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Introduction and Motivation
Birds Fly…
As before, we are troubled with formalization of 
Non-absolute sentences.
Classical logic deals with absolutes – can’t capture 
the essence of “most” or “usually”.
We therefore turn to non-monotonic reasoning.
2 distinct directions for formalization of such 
sentences will be given – Default logic and 
Autoepistemic logic.



Introduction – Default logic
“Birds fly, and tweety is a bird”
when can we assume tweety flies? 
given no evidence to the contrary, we 
should believe tweety flies 
We’ll split our theory to certain and 
uncertain things, and deal differently with 
each.



Default Logic Introduction -
continued

Similarity exists to the closed-world assumption-
both are mechanisms to add facts.
But not too similar:

we will be adding positive literals as well.
“Tweety flies” is an example of such.

we’ll create rules that will allow us to extend our 
theory.
In this presentation - first order default logic. 



Introduction– Autoepistemic logic

Why should we split our theory?
We would like to be able to reason about 
every part of our theory.
The Contraptive Example: 

chilly is a non-flying animal, and usually birds 
fly. (birds are animals, although its not required 
information).
we would like to be able to infer that chilly is 
probably not a bird.



Autoepistemic Introduction –
continued

We’ll use modal epistemic operators of 
Belief to formalize all of our sentences.
Our story “tweety is a bird” and “if tweety
is a bird and we don’t believe it can’t fly, 
then it flies” will both be valid sentences in 
our theory.
Since we’ll be using epistemic logic to talk 
about our own set of beliefs, it will be 
called Autoepistemic.



Default Theory

A default theory is a pair <D, F>, where:
F is a set of closed formulae, called ‘Facts’.
D is a set of default rules. 

F consists of All facts that are known in the 
classical sense (absolute).
D will contain the mechanism by which we’ll 
extend our theory.



Default Rules

Rules that take the following form:
α(x) : β1(x), β2(x), … ,βm(x) 

w(x)
α(x), βi(x) and w(x) are sentences whose free 
variables are of x:
α(x) is the precondition (or prerequisite).
βi(x) are justifications.
w(x) is the consquent (or conclusion).

Can also be written as <α(x) : β(x) / w(x)> (we’ll 
use this form of writing)



Default Rules, continued
We would say that the conclusion is 
achieved when

the precondition is inferred from the theory.
all the justifications are consistent with  our 

theory.
Since the theorem we would obtain would 
be a first order logic, it would be sound and 
complete.
Therefore, we can use the alternative 
semantic notion. (instead of syntactic).



Instance of a default rule
An instance of a default rule is obtained by 
uniformly substituting ground terms for the 
free variables in the default.
Example: consider our usual “Tweety is a 
bird, and birds fly” theory.
our default rule would probably be –

<Bird(x):Fly(x)/Fly(x)>
Therefore, an instance of it would be –

<Bird(tweety):Fly(tweety)/Fly(tweety)>



Normal and Semi-normal rules

a normal rule is a rule of the form 
< α(x) : β(x) / β(x) > 
a special case – when there’s no precondition. 
we get a rule of the form    < : β(x) / β(x) >

a semi-normal rule is a rule of the form   
< α(x) : β(x) w(x)/ w(x)>



Default Extension – definition
Given a default theory T = <F,D>, we 
would say that a set of sentences ε is an 
extension to the theory if and only if For 
each sentence π, π ε if and only if F π, 
where 

= { | < : / > D , ε, ¬ ε} 
It’s clear that F ε, since for sentence 
π F, clearly F   π



A simple example – back to birds
Consider the following default theory, in which:

F = {Bird(tweety), Bird(chilly), ¬Flies(chilly) }
D = {<bird(x): flies(x) / flies(x) >} 

F {flies(tweety)} is a possible extension.
Our extension could never include flies(chilly):

It requires an instance of 
<Bird(chilly):flies(chilly)/flies(chilly)>
But ¬Flies(chilly) is in our facts, so we could never 
consistenctly fulfill its justification.



Default extension- regarding 
consistency

We wish our extension to be consistent.
If F is consistent, and all our default rules 
are either normal or semi-normal, than 
every extension we can create for the theory 
will be consistent.

Consider a default rule <:x/y>
Of course, if F is inconsistent our extension 
will be inconsistent.



Explanation definition

If g is a closed formula, E is an 
Explanation of g from <D,F> if E is the set 
of consequents of some D’, a set of 
instances of elements of D such that:

E F    g
E F entails the precondition of D’.

All justification of D’ are consistent with some 
extension of <D,F> that contain E.



How explanation helps

Gives us “the glue” that connects 
expansions and first-order logic proofs.
A formal minimal notion to infer a sentence 
from our default theory.
we don’t require an entire expansion for a 
proof. sometimes proving that a sentence 
exists in some extesion (More on this later) 
is easier than finding the extesion.



multiple extensions?

consider the following default theory:
F = {Republican(dick), Quaker(dick)}
D = { <Republican(x):¬pacifist(x)/ ¬pacifist(x) >,     

<Quaker(x):         pacifist(x)/  pacifist(x)> }
How can we extend this theory?



Multiple extensions

pacifist(dick) will be in a valid expansion.
It can be explained by {pacifist(dick)},  which is 
the consequent of
<quacker(dick):pacifist(dick)/pacifist(dick)>

But ¬pacifist(dick) is also in a valid expansion!
It can be exaplined by {¬ pacifist(dick)} , which 
is the consequent of
<republican(dick):¬pacifist(dick)/¬pacifist(dick)>



The skeptical reasoner vs. the 
brave (credulous) reasoner

we sometimes reach a situation in which 
several default rules will allow us to reach 
several different extensions. 
2 immediate attitudes are possible:

The skeptical reasoner will believe only in 
sentences common to all extensions.
The brave reasoner will choose one extension 
of the default theory as a basis set of setences.



A need for a slightly different 
definition

Our definition for an extension was not very constructive.
Consider the following basis:

“those who eat onion soup eat onions”
“those who eat onion soup love eating”
“those who love eating brush their teeth”
“those who brush their teeth care for their personal hygiene”
“those who care their personal hygiene don’t eat onions”
“Yuval eats onion soup”

We can have 2 possible extensions – in one we can explain 
that yuval eats onions, and in the other the opposite.
But do we truly consider both as likely?



Default extension – iterative 
definition

Given a default theory <D,F>, we’ll consider a 
sequence of formulae sets s0, s1…, S = si, s0 = F 
and:

Si+1 = si {w(c) | <α(c) : β(c) / w(c) > is an instance of 
a    default from D
α(c) follows from si

β(c) is consistent with S for all βi(c) (β(c)  = β1(c) ,…, 
βn(c) )

the set of consequents in S will be called an 
extension.



Back to our example

Notice we require justification to be 
consistent with S (as opposed to Si)

It might otherwise have prevented multiple 
extensions.
More problematic – it could have caused 
inconsistency.

If we’ll look back at the example, we now 
may have the basis to claim one extension 
as more likely to happen.



The art of creating default 
rules

Big Issue with default logic – extensions are 
subject to the exact way we formalized our rules.
Since we can’t reason about default rules, we 
sometimes can’t prove things we would expect 
to be able to.
For example “Birds fly and fred doesn’t fly” –
it’s likely that fred is not a bird.
if we’ll formalize this as we did before (all the 
regualr tweety examples)– we wouldn’t be able 
to prove it.



Normal Rules with no 
precondition

However, we could ‘manipulate’ things:
Consider <D,F> where 

D={<:BirdFly(x) / BirdFly(x)>}
F={for each x,Birdfly(x) bird(x)→flies(x), 
¬flies(fred) }

We can explain ¬bird(fred) using 
F {birdsfly(fred)}. 

However, this is not very attainable solution (in 
general).



Semi-normal rules, problems 
with disjunction

If we thought Fred had a problem, what about 
situations in which we can prove things we didn’t 
intend to?
Like we’ve seen in regard to cwa, when our facts 
contain disjunctions, we might find ourselves with 
problematic conclusions.
Using normal rules will save us the problem (or 
most of it), since it adds all of the justifications as 
conclusions.
But what about semi-normal rules?



Semi-normal rules, problems 
with disjunction

Consider <F,D> where
D={<bird(x):flies(x) ¬baby(x)/flies(x)>}
F ={bird(pete), bird(mary), baby(pete) baby(mary) }

We can explain flies(pete) flies(mary) (although we 
know for certain one of them at least is a baby).
Notice this is not a problem in consistency, as F doesn’t 
contain any explicit rule that connects babies and flight 
ability.
What it does show is that our formalization is lacking- we 
never intended for this to be valid.



Semi-normal rules, more 
problems

Consider the following theory:
D = {<bird(x):flies(x)  ¬baby(x)/ flies(x)>,   

<bird(x):cries(x) baby(x)/ cries(x)>}
F = {bird(tweety)}

This default theory will allow us to explain 
flies(tweety) cries(tweety).
It’s based on the fact we can consistently add both 
baby(x) and ¬ baby(x) (separately).
Again – this is probably not what we’ve intended.



When does an extension 
exist?

Consider the following:
D = {<a:b c/c>, <c:¬b/¬b> }, F = {a}

This theory has no extensions.
the only cases where there are no extension is when there 
exists circularity.
Circularity - defaults in which the justification of one is 
inconsistent with the consequent of the other, which must 
be subsequently applied.
Ordered default theories disallow such circularity.
Ordered semi-normal default theories like this will always 
have an extension.



A few words about equality

Default theory can be used with first-order logic 
with equality as well.
Our default rules could then include statements of 
equality or inequality.
Default rules can be used to derive inequalities: 

D={<:p(x)/p(x)>}, F={¬p(A)}.
We can conclude p(B), from which it logically follows 
that A != B



A few more words about 
equality

Unique name assumption –
consider the rule <:x != y/ x != y> 
this is an embodiment of the unique name 
assumption as a default.
In the same manner < :¬x/¬x> is in fact an 
embodiment of cwa.

As expected, can be used to imply equality -
<P(x) = P(y) : x = y / x = y >



Stable model semantics
α1 … αn : ¬αn+1, … , ¬α m

α0

A special case, in which:
F consists of a conjunction of atoms.
Consequents of defaults are atoms.
Justifications of defaults are negations of atoms.
Preconditions are conjunctions of atoms.

our default theory define the same behaviour 
as the Prolog program, with negation as 
failure.



Forward and backward 
chaining

2 ways of trying to implement default 
reasoning and create an extension.
Forward chaining – simply run, choose 
defaults whose precondition is derived. Rinse 
and repeat.
Backward chaining – starting from assumed 
conclusions, we try to determine if formula can 
be consistently explained via all justifications 
in instantiations of the default rules. 



Complexity

Unsurprisingly, default logic problems are very 
hard to implement.
For a default theory for propositional logic, 
determining if a proposition can be explained 
by the theory is decidable, but NP-complete.
For first-order logic, it’s not even semi-
decidable. 
On weakened logics some aspects can be 
determined in polynomial time.



More about complexity
Finding an extension for an ordered, disjunction free, 
unary defaults- can be done in an O(n^2) algorithm. 

the general version of this problem is NP-complete
For a Horn default theory, there’s an O(n) algorithm 
for finding whether a certain literal exists in any 
extension.

the general version of this problem is NP-hard, even 
for disjunction free unary defaults

For a Horn default theory, there’s an O(n^3) algorithm 
for finding whether a certain literal exists in all 
extensions. 

the general version of this problem is co-NP-hard



From Default logic…
Default logic was non-monotonic due to its 
being defeasable.
When given information for our theory such 
as bird(tweety), we’ve found it likely to 
assume that tweety flies.
We found it likely to assume that its true -
but it might have been wrong.
If we’ll look solely on our facts, we can find 
a model that satisfies all of them, yet 
doesn’t satisfy our conclusion



…To Autoepistemic logic

In Autoepistemic logic, we will reason 
about our set of beliefs.
“all birds that can be consistently asserted to 
be capable of flight are capable of flight”.
Earlier, we’ve formalized this with default 
rules. 
But if we are capable of reasoning about our 
beliefs, we’ll be able to formalize this rule 
completely within our theory.



Autoepistemic, continued
Autoepistemic logic is non-monotonic due to the 
fact its indexical.
Consider the last statement about birds.
It means that the only birds who can’t fly are those 
that were explicitly mentioned as not capable.
Therefore, given tweety is a bird, and we didn’t 
assert its inability to fly – it MUST fly.
Our proofs deal mainly with propositional logic, 
since there are issues with quantifying into a 
modal operator scope. 



The consistency Operator

This will be our dual modal operator.
We will right it as M.
Mα means α can be consistently asserted.
Informally, the inference we would like to 
give the consistency operator is – “Mα is 
derivable if α isn’t derivable”.
Remember the “Unless” operator?



The Belief Operator
Our main modal operator of belief.
We’ll write it as B.

Also referred to as L in the literature. 
To say Bα will mean (informally) that we believe 
in α.
The dualism between consistency and belief –

B == ¬M¬

Since the fundamental notion of this logic is to 
formalize beliefs, it was chosen as the main 
operator.



A simple example
Consider the following theory:

Bird(tweety)
Bird(twetty) ¬B(¬can-fly(tweety)) → can-fly(tweety)

We would like to reach a formalization in which 
every model that satisfies this theory will satisfy 
the conclusion can-fly(tweety). 
If we would add ¬can-fly(tweety), we would have 
a different theory – in which we will never expect 
to reach this conclusion.



Autoepistemic theory
A simple propositional logic theory, with the 
addition of the Belief operator in its formulae.
Represents the total belief of a rational agent 
reflecting on his beliefs.
To determine an Autoepistemic theory, we need to 
determine 2 things:

Which propositional constants are true in the real 
world. These constants Contain no B operators 
(objective formulae)
Which formulae the agent (we) believe. Bα is true only 
if α is in the agent set of beliefs. 



Propositional Interpretation

first stage in defining a model for an 
Autoepistemic theory T.
We assign truth values to all formulae of the 
language of T.
This assignment should be consistent with 
truth-recursion of propositional logic.
We assign arbitrary truth values to all 
constants and formulae of the form Bα.



Propositional model

A propositional model of an Autoepistemic 
theory T is a propositional interpretation of T in 
which all formulae of T are true.
Propositional model inherit propositional logic 
soundness and completeness theorem.
Therefore – a formula P is true in all propositional 
models of an Autoepistemic theory T iff it can be 
derived from T using usual rules for propositional 
logic.



Autoepistemic Interpretation

An Autoepistemic Interpretation of an 
Autoepistemic theory T is a propositional 
Interpretation of T in which Bα is true iff α
is true.
An Autoepistemic Model of an 
Autoepistemic theory T is an Autoepistemic 
interpretation of T in which all formulae of 
T are true.



Definition via previous 
example

Consider our previous example:
Bird(tweety)
Bird(twetty) ¬B(¬can-fly(tweety)) → can-fly(tweety)

Bird(tweety) Can-fly(tweety) B(¬can-fly(tweety))

Propositional 
interpretation

F T

F

F

T

F

Propositional 
model

T T

Autoepistemic 
interpretation

T F

Autoepistemic 
model

T T



The problem of inference in 
non-monotonic logic

We now have a formal notation of 
semantics for Autoepistemic theory.
But what about syntactic notation?
Monotonic logic’s inference rules are 
monotonic themselves.
That allows us to try and infer in an iterative 
process.
In non-monotonic logic, that is not so.



Competence Model

We won’t be actually giving a syntactic 
notation.
Instead, we’ll describe a “competence 
model” – Autoepistemic theory that capture 
every belief we can conclude.
Those theories will be sound and complete.



Soundness

We would say an Autoepistemic theory T is 
sound with respect to an initial set of 
premises A iff:

Every Autoepistemic interpretation of T which 
is a propositional model of A is a model of T.

Intuitively – if all our premises are true, 
then our theory is true as well.



Semantic Completeness

We would call an Autoepistemic theory T 
semantically complete, iff:

T contains every formula that is true in every 
autoepistemic model of T.

Intuitively, if a formula is true under every 
autoepistemic model of an agent, it means it must 
be true whenever all the agent’s beliefs are true.
Since the Agent is rational – he should be able to 
infer that.



Stable Autoepistemic Theory

Given an autoepistemic theory T, we’ll require 3 
things from it for us to call it ‘stable’:

if P1,…,Pn are in T, and P1,…,Pn Q, then Q is in T 
(ordinary tautological consequence).
Positive Introspection – if  α T then Bα T.
Negative Introspection – if α T then Bα T.

Stable “in the sense that no further conclusions 
could be drawn by an ideal rational agent in such a 
state”



Stable Autoepistemic Theory

If we have a stable autoepistemic
theory which is also consistent, then it 
will satisfy 2 more conditions:

if Bα T then α T. 
if Bα T  then α T.

The stable autoepistemic theories will 
assure us that our theory is 
semantically complete



Grounded Autoepistemic 
theories

We will say that an autoepistemic theory T 
is grounded in a set of premises A if:

Every forumla of T is included in the 
tautological consequence of A B1 B2.
B1 = {Bα | α T}
B2 = {¬Bα | α T}

T will be sound with regard to a set of 
premises A iff T is grounded in A. 



Expansions

We’ve seen that when given a set of 
premises A, a rational agent could be 
expected to believe the a stable 
autoepistemic theory grounded in A.
We call this “stable expansions of A”
There can cases in which more than 1 stable 
expansion possible: 

Consider A = {¬Bα→β, ¬Bβ→α}



Expanions, continued

There can be cases where no expansions is 
possible:

Consider A = {¬Bα→ α }
Sometimes, we can get theories to which 
are definition is lacking.

Consider A = {Bα→ α}
We have 2 possible expansions, but why should 
we believe in α?



Enumerating stable 
expansions

Given as a constructive way to try and find a 
model for a given Autoepistemic theory T. 4 
simple steps:

1. Replace every Bαi with either True or False.
2. We now have a propositional theory. We’ll simplify it and call it 

T’. If it isn't consistent, we have a bad assignment.
3. For each αi  if Bαi  that was given the value True, confirm that T’

satisfies αi. For each that was given value false, confirm that T’
doesn’t satisfy αi. 

4. If 3 was true for all i’s, then T’`s entaliments form the objective 
part of a stable expansions (And the non objective part can be 
added appropriately).



Enumerating - problems

quite a problematic solution. 
exponential in the number of expressions 
containing belief operators 

we need to check every possible combination of 
assignments of true and false to them.

And that’s in the case of propositional logic, 
in which checking satisfaction can be done 
in reasonable time.



Enumerating - example

Consider the propositional case of the bird 
problem.
Our theory T contains the following:

T = {Bird(Tweety), Bird(chilly), ¬flies(chilly),
bird(tweety) ¬B(¬ flies(tweety)) → flies(tweety), 
bird(chilly)   ¬B(¬ flies(chilly))   → flies(chilly) }

We have 4 assignments to check, since     
B(¬flies(chilly)) and B(¬flies(tweety)) can receive 
truth assignments independently.



Enumerating – example, 
continue

B(¬flies(chilly)) true B(¬flies(tweety)) true.
After simplification, our theory T’ = T. therefore, 
¬flies(tweety) is not entailed from T’, and this assignment is 
wrong.

B(¬flies(chilly)) false B(¬flies(tweety)) true.
After simplification, our theory T’ = T {flies(chilly)} – it’s 
inconsistent.

B(¬flies(chilly)) true B(¬flies(tweety)) false.
After simplifcation, T’ = T {flies(tweety)}. This is a valid 
assignment, as ¬flies(chilly) is entailed by it, and 
¬flies(tweety) is not. Therefore, T’ can be a basis for stable 
Autoepistemic expansion.



Correlation between 
Autoepistemic and Default logic

we look at a form of ‘strongly grounded’
Autoepistemic logic, in which all formulae 
are of form: 

Bα ¬B¬β1 … ¬B¬βm→ w

Formula like this can be interpreted as the 
default rule <α:β1,…, βm/w>



Conclusion

As we’ve just seen Autoepistemic logic 
is more “expressive” than default logic.
As such, it is also more abstract.
Both have many variants – and still a 
question remains on how to correctly 
model a given theory, as all ‘fail’ on 
specific pathological cases.
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