
Default Logic
Autoepistemic Logic

Non-classical logics and
application seminar, winter 2008

Mintz Yuval

Introduction and Motivation
Birds Fly…
As before, we are troubled with formalization of
Non-absolute sentences.
Classical logic deals with absolutes – can’t capture
the essence of “most” or “usually”.
We therefore turn to non-monotonic reasoning.
2 distinct directions for formalization of such
sentences will be given – Default logic and
Autoepistemic logic.

Introduction – Default logic
“Birds fly, and tweety is a bird”
when can we assume tweety flies?
given no evidence to the contrary, we
should believe tweety flies
We’ll split our theory to certain and
uncertain things, and deal differently with
each.

Default Logic Introduction -
continued

Similarity exists to the closed-world assumption-
both are mechanisms to add facts.
But not too similar:

we will be adding positive literals as well.
“Tweety flies” is an example of such.

we’ll create rules that will allow us to extend our
theory.
In this presentation - first order default logic.

Introduction– Autoepistemic logic

Why should we split our theory?
We would like to be able to reason about
every part of our theory.
The Contraptive Example:

chilly is a non-flying animal, and usually birds
fly. (birds are animals, although its not required
information).
we would like to be able to infer that chilly is
probably not a bird.

Autoepistemic Introduction –
continued

We’ll use modal epistemic operators of
Belief to formalize all of our sentences.
Our story “tweety is a bird” and “if tweety
is a bird and we don’t believe it can’t fly,
then it flies” will both be valid sentences in
our theory.
Since we’ll be using epistemic logic to talk
about our own set of beliefs, it will be
called Autoepistemic.

Default Theory

A default theory is a pair <D, F>, where:
F is a set of closed formulae, called ‘Facts’.
D is a set of default rules.

F consists of All facts that are known in the
classical sense (absolute).
D will contain the mechanism by which we’ll
extend our theory.

Default Rules

Rules that take the following form:
α(x) : β1(x), β2(x), … ,βm(x)

w(x)
α(x), βi(x) and w(x) are sentences whose free
variables are of x:
α(x) is the precondition (or prerequisite).
βi(x) are justifications.
w(x) is the consquent (or conclusion).

Can also be written as <α(x) : β(x) / w(x)> (we’ll
use this form of writing)

Default Rules, continued
We would say that the conclusion is
achieved when

the precondition is inferred from the theory.
all the justifications are consistent with our

theory.
Since the theorem we would obtain would
be a first order logic, it would be sound and
complete.
Therefore, we can use the alternative
semantic notion. (instead of syntactic).

Instance of a default rule
An instance of a default rule is obtained by
uniformly substituting ground terms for the
free variables in the default.
Example: consider our usual “Tweety is a
bird, and birds fly” theory.
our default rule would probably be –

<Bird(x):Fly(x)/Fly(x)>
Therefore, an instance of it would be –

<Bird(tweety):Fly(tweety)/Fly(tweety)>

Normal and Semi-normal rules

a normal rule is a rule of the form
< α(x) : β(x) / β(x) >
a special case – when there’s no precondition.
we get a rule of the form < : β(x) / β(x) >

a semi-normal rule is a rule of the form
< α(x) : β(x) w(x)/ w(x)>

Default Extension – definition
Given a default theory T = <F,D>, we
would say that a set of sentences ε is an
extension to the theory if and only if For
each sentence π, π ε if and only if F π,
where

= { | < : / > D , ε, ¬ ε}
It’s clear that F ε, since for sentence
π F, clearly F π

A simple example – back to birds
Consider the following default theory, in which:

F = {Bird(tweety), Bird(chilly), ¬Flies(chilly) }
D = {<bird(x): flies(x) / flies(x) >}

F {flies(tweety)} is a possible extension.
Our extension could never include flies(chilly):

It requires an instance of
<Bird(chilly):flies(chilly)/flies(chilly)>
But ¬Flies(chilly) is in our facts, so we could never
consistenctly fulfill its justification.

Default extension- regarding
consistency

We wish our extension to be consistent.
If F is consistent, and all our default rules
are either normal or semi-normal, than
every extension we can create for the theory
will be consistent.

Consider a default rule <:x/y>
Of course, if F is inconsistent our extension
will be inconsistent.

Explanation definition

If g is a closed formula, E is an
Explanation of g from <D,F> if E is the set
of consequents of some D’, a set of
instances of elements of D such that:

E F g
E F entails the precondition of D’.

All justification of D’ are consistent with some
extension of <D,F> that contain E.

How explanation helps

Gives us “the glue” that connects
expansions and first-order logic proofs.
A formal minimal notion to infer a sentence
from our default theory.
we don’t require an entire expansion for a
proof. sometimes proving that a sentence
exists in some extesion (More on this later)
is easier than finding the extesion.

multiple extensions?

consider the following default theory:
F = {Republican(dick), Quaker(dick)}
D = { <Republican(x):¬pacifist(x)/ ¬pacifist(x) >,

<Quaker(x): pacifist(x)/ pacifist(x)> }
How can we extend this theory?

Multiple extensions

pacifist(dick) will be in a valid expansion.
It can be explained by {pacifist(dick)}, which is
the consequent of
<quacker(dick):pacifist(dick)/pacifist(dick)>

But ¬pacifist(dick) is also in a valid expansion!
It can be exaplined by {¬ pacifist(dick)} , which
is the consequent of
<republican(dick):¬pacifist(dick)/¬pacifist(dick)>

The skeptical reasoner vs. the
brave (credulous) reasoner

we sometimes reach a situation in which
several default rules will allow us to reach
several different extensions.
2 immediate attitudes are possible:

The skeptical reasoner will believe only in
sentences common to all extensions.
The brave reasoner will choose one extension
of the default theory as a basis set of setences.

A need for a slightly different
definition

Our definition for an extension was not very constructive.
Consider the following basis:

“those who eat onion soup eat onions”
“those who eat onion soup love eating”
“those who love eating brush their teeth”
“those who brush their teeth care for their personal hygiene”
“those who care their personal hygiene don’t eat onions”
“Yuval eats onion soup”

We can have 2 possible extensions – in one we can explain
that yuval eats onions, and in the other the opposite.
But do we truly consider both as likely?

Default extension – iterative
definition

Given a default theory <D,F>, we’ll consider a
sequence of formulae sets s0, s1…, S = si, s0 = F
and:

Si+1 = si {w(c) | <α(c) : β(c) / w(c) > is an instance of
a default from D
α(c) follows from si

β(c) is consistent with S for all βi(c) (β(c) = β1(c) ,…,
βn(c))

the set of consequents in S will be called an
extension.

Back to our example

Notice we require justification to be
consistent with S (as opposed to Si)

It might otherwise have prevented multiple
extensions.
More problematic – it could have caused
inconsistency.

If we’ll look back at the example, we now
may have the basis to claim one extension
as more likely to happen.

The art of creating default
rules

Big Issue with default logic – extensions are
subject to the exact way we formalized our rules.
Since we can’t reason about default rules, we
sometimes can’t prove things we would expect
to be able to.
For example “Birds fly and fred doesn’t fly” –
it’s likely that fred is not a bird.
if we’ll formalize this as we did before (all the
regualr tweety examples)– we wouldn’t be able
to prove it.

Normal Rules with no
precondition

However, we could ‘manipulate’ things:
Consider <D,F> where

D={<:BirdFly(x) / BirdFly(x)>}
F={for each x,Birdfly(x) bird(x)→flies(x),
¬flies(fred) }

We can explain ¬bird(fred) using
F {birdsfly(fred)}.

However, this is not very attainable solution (in
general).

Semi-normal rules, problems
with disjunction

If we thought Fred had a problem, what about
situations in which we can prove things we didn’t
intend to?
Like we’ve seen in regard to cwa, when our facts
contain disjunctions, we might find ourselves with
problematic conclusions.
Using normal rules will save us the problem (or
most of it), since it adds all of the justifications as
conclusions.
But what about semi-normal rules?

Semi-normal rules, problems
with disjunction

Consider <F,D> where
D={<bird(x):flies(x) ¬baby(x)/flies(x)>}
F ={bird(pete), bird(mary), baby(pete) baby(mary) }

We can explain flies(pete) flies(mary) (although we
know for certain one of them at least is a baby).
Notice this is not a problem in consistency, as F doesn’t
contain any explicit rule that connects babies and flight
ability.
What it does show is that our formalization is lacking- we
never intended for this to be valid.

Semi-normal rules, more
problems

Consider the following theory:
D = {<bird(x):flies(x) ¬baby(x)/ flies(x)>,

<bird(x):cries(x) baby(x)/ cries(x)>}
F = {bird(tweety)}

This default theory will allow us to explain
flies(tweety) cries(tweety).
It’s based on the fact we can consistently add both
baby(x) and ¬ baby(x) (separately).
Again – this is probably not what we’ve intended.

When does an extension
exist?

Consider the following:
D = {<a:b c/c>, <c:¬b/¬b> }, F = {a}

This theory has no extensions.
the only cases where there are no extension is when there
exists circularity.
Circularity - defaults in which the justification of one is
inconsistent with the consequent of the other, which must
be subsequently applied.
Ordered default theories disallow such circularity.
Ordered semi-normal default theories like this will always
have an extension.

A few words about equality

Default theory can be used with first-order logic
with equality as well.
Our default rules could then include statements of
equality or inequality.
Default rules can be used to derive inequalities:

D={<:p(x)/p(x)>}, F={¬p(A)}.
We can conclude p(B), from which it logically follows
that A != B

A few more words about
equality

Unique name assumption –
consider the rule <:x != y/ x != y>
this is an embodiment of the unique name
assumption as a default.
In the same manner < :¬x/¬x> is in fact an
embodiment of cwa.

As expected, can be used to imply equality -
<P(x) = P(y) : x = y / x = y >

Stable model semantics
α1 … αn : ¬αn+1, … , ¬α m

α0

A special case, in which:
F consists of a conjunction of atoms.
Consequents of defaults are atoms.
Justifications of defaults are negations of atoms.
Preconditions are conjunctions of atoms.

our default theory define the same behaviour
as the Prolog program, with negation as
failure.

Forward and backward
chaining

2 ways of trying to implement default
reasoning and create an extension.
Forward chaining – simply run, choose
defaults whose precondition is derived. Rinse
and repeat.
Backward chaining – starting from assumed
conclusions, we try to determine if formula can
be consistently explained via all justifications
in instantiations of the default rules.

Complexity

Unsurprisingly, default logic problems are very
hard to implement.
For a default theory for propositional logic,
determining if a proposition can be explained
by the theory is decidable, but NP-complete.
For first-order logic, it’s not even semi-
decidable.
On weakened logics some aspects can be
determined in polynomial time.

More about complexity
Finding an extension for an ordered, disjunction free,
unary defaults- can be done in an O(n^2) algorithm.

the general version of this problem is NP-complete
For a Horn default theory, there’s an O(n) algorithm
for finding whether a certain literal exists in any
extension.

the general version of this problem is NP-hard, even
for disjunction free unary defaults

For a Horn default theory, there’s an O(n^3) algorithm
for finding whether a certain literal exists in all
extensions.

the general version of this problem is co-NP-hard

From Default logic…
Default logic was non-monotonic due to its
being defeasable.
When given information for our theory such
as bird(tweety), we’ve found it likely to
assume that tweety flies.
We found it likely to assume that its true -
but it might have been wrong.
If we’ll look solely on our facts, we can find
a model that satisfies all of them, yet
doesn’t satisfy our conclusion

…To Autoepistemic logic

In Autoepistemic logic, we will reason
about our set of beliefs.
“all birds that can be consistently asserted to
be capable of flight are capable of flight”.
Earlier, we’ve formalized this with default
rules.
But if we are capable of reasoning about our
beliefs, we’ll be able to formalize this rule
completely within our theory.

Autoepistemic, continued
Autoepistemic logic is non-monotonic due to the
fact its indexical.
Consider the last statement about birds.
It means that the only birds who can’t fly are those
that were explicitly mentioned as not capable.
Therefore, given tweety is a bird, and we didn’t
assert its inability to fly – it MUST fly.
Our proofs deal mainly with propositional logic,
since there are issues with quantifying into a
modal operator scope.

The consistency Operator

This will be our dual modal operator.
We will right it as M.
Mα means α can be consistently asserted.
Informally, the inference we would like to
give the consistency operator is – “Mα is
derivable if α isn’t derivable”.
Remember the “Unless” operator?

The Belief Operator
Our main modal operator of belief.
We’ll write it as B.

Also referred to as L in the literature.
To say Bα will mean (informally) that we believe
in α.
The dualism between consistency and belief –

B == ¬M¬

Since the fundamental notion of this logic is to
formalize beliefs, it was chosen as the main
operator.

A simple example
Consider the following theory:

Bird(tweety)
Bird(twetty) ¬B(¬can-fly(tweety)) → can-fly(tweety)

We would like to reach a formalization in which
every model that satisfies this theory will satisfy
the conclusion can-fly(tweety).
If we would add ¬can-fly(tweety), we would have
a different theory – in which we will never expect
to reach this conclusion.

Autoepistemic theory
A simple propositional logic theory, with the
addition of the Belief operator in its formulae.
Represents the total belief of a rational agent
reflecting on his beliefs.
To determine an Autoepistemic theory, we need to
determine 2 things:

Which propositional constants are true in the real
world. These constants Contain no B operators
(objective formulae)
Which formulae the agent (we) believe. Bα is true only
if α is in the agent set of beliefs.

Propositional Interpretation

first stage in defining a model for an
Autoepistemic theory T.
We assign truth values to all formulae of the
language of T.
This assignment should be consistent with
truth-recursion of propositional logic.
We assign arbitrary truth values to all
constants and formulae of the form Bα.

Propositional model

A propositional model of an Autoepistemic
theory T is a propositional interpretation of T in
which all formulae of T are true.
Propositional model inherit propositional logic
soundness and completeness theorem.
Therefore – a formula P is true in all propositional
models of an Autoepistemic theory T iff it can be
derived from T using usual rules for propositional
logic.

Autoepistemic Interpretation

An Autoepistemic Interpretation of an
Autoepistemic theory T is a propositional
Interpretation of T in which Bα is true iff α
is true.
An Autoepistemic Model of an
Autoepistemic theory T is an Autoepistemic
interpretation of T in which all formulae of
T are true.

Definition via previous
example

Consider our previous example:
Bird(tweety)
Bird(twetty) ¬B(¬can-fly(tweety)) → can-fly(tweety)

Bird(tweety) Can-fly(tweety) B(¬can-fly(tweety))

Propositional
interpretation

F T

F

F

T

F

Propositional
model

T T

Autoepistemic
interpretation

T F

Autoepistemic
model

T T

The problem of inference in
non-monotonic logic

We now have a formal notation of
semantics for Autoepistemic theory.
But what about syntactic notation?
Monotonic logic’s inference rules are
monotonic themselves.
That allows us to try and infer in an iterative
process.
In non-monotonic logic, that is not so.

Competence Model

We won’t be actually giving a syntactic
notation.
Instead, we’ll describe a “competence
model” – Autoepistemic theory that capture
every belief we can conclude.
Those theories will be sound and complete.

Soundness

We would say an Autoepistemic theory T is
sound with respect to an initial set of
premises A iff:

Every Autoepistemic interpretation of T which
is a propositional model of A is a model of T.

Intuitively – if all our premises are true,
then our theory is true as well.

Semantic Completeness

We would call an Autoepistemic theory T
semantically complete, iff:

T contains every formula that is true in every
autoepistemic model of T.

Intuitively, if a formula is true under every
autoepistemic model of an agent, it means it must
be true whenever all the agent’s beliefs are true.
Since the Agent is rational – he should be able to
infer that.

Stable Autoepistemic Theory

Given an autoepistemic theory T, we’ll require 3
things from it for us to call it ‘stable’:

if P1,…,Pn are in T, and P1,…,Pn Q, then Q is in T
(ordinary tautological consequence).
Positive Introspection – if α T then Bα T.
Negative Introspection – if α T then Bα T.

Stable “in the sense that no further conclusions
could be drawn by an ideal rational agent in such a
state”

Stable Autoepistemic Theory

If we have a stable autoepistemic
theory which is also consistent, then it
will satisfy 2 more conditions:

if Bα T then α T.
if Bα T then α T.

The stable autoepistemic theories will
assure us that our theory is
semantically complete

Grounded Autoepistemic
theories

We will say that an autoepistemic theory T
is grounded in a set of premises A if:

Every forumla of T is included in the
tautological consequence of A B1 B2.
B1 = {Bα | α T}
B2 = {¬Bα | α T}

T will be sound with regard to a set of
premises A iff T is grounded in A.

Expansions

We’ve seen that when given a set of
premises A, a rational agent could be
expected to believe the a stable
autoepistemic theory grounded in A.
We call this “stable expansions of A”
There can cases in which more than 1 stable
expansion possible:

Consider A = {¬Bα→β, ¬Bβ→α}

Expanions, continued

There can be cases where no expansions is
possible:

Consider A = {¬Bα→ α }
Sometimes, we can get theories to which
are definition is lacking.

Consider A = {Bα→ α}
We have 2 possible expansions, but why should
we believe in α?

Enumerating stable
expansions

Given as a constructive way to try and find a
model for a given Autoepistemic theory T. 4
simple steps:

1. Replace every Bαi with either True or False.
2. We now have a propositional theory. We’ll simplify it and call it

T’. If it isn't consistent, we have a bad assignment.
3. For each αi if Bαi that was given the value True, confirm that T’

satisfies αi. For each that was given value false, confirm that T’
doesn’t satisfy αi.

4. If 3 was true for all i’s, then T’`s entaliments form the objective
part of a stable expansions (And the non objective part can be
added appropriately).

Enumerating - problems

quite a problematic solution.
exponential in the number of expressions
containing belief operators

we need to check every possible combination of
assignments of true and false to them.

And that’s in the case of propositional logic,
in which checking satisfaction can be done
in reasonable time.

Enumerating - example

Consider the propositional case of the bird
problem.
Our theory T contains the following:

T = {Bird(Tweety), Bird(chilly), ¬flies(chilly),
bird(tweety) ¬B(¬ flies(tweety)) → flies(tweety),
bird(chilly) ¬B(¬ flies(chilly)) → flies(chilly) }

We have 4 assignments to check, since
B(¬flies(chilly)) and B(¬flies(tweety)) can receive
truth assignments independently.

Enumerating – example,
continue

B(¬flies(chilly)) true B(¬flies(tweety)) true.
After simplification, our theory T’ = T. therefore,
¬flies(tweety) is not entailed from T’, and this assignment is
wrong.

B(¬flies(chilly)) false B(¬flies(tweety)) true.
After simplification, our theory T’ = T {flies(chilly)} – it’s
inconsistent.

B(¬flies(chilly)) true B(¬flies(tweety)) false.
After simplifcation, T’ = T {flies(tweety)}. This is a valid
assignment, as ¬flies(chilly) is entailed by it, and
¬flies(tweety) is not. Therefore, T’ can be a basis for stable
Autoepistemic expansion.

Correlation between
Autoepistemic and Default logic

we look at a form of ‘strongly grounded’
Autoepistemic logic, in which all formulae
are of form:

Bα ¬B¬β1 … ¬B¬βm→ w

Formula like this can be interpreted as the
default rule <α:β1,…, βm/w>

Conclusion

As we’ve just seen Autoepistemic logic
is more “expressive” than default logic.
As such, it is also more abstract.
Both have many variants – and still a
question remains on how to correctly
model a given theory, as all ‘fail’ on
specific pathological cases.

	Default Logic�Autoepistemic Logic
	Introduction and Motivation
	Introduction – Default logic
	Default Logic Introduction - continued
	Introduction– Autoepistemic logic
	Autoepistemic Introduction – continued
	Default Theory
	Default Rules
	Default Rules, continued
	Instance of a default rule
	Normal and Semi-normal rules
	Default Extension – definition
	A simple example – back to birds
	Default extension- regarding consistency
	Explanation definition
	How explanation helps
	multiple extensions?
	Multiple extensions
	The skeptical reasoner vs. the brave (credulous) reasoner
	A need for a slightly different definition
	Default extension – iterative definition
	Back to our example
	The art of creating default rules
	Normal Rules with no precondition
	Semi-normal rules, problems with disjunction
	Semi-normal rules, problems with disjunction
	Semi-normal rules, more problems
	When does an extension exist?
	A few words about equality
	A few more words about equality
	Stable model semantics
	Forward and backward chaining
	Complexity
	More about complexity
	From Default logic…
	…To Autoepistemic logic
	Autoepistemic, continued
	The consistency Operator
	The Belief Operator
	A simple example
	Autoepistemic theory
	Propositional Interpretation
	Propositional model
	Autoepistemic Interpretation	
	Definition via previous example
	The problem of inference in non-monotonic logic
	Competence Model
	Soundness
	Semantic Completeness
	Stable Autoepistemic Theory
	Stable Autoepistemic Theory
	Grounded Autoepistemic theories
	Expansions
	Expanions, continued
	Enumerating stable expansions
	Enumerating - problems
	Enumerating - example
	Enumerating – example, continue
	Correlation between Autoepistemic and Default logic
	Conclusion

