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Motivation

• The classical logic cannot handle 
statements that are not absolute.

• We would like to handle statements that 
are not total, statements that are with the 
form of “Ps are always, purely, exactly 
and unarguably Qs”.



Motivation
• We have seen cases where “Ps might usually be 

Qs”.
Birds usually fly but not always.Example:

• In other cases “Ps might be fair, but not 
excellent examples of Qs”.

we may prefer to say that some one is Example:
some what tall (and not just tall or short).

• In cases where we use physical sensors we 
might also have some unavoidable imprecision, 
as with thermometer.



Motivation

• As we seen earlier it might be hard to 
estimate something precisely or 
categorically.

• In addition to the imperfection of 
statements, the way we generate 
conclusions may also be imprecise. 



Motivation
• Example: if we learn a fact or rule form other 

person we may need to discount for that persons 
untrustworthiness.                                    
Similarly, we may understand some system to a 
modest level of depth, and not be able to apply 
rules in 100%.

• In cases like this (where the information is 
equivocal and imperfect), the conclusions that we 
come to may not be categorical, meaning, we may 
not be confident in an answer, or can only come 
within some error range of the true answer.



Introduction

• In this lecture we will look at some of the 
more common ways to expand our core 
representation.



Introduction
• Let us start by looking at a typical sentence of the 

form ,as in “everyone in my class is tall.

• We can distinguish 3 different types of modification 
to this logical structure, in order to make it more 
flexible:

1. We can relax the strength of the quantifier. Instead 
of “for all x…” we might want to say “for 95% of 
x…”, for example, “95% of the people in class 
has brown eyes”. The probability in such sentence 
is objective, because it doesn’t subject to 
interpretation or degrees of confidence.

)(xxP∀



Introduction

2. We could relax the applicability of the 
predicate. Example: Instead of strict 
assertion like “Everyone in my class is 
(absolutely) tall”, we could have 
statements like “Everyone in my class 
is somewhat tall”. 
We call this vague predicates.



Introduction
3. We could relax our degree of belief in the 

sentence as whole. Instead of saying, 
“Everyone in the room is married”, we might 
say, “I believe that everyone in the room are 
married, but I am not very sure”.

Here we are dealing with uncertain knowledge.
When we can quantify our lack of certainty, we 
are using the notion of subjective probability.



Objective probability
• Objective probability are about frequency. 

even though we talk in terms of probability 
or chance of a single event happening, we 
actually refer to frequency.

• The “chance of x” is really the 
percentage of times x is expected to 
happen out of a sequence of many events, 
when the basic process is repeated many 
times, each event is independent, and the 
conditions each time are exactly the same.



Objective probability
• Examples:

The chance the next card I am dealt with will be 
the ace of hearts, or whether tomorrow will be 
raining.

• The notion of objective probability, or chance of 
something, is best applied to processes like coin 
flipping and card drawing.

• This kind of probability is called objective 
because it doesn’t depend on who is assessing 
the probability.  



Objective probability – postulates

• Probability is a number between 0 and 1, 
representing the frequency of an event in 
a large enough space of random samples.

• An event with probability 1 is considered to 
always to happen, and one with probability 
0 is considered to never to happen.



Objective probability – postulates

More formally:
• U – set of all possible occurrences.
• a – any subset of U.
• Pr – function from events to the interval [0,1] 

satisfying the following:
1. Pr(U) = 1.
2. If a1,…,an are disjoint events, then 
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Objective probability – postulates

• It follows from these two postulates that:
Pr(ā) = 1 – Pr(a).

Pr({}) = 0.

• If b1, b2…bn are disjoint events and exhaust all the 
possibilities then 

Pr(a) = Pr(a∩ b1) + …+ Pr(a∩ bn) 
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Objective probability – conditions 
and independence.

• A key idea in probability is conditioning, 
one event may depend on its interaction 
with another.

• We write conditional probability with the 
vertical bar (“|”) between the events.
Pr(a|b) means the probability of a, given 
that b has occurred.



Objective probability – conditions 
and independence.

• More formally:

• It does follow from the definition of conditioning 
that

Pr(a∩b) = Pr(a|b)xPr(b)

• More generally we have the following chain rule:
Pr(a1∩...∩ an ) = Pr(a1| a2∩...∩ an )x Pr(a2| a3∩...∩ an) 

x Pr(an-1| an )xPr(an ).
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Objective probability – conditions 
and independence.

• We also get:

Pr(ā|b) = 1- Pr(a|b)

• And the following
If b1 b2…bn are disjoint events and exhaust all 
the possibilities, then:

Pr(a|c) = Pr(a∩ b1|c)+…+Pr(a∩ bn|c)



Objective probability – conditions 
and independence.

• Bayes rule, uses the definition of conditional 
probability to relate the probability of a given b to 
the probability of b given a:
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Objective probability – conditions 
and independence.

• An event a is conditionally independent of 
event b, if b does not affect the probability 
of a, that is, if

Pr(a|b) = Pr(a)



Subjective Probability

• Persons subjective degree of confidence or 
certainty in a sentence, is separable from the 
content of the sentence itself.

• Regardless of how vague or categorical a 
sentence may be, the degree of belief in it can 
vary.

• Degrees of belief of this sort are often derived 
from observations about groups of things in the 
world, and the statistics of events occurring.



Subjective Probability
• Moving from statistics to graded beliefs about individuals, 

seems similar to the move we make from general facts 
about the world to defaults.
Example: we may conclude that Tweety flies based on a 
belief that birds generally fly.

• This sort of conclusion tend to be all or nothing, and in 
subjective belief we are interested in expressing levels of 
confidence.

• Because degrees of belief often derive from statistical 
considerations, they are usually referred to as subjective 
probability.



Subjective Probability

• In the world of subjective probability, we define 
two types of probability relative to drawing a 
conclusion:

1. The prior probability of a sentence α involves the 
prior state of information or background knowledge. 
(Pr(α|β))

2. A posterior probability is derived when new 
evidence is taken into account. (                      where 
γ is the new evidence)
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From statistics to belief
• The traditional approach for doing so, is to find a 

reference class for which we have statistical 
information, and use the statistics about the 
class to compute an appropriate degree of 
belief.

• Reference class (definition) – general class into 
which the individual in question would fit and 
information about which would comfortably  
seem to apply.

• Direct inference (definition) – the move from 
pure statistics to belief.



From statistics to belief
Example: lets try to assign a degree of belief to 

the proposition “Eric is tall” where Eric is an 
American male, if all we knew is that:

A. 20% of American males are tall.              
We would probably assign the value of 0.2 to 
our belief about Eric’s height.

Now lets assume that Eric is from California and 
that:

B. 32% of Californian males are tall.
We would probably assign a higher degree of 
belief, 0.32 perhaps.



From statistics to belief

Suppose we also know that:
C. 1% of hi-tech people are tall

If we don’t Eric’s occupation, should we 
leave our degree of belief unchanged? or 
should we have to estimate the 
probability of Eric being hi-tech person.

• Simple direct inference as we saw in the 
previous example, are full of problems 
because of multiple reference class.



A Basic Bayesian approach
• We want to have a more principled way for 

calculating subjective probabilities, and see how 
those are effected by new evidence.

• Assume we have number of propositional variables 
(or atomic sentences) of interest, p1, … , pn.
Example: p1 might be the proposition that Eric is tall, 
and p2 might be the proposition that Linda is rich 
and so on.

• In different states of the world , different 
combination of this sentence will be true.



A Basic Bayesian approach
• Interpretation I specifies which atomic 

sentences are true and which are false.

• J is defined to be joint probability distribution, 
which is the specification of the degree of belief 
for each of the 2n truth assignments for the 
propositional variables.

• For each interpretation I , J (I) is a number 
between 0 and 1 such that ∑J (I) = 1, where the 
sum is over all 2n possibilities.



A Basic Bayesian approach

• Using the joint probability like this, we can 
calculate the degree of belief in any sentence 
involving any subset of the variables.
The degree of belief in α is the sum of J over all 
the interpretations where α is true.
We believe α to the extent we believe in the 
world states that satisfy α , formally:

And  as before: 
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A Basic Bayesian approach

• Example:
The degree of belief that Eric is tall given that 
he is male and from California is:

t – tall.
m – male.
c – from California.∑
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A Basic Bayesian approach

• This approach is not good enough.

• For n atomic sentences, we would need to 
specify the values of 2n – 1 numbers, this 
is unworkable for any practical application.



Belief Networks

• We want to cut down on what we know, so we 
will make some simplifying assumptions.

• We will introduce new notation:
For sentences , we specify an 
interpretation using                       , where each 
uppercase Pi is either    or         .               
From this definition we see that :
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Belief Networks

• In case all the atomic sentences are 
conditionally independent we get:

• Now we only need to know n numbers to fully 
specify the disjoint probability, but this 
assumption is too extreme.

)Pr()Pr()Pr(),...,( 211 nn PPPPPJ ⋅⋅⋅⋅=〉〈



Belief Networks

• Better idea: we would represent the 
variables pi  in a directed acyclic graph, 
which we call a belief network (or Bayesian 
network).

• There should be an arc from pi to pj  if we 
think of the truth of pi  as directly affecting 
the truth of pj .

• We say that pi is a parent of pj in the belief 
network.



Belief Networks
• We will number the variables in such a way that 

the parents of any variable pj appear earlier in 
the ordering than pj .

• From this we get that:

• We also make the following assumption:
Each propositional variable in the belief network 
is conditionally independent from the nonparent
variables given the parent variable.
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Belief Networks
• More formally we assume that:

• Where parents(Pj+1) is the conjunction of those 
P1,…,Pj literals that are parents of Pj+1 in the 
graph.

• With those independence assumption it follows 
that:

))(|Pr())(|Pr(),...,( 111 nnn PparentsPPparentsPPPJ ⋅⋅⋅=〉〈
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• Let us look at the following net 

This graph represents the assumption that:

The full joint probability distribution is specified by:
(1+2+2+4)=9, rather then 15.

Belief Networks-example 1

p1

p2

p4

p3
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Belief Networks-example 2
• We want to do some reasoning whether 

or not my family is out of the house.

• Let as look at the facts:
1. The dog is out (do) when the family is out (fo).
2. The dog is also out when it has bowel 

problem (bp).
3. A reasonable proportion of the time when the 

dog is out, you can hear him barking (hb).
4. Usually (but not always) the light on (lo) 

outside the house when the family is out.



Belief Networks-example 2
The corresponding belief network:
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Belief Networks-example 2
• The graph represents the following 

assumption about the joint probability 
distribution:

• We want to calculate the probability that 
the family is out, given that the light is on 
but we don’t hear barking: 
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Belief Networks-example 2

• Using the definition of conditional probability, this 
translates to the following:

As we can see the sum in the numerator has four 
terms, and the sum in the denominator has eight 
terms.
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1. 002673.03.099.001.06.015.0),,,,( =××××=〉¬〈 hbdobplofoJ  

2. 0000891.099.001.001.06.015.0),,,,( =××××=〉¬¬〈 hbdobplofoJ  

3. 024057.03.09.099.06.015.0),,,,( =××××=〉¬¬〈 hbdobplofoJ  

4. 088209.099.01.099.06.015.0),,,,( =××××=〉¬¬¬〈 hbdobplofoJ  

5. 000123675.099.003.001.005.085.0),,,,( =××××=〉¬〈¬ hbdobplofoJ  

6. 000126225.099.003.001.005.085.0),,,,( =××××=〉¬¬〈¬ hbdobplofoJ
7. 0378675.03.03.099.06.015.0),,,,( =××××=〉¬¬〈¬ hbdobplofoJ  

8. 029157975.099.07.099.06.015.0),,,,( =××××=〉¬¬¬〈¬ hbdobplofoJ  

Belief Networks-example 2
• We will compute the eight needed 

elements from the numbers in the figure:



Vagueness
• Now we will look at statements like: “Is a 

man tall if his height is 1.8 meters?”

• Obviously, the tallness of a man depends 
to who we are comparing him to.

• Predicates like tall that are thought of as 
holding to a degree are called vague 
predicates.



Vagueness

• These corresponds to adjectives that can 
be modified by the adverb “very", unlike, 
“married” or “dead”.

• We assume that for each vague predicate, 
there is a corresponding precise base 
function in terms of which the predicate is 
understood.



Vagueness
• Example: for “tall” the base function is “height”, for “bald”

it might be “percentage hair cover”.
• degree curve – the function between the predicates and 

their base function.
Example function: 
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height



Vagueness

• This definition of tall would yield the following 
values for various individuals and their height:

Degree of 
tallness

HeightIndividual

0
0.25
0.5
0.9
1

4’6
5’6
5’9
6’2
7’1

Larry
Roger
Henry
Michael
wilt



Vagueness
• We need to consider Boolean combinations of vague properties and

to what degree they are satisfied:
With negation its exactly as we know:

For  conjunctions and disjunctions it is different from what we know:
Example: lets say we are looking for a basketball player. 
We might be looking for someone who is tall, physically coordinated, 
strong and so on.
Lets say we have a person who rates high in all those qualities.
We would expect this person to be considered good candidate.
If we would actually dealt with conjunction as we know we would take 
the product of all the degrees of his quality. Lets say we have 20 
measurements and each are satisfied in level of 0.95, then we would 
get that the conjoined criteria to be only 0.36.

)Pr(1)Pr( pp −=¬



Vagueness
• There is a difference between the probability of 

satisfying the conjoined criterion, and the degree 
of which the conjoined criterion is satisfied.

• The degree of which an individual is P and Q is 
the minimum of the degrees to which the 
individual is P and is Q.

• Similarly , the degree to which a disjoined 
criterion is satisfied, is the maximum degree to 
which each individual criterion is satisfied. 



Vagueness
• We will show the use of vague predicates in set of production 

rules.

• Rule is constructed as follows:
– If x then y.
– Example: “If the apartment is big and the neighborhood is safe then the 

rent will be expensive.

• The term of a rule will concern quantities that can be measured 
or evaluated, and the consequent will concern some control 
action.

• Unlike standard production system where a rule either does or 
doesn’t apply, here the terms of a rule will apply to some 
degree, and the control action will be affected in proportionate
degree.



Vagueness
• The advantage of rules using vague predicates 

is that they enable inferences even when the 
conditions are partially satisfied.

• In this kind of system the terms apply to values 
from the same base functions.

• The rules are usually developed in groups and 
are not significant independent from one 
another.

• Their main goal is to work in concert to jointly 
affect the output variable.



Vagueness
• Example:

we are trying to decide on a tip at 
restaurant based on the quality of the food 
and the service. 
Assume that the service and food can be 
described by a simple number on a linear 
scale.
The amount of the tip will be the 
percentage of the cost of the meal.



Vagueness
• We will assume the following 3 rules:

1. If the service is poor or the food is bad then the tip 
is stingy.

2. If the service is good then the tip is normal.
3. If the service is excellent or the food is delicious 

then the tip is generous.
• We assume that for each of the eight vague 

predicates we are given a degree curve 
relating the predicate to one of the three base 
quantities: service, food quality, or tip.



Vagueness
• The problem we wish to follow is the 

following: Given a specific numeric rating 
for the service and another specific rating 
for the food, calculate a specific amount 
for the tip, subject to these rules.

• We will see a popular method which is 
used to solve this problem.



Vagueness-5 step method
1. Transform the input – determine the degree to 

which each of the vague predicated used in 
the terms hold for each of the inputs.

2. Evaluate the terms – determine the degree to 
which each rule is applicable using the 
appropriate combinations for the logical 
operators.

3. Evaluate the consequence – determine the 
degree to which predicates “stingy”, “normal”
and “generous” should be satisfied.  



Vagueness-5 step method
4. Aggregate the consequence – obtain a single 

degree curve for the tip  that combines the 
“stingy”, “normal” and “generous” ones in light 
of the applicability of the rules.

5. Use the aggregated degree curve to generate 
a weighted average value for the tip. One way 
to do this in our example is to take the 
aggregated curve from step 4 and find the 
center of the area under the curve.
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