Default Logic
Autoepistemic Logic

Non-classical logics and application seminar, winter 2008

Mintz Yuval
Birds Fly…

As before, we are troubled with formalization of Non-absolute sentences.

Classical logic deals with absolutes – can’t capture the essence of “most” or “usually”.

We therefore turn to non-monotonic reasoning.

2 distinct directions for formalization of such sentences will be given – Default logic and Autoepistemic logic.
Introduction – Default logic

- “Birds fly, and tweety is a bird”
- when can we assume tweety flies?
- given no evidence to the contrary, we should believe tweety flies
- We’ll split our theory to certain and uncertain things, and deal differently with each.
Default Logic Introduction - continued

- Similarity exists to the closed-world assumption—both are mechanisms to add facts.
- But not too similar:
 - we will be adding positive literals as well.
 - “Tweety flies” is an example of such.
- we’ll create rules that will allow us to extend our theory.
- In this presentation - first order default logic.
Introduction – Autoepistemic logic

- Why should we split our theory?
- We would like to be able to reason about every part of our theory.
- The Contraptive Example:
 - chilly is a non-flying animal, and usually birds fly. (birds are animals, although it's not required information).
 - we would like to be able to infer that chilly is probably not a bird.
Autoepistemic Introduction – continued

- We’ll use modal epistemic operators of Belief to formalize all of our sentences.
- Our story “tweety is a bird” and “if tweety is a bird and we don’t believe it can’t fly, then it flies” will both be valid sentences in our theory.
- Since we’ll be using epistemic logic to talk about our own set of beliefs, it will be called Autoepistemic.
Default Theory

- A default theory is a pair $<D, F>$, where:
 - F is a set of closed formulae, called ‘Facts’.
 - D is a set of default rules.
- F consists of All facts that are known in the classical sense (absolute).
- D will contain the mechanism by which we’ll extend our theory.
Default Rules

- Rules that take the following form:
 \[\alpha(x) : \beta_1(x), \beta_2(x), \ldots, \beta_m(x) \]
 \[\frac{\beta_1(x), \beta_2(x), \ldots, \beta_m(x)}{w(x)} \]

- \(\alpha(x) \), \(\beta_i(x) \) and \(w(x) \) are sentences whose free variables are of \(x \):
 - \(\alpha(x) \) is the **precondition** (or prerequisite).
 - \(\beta_i(x) \) are **justifications**.
 - \(w(x) \) is the consequent (or **conclusion**).

- Can also be written as \(<\alpha(x) : \beta(x) / w(x)>\) (we’ll use this form of writing)
Default Rules, continued

- We would say that the conclusion is achieved when
 - the precondition is inferred from the theory.
 - all the justifications are consistent with our theory.

- Since the theorem we would obtain would be a first order logic, it would be sound and complete.

- Therefore, we can use the alternative semantic notion. (instead of syntactic).
An instance of a default rule is obtained by uniformly substituting ground terms for the free variables in the default.

Example: consider our usual “Tweety is a bird, and birds fly” theory.

Our default rule would probably be –

\[\text{<Bird(x):Fly(x)/Fly(x)>} \]

Therefore, an instance of it would be –

\[\text{<Bird(tweety):Fly(tweety)/Fly(tweety)>} \]
Normal and Semi-normal rules

- a **normal rule** is a rule of the form
 - $< \alpha(x) : \beta(x) / \beta(x) >$
 - a special case – when there’s no precondition, we get a rule of the form $< : \beta(x) / \beta(x) >$

- a **semi-normal rule** is a rule of the form
 - $< \alpha(x) : \beta(x) \land w(x) / w(x) >$
Default Extension – definition

- Given a default theory $T = \langle F, D \rangle$, we would say that a set of sentences ε is an extension to the theory if and only if for each sentence π, $\pi \not\in \varepsilon$ if and only if $F \not\in \varepsilon$, where
 $$\downarrow = \{ \varepsilon \mid <\varepsilon : \varnothing / \varepsilon> \not\in D, \varepsilon \not\in \varepsilon, \not\in \varepsilon \}$$

- It’s clear that $F \not\in \varepsilon$, since for sentence $\pi \not\in F$, clearly $F \not\in \pi$
Consider the following default theory, in which:

- \(F = \{ \text{Bird(tweety), Bird(chilly), }\neg\text{Flies(chilly)} \} \)
- \(D = \{ <\text{bird(x): flies(x) / flies(x)} > \} \)
- \(F \oplus \{ \text{flies(tweety)} \} \) is a possible extension.

Our extension could never include \(\text{flies(chilly)} \):

- It requires an instance of
 \(<\text{Bird(chilly):flies(chilly)/flies(chilly)}> \)
- But \(\neg\text{Flies(chilly)} \) is in our facts, so we could never consistently fulfill its justification.
We wish our extension to be consistent.

If F is consistent, and all our default rules are either normal or semi-normal, than every extension we can create for the theory will be consistent.

- Consider a default rule $<:x/y>$

Of course, if F is inconsistent our extension will be inconsistent.
If \(g \) is a closed formula, \(E \) is an \textbf{Explanation} of \(g \) from \(\langle D,F \rangle \) if \(E \) is the set of consequents of some \(D' \), a set of instances of elements of \(D \) such that:

- \(E \models F \models g \)
- \(E \models F \) entails the precondition of \(D' \).
- All justification of \(D' \) are consistent with some extension of \(\langle D,F \rangle \) that contain \(E \).
How explanation helps

- Gives us “the glue” that connects expansions and first-order logic proofs.
- A formal minimal notion to infer a sentence from our default theory.
- We don’t require an entire expansion for a proof. Sometimes proving that a sentence exists in some extension (More on this later) is easier than finding the extension.
multiple extensions?

- consider the following default theory:
 - F = \{Republican(dick), Quaker(dick)\}
 - D = \{ <Republican(x):¬pacifist(x)/¬pacifist(x)>,
 <Quaker(x):pacifist(x)/pacifist(x)> \}

- How can we extend this theory?
Multiple extensions

- pacifist(dick) will be in a valid expansion.
 - It can be explained by \{\text{pacifist}(dick)\}, which is the consequent of
 \textless\text{quacker}(dick):\text{pacifist}(dick)/\text{pacifist}(dick)\textgreater

- But \neg\text{pacifist}(dick) is also in a valid expansion!
 - It can be explained by \{\neg\text{pacifist}(dick)\}, which is the consequent of
 \textless\text{republican}(dick):\neg\text{pacifist}(dick)/\neg\text{pacifist}(dick)\textgreater
The skeptical reasoner vs. the brave (credulous) reasoner

- We sometimes reach a situation in which several default rules will allow us to reach several different extensions.

- 2 immediate attitudes are possible:
 - The **skeptical** reasoner will believe only in sentences common to all extensions.
 - The **brave** reasoner will choose one extension of the default theory as a basis set of sentences.
A need for a slightly different definition

- Our definition for an extension was not very constructive.
- Consider the following basis:
 - “those who eat onion soup eat onions”
 - “those who eat onion soup love eating”
 - “those who love eating brush their teeth”
 - “those who brush their teeth care for their personal hygiene”
 - “those who care their personal hygiene don’t eat onions”
 - “Yuval eats onion soup”
- We can have 2 possible extensions – in one we can explain that Yuval eats onions, and in the other the opposite.
- But do we truly consider both as likely?
Default extension – iterative definition

- Given a default theory \(<D,F> \), we’ll consider a sequence of formulae sets \(s_0, s_1, \ldots, S = \bigcap s_i, s_0 = F \) and:
 - \(S_{i+1} = s_i \bigcap \{ w(c) \mid <\alpha(c) : \beta(c) / w(c) > \text{ is an instance of a default from } D \)
 - \(\alpha(c) \) follows from \(s_i \)
 - \(\beta(c) \) is consistent with \(S \) for all \(\beta_i(c) \) (\(\beta(c) = \beta_1(c), \ldots, \beta_n(c) \))
- the set of consequents in \(S \) will be called an extension.
Back to our example

- Notice we require justification to be consistent with S (as opposed to Si)
 - It might otherwise have prevented multiple extensions.
 - More problematic – it could have caused inconsistency.

- If we’ll look back at the example, we now may have the basis to claim one extension as more likely to happen.
The art of creating default rules

- Big Issue with default logic – extensions are subject to the exact way we formalized our rules.
- Since we can’t reason about default rules, we sometimes can’t prove things we would expect to be able to.
- For example “Birds fly and fred doesn’t fly” – it’s likely that fred is not a bird.
- if we’ll formalize this as we did before (all the regular tweety examples)– we wouldn’t be able to prove it.
Normal Rules with no precondition

- However, we could ‘manipulate’ things:
- Consider \(<D,F> \) where
 - \(D=\{\langle :\text{BirdFly}(x) / \text{BirdFly}(x) \rangle \} \)
 - \(F=\{\text{for each } x, \text{Birdfly}(x) \land \text{bird}(x) \rightarrow \text{flies}(x), \neg \text{flies}(\text{fred}) \} \)
- We can explain \(\neg \text{bird}(\text{fred}) \) using \(F \sqsubseteq \{\text{birdsfly}(\text{fred})\} \).
- However, this is not very attainable solution (in general).
Semi-normal rules, problems with disjunction

- If we thought Fred had a problem, what about situations in which we can prove things we didn’t intend to?
- Like we’ve seen in regard to cwa, when our facts contain disjunctions, we might find ourselves with problematic conclusions.
- Using normal rules will save us the problem (or most of it), since it adds all of the justifications as conclusions.
- But what about semi-normal rules?
Semi-normal rules, problems with disjunction

- Consider \(<F,D>\) where
 - \(D=\{<\text{bird}(x):\text{flies}(x) \lor \neg \text{baby}(x)/\text{flies}(x)>\}\)
 - \(F = \{\text{bird}(\text{pete}), \text{bird}(\text{mary}), \text{baby}(\text{pete}) \lor \text{baby}(\text{mary})\}\)

- We can explain \(\text{flies}(\text{pete}) \lor \text{flies}(\text{mary})\) (although we know for certain one of them at least is a baby).

- Notice this is not a problem in consistency, as \(F\) doesn’t contain any explicit rule that connects babies and flight ability.

- What it does show is that our formalization is lacking- we never intended for this to be valid.
Semi-normal rules, more problems

- Consider the following theory:
 - \[D = \{ <\text{bird}(x):\text{flies}(x) \lor \neg \text{baby}(x)/ \text{flies}(x)>, \]
 \[<\text{bird}(x):\text{cries}(x) \lor \text{baby}(x)/ \text{cries}(x)> \} \]
 - \[F = \{ \text{bird(tweety)} \} \]
- This default theory will allow us to explain \(\text{flies(tweety)} \lor \text{cries(tweety)}. \)
- It’s based on the fact we can consistently add both \(\text{baby}(x) \) and \(\neg \text{baby}(x) \) (separately).
- Again – this is probably not what we’ve intended.
When does an extension exist?

- Consider the following:
 - \(D = \langle a:b \land c/c, \langle c:-b/-b \rangle \rangle, F = \{a\} \)
- This theory has no extensions.
- The only cases where there are no extension is when there exists circularity.
- Circularity - defaults in which the justification of one is inconsistent with the consequent of the other, which must be subsequently applied.
- **Ordered** default theories disallow such circularity.
- Ordered semi-normal default theories like this will always have an extension.
A few words about equality

- Default theory can be used with first-order logic with equality as well.
- Our default rules could then include statements of equality or inequality.
- Default rules can be used to derive inequalities:
 - $D=\{<:p(x)/p(x)>\}$, $F=\{\neg p(A)\}$.
 - We can conclude $p(B)$, from which it logically follows that $A \neq B$
A few more words about equality

- **Unique name assumption** –
 - consider the rule $\langle x \neq y / x \neq y \rangle$
 - this is an embodiment of the unique name assumption as a default.
 - In the same manner $\langle \neg x \neg x \rangle$ is in fact an embodiment of cwa.

- **As expected, can be used to imply equality** -
 - $\langle P(x) = P(y) : x = y / x = y \rangle$
A special case, in which:

- F consists of a conjunction of atoms.
- Consequents of defaults are atoms.
- Justifications of defaults are negations of atoms.
- Preconditions are conjunctions of atoms.

our default theory define the same behaviour as the Prolog program, with negation as failure.
Forward and backward chaining

- 2 ways of trying to implement default reasoning and create an extension.

- **Forward chaining** – simply run, choose defaults whose precondition is derived. Rinse and repeat.

- **Backward chaining** – starting from assumed conclusions, we try to determine if formula can be consistently explained via all justifications in instantiations of the default rules.
Unsurprisingly, default logic problems are very hard to implement.

For a default theory for propositional logic, determining if a proposition can be explained by the theory is decidable, but NP-complete.

For first-order logic, it’s not even semi-decidable.

On weakened logics some aspects can be determined in polynomial time.
More about complexity

- Finding an extension for an ordered, disjunction free, unary defaults- can be done in an $O(n^2)$ algorithm.
 - the general version of this problem is NP-complete

- For a Horn default theory, there’s an $O(n)$ algorithm for finding whether a certain literal exists in any extension.
 - the general version of this problem is NP-hard, even for disjunction free unary defaults

- For a Horn default theory, there’s an $O(n^3)$ algorithm for finding whether a certain literal exists in all extensions.
 - the general version of this problem is co-NP-hard
Default logic was non-monotonic due to its being defeasible.

When given information for our theory such as bird(tweety), we’ve found it likely to assume that tweety flies.

We found it likely to assume that its true - but it might have been wrong.

If we’ll look solely on our facts, we can find a model that satisfies all of them, yet doesn’t satisfy our conclusion.
...To Autoepistemic logic

- In Autoepistemic logic, we will reason about our set of beliefs.
- “all birds that can be consistently asserted to be capable of flight are capable of flight”.
- Earlier, we’ve formalized this with default rules.
- But if we are capable of reasoning about our beliefs, we’ll be able to formalize this rule completely within our theory.
Autoepistemic logic is non-monotonic due to the fact its indexical.

Consider the last statement about birds.

It means that the only birds who can’t fly are those that were explicitly mentioned as not capable.

Therefore, given tweety is a bird, and we didn’t assert its inability to fly – it MUST fly.

Our proofs deal mainly with propositional logic, since there are issues with quantifying into a modal operator scope.
The consistency Operator

- This will be our dual modal operator.
- We will write it as \mathbf{M}.
- $\mathbf{M}\alpha$ means α can be consistently asserted.
- Informally, the inference we would like to give the consistency operator is – “$\mathbf{M}\alpha$ is derivable if α isn’t derivable”.
- Remember the “Unless” operator?
The Belief Operator

- Our main modal operator of belief.
- We’ll write it as \mathbf{B}.
 - Also referred to as \mathbf{L} in the literature.
- To say $\mathbf{B}\alpha$ will mean (informally) that we believe in α.
- The dualism between consistency and belief –
 - $\mathbf{B} \equiv \neg \mathbf{M}\neg$
- Since the fundamental notion of this logic is to formalize beliefs, it was chosen as the main operator.
A simple example

- Consider the following theory:
 - Bird(tweety)
 - Bird(twetty) \land \neg B(\neg \text{can-fly(tweety)}) \rightarrow \text{can-fly(tweety)}

- We would like to reach a formalization in which every model that satisfies this theory will satisfy the conclusion \text{can-fly(tweety)}.

- If we would add \neg \text{can-fly(tweety)}, we would have a different theory – in which we will never expect to reach this conclusion.
Autoepistemic theory

- A simple propositional logic theory, with the addition of the Belief operator in its formulae.
- Represents the total belief of a rational agent reflecting on his beliefs.
- To determine an Autoepistemic theory, we need to determine 2 things:
 - Which propositional constants are true in the real world. These constants Contain no B operators (objective formulae)
 - Which formulae the agent (we) believe. $B\alpha$ is true only if α is in the agent set of beliefs.
Propositional Interpretation

- first stage in defining a model for an Autoepistemic theory T.
- We assign truth values to all formulae of the language of T.
- This assignment should be consistent with truth-recursion of propositional logic.
- We assign *arbitrary* truth values to all constants and formulae of the form $\mathbf{B}\alpha$.
Propositional model

- A **propositional model** of an Autoepistemic theory T is a propositional interpretation of T in which all formulae of T are true.

- Propositional model inherit propositional logic soundness and completeness theorem.

- Therefore – a formula P is true in all propositional models of an Autoepistemic theory T iff it can be derived from T using usual rules for propositional logic.
An **Autoepistemic Interpretation** of an Autoepistemic theory T is a propositional Interpretation of T in which $\mathbf{B} \alpha$ is true iff α is true.

An **Autoepistemic Model** of an Autoepistemic theory T is an Autoepistemic interpretation of T in which all formulae of T are true.
Definition via previous example

Consider our previous example:
- Bird(tweety)
- Bird(twetty) \land \neg B(\neg \text{can-fly(tweety)}) \rightarrow \text{can-fly(tweety)}

<table>
<thead>
<tr>
<th></th>
<th>Bird(tweety)</th>
<th>Can-fly(tweety)</th>
<th>B(\neg \text{can-fly(tweety)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propositional</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoepistemic</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>interpretation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoepistemic</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The problem of inference in non-monotonic logic

- We now have a formal notation of semantics for Autoepistemic theory.
- But what about syntactic notation?
- Monotonic logic’s inference rules are monotonic themselves.
- That allows us to try and infer in an iterative process.
- In non-monotonic logic, that is not so.
Competence Model

- We won’t be actually giving a syntactic notation.
- Instead, we’ll describe a “competence model” – Autoepistemic theory that capture every belief we can conclude.
- Those theories will be sound and complete.
Soundness

We would say an Autoepistemic theory T is sound with respect to an initial set of premises A iff:

- Every Autoepistemic interpretation of T which is a propositional model of A is a model of T.

Intuitively – if all our premises are true, then our theory is true as well.
We would call an Autoepistemic theory T semantically complete, iff:
1. T contains every formula that is true in every autoepistemic model of T.
2. Intuitively, if a formula is true under every autoepistemic model of an agent, it means it must be true whenever all the agent’s beliefs are true.
3. Since the Agent is rational – he should be able to infer that.
Stable Autoepistemic Theory

- Given an autoepistemic theory T, we’ll require 3 things from it for us to call it ‘stable’:
 - if P_1, \ldots, P_n are in T, and $P_1, \ldots, P_n \models Q$, then Q is in T (ordinary tautological consequence).
 - Positive Introspection – if $\alpha \in T$ then $B\alpha \in T$.
 - Negative Introspection – if $\alpha \not\in T$ then $B\alpha \not\in T$.
- Stable “in the sense that no further conclusions could be drawn by an ideal rational agent in such a state”
Stable Autoepistemic Theory

- If we have a stable autoepistemic theory which is also consistent, then it will satisfy 2 more conditions:
 - if $B\alpha \land T$ then $\alpha \land T$.
 - if $B\alpha \land T$ then $\alpha \land T$.

- The stable autoepistemic theories will assure us that our theory is semantically complete.
Grounded Autoepistemic theories

- We will say that an autoepistemic theory T is grounded in a set of premises A if:
 - Every formula of T is included in the tautological consequence of $A \Box B_1 \boxdot B_2$.
 - $B_1 = \{ B\alpha \mid \alpha \in T \}$
 - $B_2 = \{ \neg B\alpha \mid \alpha \in T \}$
- T will be sound with regard to a set of premises A iff T is grounded in A.

Expansions

- We’ve seen that when given a set of premises A, a rational agent could be expected to believe the a stable autoepistemic theory grounded in A.
- We call this “stable expansions of A”
- There can cases in which more than 1 stable expansion possible:
 - Consider $A = \{ \neg B\alpha \rightarrow \beta, \neg B\beta \rightarrow \alpha \}$
There can be cases where no expansions is possible:
- Consider $A = \{ \neg B\alpha \rightarrow \alpha \}$

Sometimes, we can get theories to which are definition is lacking.
- Consider $A = \{ B\alpha \rightarrow \alpha \}$
- We have 2 possible expansions, but why should we believe in α?
Enumerating stable expansions

Given as a constructive way to try and find a model for a given Autoepistemic theory T. 4 simple steps:

1. Replace every $B\alpha_i$ with either True or False.
2. We now have a propositional theory. We’ll simplify it and call it T'. If it isn't consistent, we have a bad assignment.
3. For each α_i if $B\alpha_i$ that was given the value True, confirm that T' satisfies α_i. For each that was given value false, confirm that T' doesn’t satisfy α_i.
4. If 3 was true for all i’s, then T'’s entailments form the objective part of a stable expansions (And the non objective part can be added appropriately).
Enumerating - problems

- quite a problematic solution.
- exponential in the number of expressions containing belief operators
 - we need to check every possible combination of assignments of true and false to them.
- And that’s in the case of propositional logic, in which checking satisfaction can be done in reasonable time.
Enumerating - example

- Consider the propositional case of the bird problem.

- Our theory T contains the following:

 \[T = \{ \text{Bird(Tweety), Bird(chilly), } \neg \text{flies(chilly)}, \]
 \[\text{bird(tweety) } \land \neg \mathbf{B}(\neg \text{flies(tweety)}) \rightarrow \text{flies(tweety)}, \]
 \[\text{bird(chilly) } \land \neg \mathbf{B}(\neg \text{flies(chilly)}) \rightarrow \text{flies(chilly)} \} \]

- We have 4 assignments to check, since
 \[\mathbf{B}(\neg \text{flies(chilly)}) \text{ and } \mathbf{B}(\neg \text{flies(tweety)}) \text{ can receive truth assignments independently.} \]
Enumerating – example, continue

- \(B(\neg \text{flies(chilly)}) \) true \(B(\neg \text{flies(tweety)}) \) true.
 - After simplification, our theory \(T' = T \). therefore, \(\neg \text{flies(tweety)} \) is not entailed from \(T' \), and this assignment is wrong.

- \(B(\neg \text{flies(chilly)}) \) false \(B(\neg \text{flies(tweety)}) \) true.
 - After simplification, our theory \(T' = T \setminus \{\text{flies(chilly)}\} \) – it’s inconsistent.

- \(B(\neg \text{flies(chilly)}) \) true \(B(\neg \text{flies(tweety)}) \) false.
 - After simplification, \(T' = T \setminus \{\text{flies(tweety)}\} \). This is a valid assignment, as \(\neg \text{flies(chilly)} \) is entailed by it, and \(\neg \text{flies(tweety)} \) is not. Therefore, \(T' \) can be a basis for stable Autoepistemic expansion.
Correlation between Autoepistemic and Default logic

- we look at a form of ‘strongly grounded’ Autoepistemic logic, in which all formulae are of form:
 - \(B\alpha \bigwedge \neg B\beta_1 \bigwedge \ldots \bigwedge \neg B\beta_m \rightarrow w \)

- Formula like this can be interpreted as the default rule \(<\alpha:\beta_1,\ldots, \beta_m/w>\)
Conclusion

- As we’ve just seen Autoepistemic logic is more “expressive” than default logic.
- As such, it is also more abstract.
- Both have many variants – and still a question remains on how to correctly model a given theory, as all ‘fail’ on specific pathological cases.