any Z ⊆ C
of order at least n/100, there is at least one edge between X and Z and at least one edge between
Y and Z.

It remains to prove Proposition 3.11(v). So suppose that there is a proper 3-coloring of H,
namely a partition into independent sets D,E, F . We wish to prove that up to permuting the colors,
A = D,B = E,C = F . We first claim that at most one of the numbers |D ∩ A|, |D ∩ B|, |D ∩ C| is
at least n/100. Indeed, suppose without loss of generality that |D ∩ A|, |D ∩ B| ≥ n/100. Then by
the observation in the previous paragraph, there is an edge between D∩A and D∩B, contradicting
that D is an independent set.

Using this claim, we see that, potentially after permuting the colors, we have that |D ∩ A|, |E ∩
B|, |F ∩C| ≥ 98

100n. We now claim that in fact D = A,E = B,F = C. Indeed, suppose this is not the
case, and assume without loss of generality that |C \F | ≥ |A\D|, |B \E|. Without loss of generality,
at least half the vertices in C \F are colored D. Let Z = (C \F )∩D. Note that |Z| ≤ |C \F | ≤ n/50,
so by Proposition 3.11(iii), we have that |NA(Z)| > 2|Z| ≥ |C \ F | ≥ |A \ D|, as we assumed that
|Z| ≥ 1

2 |C \ F |. Since |NA(Z)| > |A \ D|, there must be at least one edge between Z and A ∩ D.
But every vertex in Z and in A ∩D is colored D, contradicting that D is an independent set. This
contradiction concludes the proof of Proposition 3.11(v).

5 Concluding remarks

A fundamental question which remains open is Problem 1.9: does there exist a t-chromatic Kt-
abundant graph for any t ≥ 4? We are inclined to believe that this is not the case, and every
t-chromatic graph is non-Kt-abundant when t ≥ 4. As mentioned in the introduction, the first open
case is the Brinkmann graph; it would be very interesting to prove or disprove that this graph is
K4-abundant.

Another interesting question is whether one can prove Theorem 1.6 unconditionally, i.e. without
relying on Conjecture 1.5. It is known [19, Theorem 2.3] that Conjecture 1.5 holds in case E has
exactly one negative coefficient, as the Behrend construction can be used to find large sets with no
non-trivial solutions to such equations; such equations are called convex. Even simple cases beyond
this are open; for example, if E is the equation x+ 3y = 2z + 2w, then the best known lower bound
on rE(m) is Ω(

√
m).

The sets of equations SA,B,C(G) that we obtain in the proof of Theorem 1.6 are very complicated,
and they involve many coefficients of both signs. However, in the proof of Lemma 3.2, we have
a great deal of freedom in how we construct a single equation from our family of equations. It is
conceivable that one could combine SA,B,C(G) into a single convex equation. If this were possible,
it would yield a proof of Theorem 1.6 without the assumption that Conjecture 1.5 holds.

However, computer simulation suggests that this may not work. Indeed, we wrote a computer
program to sample a random tripartite graph and delete one edge from every triangle. Testing
whether the set of equations arising from the cycles linearly spans a convex equation can be done
efficiently, as this can be described as a linear programming problem. Even when testing fairly large
random graphs (with hundreds of vertices and thousands of edges), we were not able to find one
where the equations arising from cycles span a convex equation.
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