
circumscription



Preface- FOL

• We have KB consist the sentence: 
Violine(stradivari1)

• We want to conclude it have 4 strings, there are 
exactly 2 possibilities. 

• One is to add the explicit sentence: 
4string(stradivari1).

• Two is to add a generic rule: 
∀x.violine(x)→4string(x)



Preface- FOL (problem)

• What if we have a 5string violin or 
10string?

• Then we should say: all violins have 
4strings except those who do not.

• Well we just said…
• nothing!



Preface- Default reasoning

• Assuming that birds usually fly, and tweety is a 
bird, when can we conclude that tweety flies?

Given that a P is usually a Q, and given P(a) 
is true, it is reasonable to conclude that Q(a) 
is true unless there is good reason not to

• Finding that “good reason” is the whole purpose 
of the all the default reasoning different methods



Preface- Default reasoning

• If all we know that Yoggi is a polar bear then we 
can reasonably conclude that he is white

• If you have a CS degree then you have studied 
logic.

• But a bear might be playing with mud, and a CS 
graduate might have some “Ptor” from logic.

• So this is only a reasonable defaults, and 
generally speaking, this is default reasoning. 



Preface- Monotonic vs. Non-monotonic 
reasoning

• Monotonic: if KB1|=α , then KB2|=α for any 
KB1⊆KB2.

• Meaning new facts can only add to early 
conclusions not contradict them.

• Non-monotonic: New facts can change our 
conclusions.

• If we know tweety is a bird –we conclude it flies.
• If we find out that tweety is an ostrich we 

conclude it don’t flies. 



Introduction to circumscription

• Circumscription is a powerful non 
monotonic formalism created by John 
McCarthy(1977,1980), generalized (in 
1984)

• Independently explored by many 
researchers

• It is the most fascinating and the most 
controversial of all the formal approaches 
to non monotonic reasoning.



Extension

• A predicate denoted by an expression U 
will be called extension of U.

• For example if U=Bird (unary constant 
predicate) and D=All individuals. Then 
the extension of U is a subset of D 
(intuitively D=All birds).



What is circumscription

• Like we saw in the evolution of the CWA the 
extension of the predicates became as small as 
possible.

• It leads us to the natural generalization:
Consider forms of entailment where the 
extension of certain predicates is as 
small as possible. 



What is circumscription

• A simple example: 
• Let T consist of one axiom  Red(a)∧On(a,b)
• A circumscription of Red in T will conclude 

∀x.Red(x)→x=a   (because a is the only Red  in T)

• A circumscription of On in T will conclude 
∀x,y.On(x,y)→x=a∧y=b

• We could also jointly circumscribe several 
predicates, say Red and On for instance.



There is more then one

• There are about 10 different version of 
circumscription on the AI market today.

• All of then share the following common 
characteristic:

1.Circumscription allows us to formalize non-monotonic 
reasoning directly in the language of classic logic.
2.it is always the task of the user to specify which 
predicates to be minimized. Circumscription provides a 
general method for it.
3.Circumscription is based on syntactic manipulations.



Few circumscription types

1. Predicate circumscription
2. Formula circumscription
3. Second-order circumscription
4. Non-recursive circumscription
5. Domain circumscription
6. Pointwise circumscription



The predicate Ab

One way to handle default knowledge, 
suggested by McCarthy(1984), is to 
assume we have a predicate Ab that 
taking care of all the exceptional or 
abnormal cases where the default should 
not apply.



The predicate Ab

For instance, instead of saying that all 
birds fly we might say:

∀x[Bird(x) ∧ ¬Ab(x) → Flies(x)]

meaning that all birds that are not in some 
way abnormal fly, or more succinctly, that 
all normal birds fly.



The predicate Ab

Now imagine we have this fact in KB along with 
these facts:

Bird(chilly),Bird(tweety),
(tweety≠ chily), ¬Flies(chilly)

now we would like to conclude that Tweety flies 
whereas Chilly doesn’t.
But that isn’t the case. WHY?



The predicate Ab

Because  KB|≠ Flies(tweety). WHY?
There are  interpretations (Models) 
satisfying the KB where Flies(tweety) is 
false. For example 

M=〈D,I〉 , D={KB, ¬Flies(tweety)}
however note that in these interpretations, 
the denotation of tweety is contained in the 
extension of Ab.



Minimizing Abnormality

As mentioned before and in CWA as well 
our goal is to consider only the smallest 
interpretations, meaning those that has a 
minimum Ab predicate appearances. This 
strategy called minimizing abnormality.

in the previous example we saw that chilly 
is an abnormal bird but we have no such 
information about tweety.



Circumscribing the predicate Ab

The default assumption we want to make is 
that the extension of Ab is only as large 
as it has to be given what we know.

Therefore in our last example we include 
chily but exclude tweety (in our extension), 
this is called circumscribing the 
predicate Ab. And the technique called 
circumscription. 



The minimal extension
• The minimal extension of Ab in our example is: 
• ∀x[x≠ chilly→¬Ab(x)],
• ∀x[Bird(x)∧x≠ chilly→Flies(x)].

• Lets add two more facts to our KB:
• Ostrich(Joe)∧Joe≠ chilly∧Joe≠ Tweety
• ∀x[Ostrich(x)→Bird(x)],
• Now we conclude that Joe is normal and that he 

flies



The minimal extension

• Ostriches don’t fly (as far as we know)! 
• Solution 1: ∀x[Ostrich(x)→¬Flies(x)],

• But what if we are not sure they don’t fly?
• Solution2: ∀x[Ostrich(x)→Ab(x)],
• now we can point out some special ostrich 

that flies, and yet we can not conclude it 
by default.



There is more then Ab

Note that while chily is abnormal in its flying 
abilities it might be perfectly normal in 
other “birdy” aspects like having two legs, 
lying eggs and so on. 

Ab is not enough so we need a multiple Ab 
predicate variations:
Abi, so chily might be in extension Ab1 but 
not in extension Ab2 . 



Minimal entailment

• Circumscription is intended to be a more 
accurate and convenient tool then the 
CWA

• And we want to apply it in much broader 
settings 

• So we don’t add negative literals to the KB 
like CWA. Instead we characterize a new 
form of entailment.



≤ definition

Let P be a fixed set of unary predicates, 
which we will understand as Ab 
predicates.

Let M1 =〈D, I1〉 and M2 =〈D, I2〉 . We define 
the relation, ≤:

M1 ≤M2 ⇔ for every p∈P, I1[p] ⊆ I2[p]

Also M1 < M2 iff M1 ≤M2 and not (M2 ≤M1 ).



More Normal

Intuitively, given two interpretation over the 
same domain, one is less then another if it 
makes the extension of all the abnormal 
predicates smaller. 

We can think of interpretation that is less 
then another as more normal.



Minimal entailment |=< 

Now we can define a new form of minimal 
entailment |= < :

KB |= < α ⇔ for every interpretation 
M ,such that M |=KB, either M |=α or 
there is M’ such that M’<M and   
M’|=KB



Minimal entailment

This is similar to the definition of entailment 
itself: we require each interpretation that 
satisfies KB to satisfy α except that it may 
be excused if there is a smaller (more 
normal) interpretation that satisfies it.

Generally speaking we don’t ask that every 
interpretation that satisfies M will satisfy α
only the most normal one(s).



Back to tweety and chilly example

• As noted (16th slide) KB|≠ Flies(tweety). 
• But  KB |=< Flies(tweety).
• Because: if M |=KB but M |≠ Flies(tweety), then 

M|=Ab(tweety).
• So let M’ be exactly M except that we remove the 

denotation of tweety from the extension of Ab, M’<M and 
M’|=KB

• Thus in the most normal form   KB|=<¬Ab(tweety)
• So tweety is normal but chilly is not, because chilly is 

abnormal in any model of KB, minimal or not.



Back to tweety and chilly example

The default step was to conclude that tweety
is normal (or not abnormal) all the rest was 
a simple deductive reasoning using what 
we know a bout birds.

That is circumscription proposal for 
default reasoning



There is more then one champion

• Not all the minimal models satisfies the exact same 
sentences

• For instance 
KB={Bird(c),Bird(d),¬flies(c)∨¬flies(d)}

• The minimal model will have only a Flies(c) or 
Flies(d).

• So we get KB |≠<Flies(c) and KB|≠<Flies(d)
• Meaning we cannot conclude by default that c is  a 

normal bird nor that d is.
• …but we can conclude one of them is: 

KB|=<Flies(c) ∨ Flies(d) 



CWA vs. Circumscription- round 1

• Unlike the CWA, we are consistent with what 
we know

• CWA in the previous case would add all the 
negation of what we don’t know, meaning 
¬Ab(c), ¬Ab(d), what would lead to 
inconsistency.

• thus circumscription is more cautious the CWA 
in its assumption

• But less cautious then GCWA which wouldn’t 
conclude anything about normality of d or c, 
while circumscription concludes that at least one 
of them flies.



CWA vs. Circumscription- round 2

• By using interpretation directly instead of adding 
literals circumscription works equally well with 
unnamed individuals.

• For example: 
∃x[Bird(x)∧(x≠chilly)∧(X≠tweety)]

• Circumscription concludes: 
∃x[Bird(x)∧(x≠chilly)∧(X≠tweety)∧Flies(x)]



CWA vs. Circumscription- round 2

• This also carries over to unnamed abnormal 
individuals. Suppose we have: 
∃x[Bird(x)∧(x≠chilly)∧(X≠tweety)∧¬Flies(x)]

• In this case the minimal model will have 
exactly 2 abnormal individuals. Thus we 
conclude: 
∃x∀y[(Bird(y)∧¬Flies(y))↔(y=chilly∨y=x)]

• unlike CWA and GCWA we don’t have to 
name all exceptions explicitly to avoid 
inconsistency. 



Fixed and variable predicates

• Although the assumption made by 
circumscription are usually weaker than 
those of the CWA, sometimes they appear 
too strong!

• Suppose for example we have KB:
∀x[Bird(x) ∧ ¬Ab(x) → Flies(x)],
Bird(tweety),
∀x[Penguin(x) →(Bird(x)∧¬Flies(x))].

• We can conclude: ∀x[Penguin(x)→Ab(x)]



Problem

• When we make default assumption with 
circumscription we minimize the set of 
abnormalities and by doing so in this KB, 
we conclude that:  

KB |=< ¬∃x.Ab(x)
• and by that we conclude: 

KB|=<¬∃x.Penguins(x) (there is a model that satisfies  it)

• WHAT JUST HAPPENED???



Problem

All we wanted is to conclude that tweety is 
not a penguin (perhaps), and that it flies, 
but by doing so We have just eliminated 
the existence of penguins. Which is 
definitely not what we wanted.



Solution

• To improve that undesirability we would want to 
be able to conclude by default that penguins are 
the only abnormal birds (in this example).

• One way of doing so, was proposed by Vladimir 
Lifschits, is to redefine |=< so we will look for the 
smallest model with exactly the same amount 
of penguins (or any other exceptional classes in 
general)



Fixed extension vs. variable 
extension

• In the previous example we say that the 
extension of penguins remains fixed

• But in the same example we can make an 
extension in which we conclude 
Flies(tweety). So Flies is variable in the 
minimization



Redefinition ≤

With respect to a set of unary predicates P P 
(variables- to be minimized)

Q (fixed predicates)
Let M1 =〈D, I1〉 and M2 =〈D, I2〉 . We 
redefine the relation, ≤:
M1 ≤M2 ⇔ for every p∈P, I1[p] ⊆ I2[p]
and for every q∈Q I1[q]=I2[q]



Redefinition |=<

• The rest of the |=< definition stays the same
• In our example we should take P={Ab}, 

Q={Penguin} and we get our goal by 
preserving the only abnormal bird, the 
penguin.

• In previous |=< definition Q={}.
• With our new definition we have now minimal 

models (not all but exist!!) in which there are 
penguins, so: KB|≠¬∃Penguin(x)



Problem1 

• As we can see in this method of 
circumscription we must point out which 
predicates to minimize and also which to 
leave fixed.

• The solution should be able to declare 
automatically that flying is a variable 
predicate, for example. And it is far from 
clear how.



Problem 2 

• KB |≠ < Flies(tweety). WHY?
• There is a minimal model in which tweety

happens to be a penguin. We can no longer 
find a lesser model where tweety flies 
because we will have to change the set of 
penguins, which must remain fixed.

• What we do get is 
KB|=¬∃Penguin(tweety)→Flies(tweety)



Problem 2
• So if we know that tweety is not a penguin as 

in: 
Canary(tweety),∀x[Canary(x)→¬Penguin(x)]

• Now we can conclude, Flies(tweety)
• BUT this is not derivable by default, even if 

we add something saying that birds are 
normally not penguins: 

∀x[Bird(x)∧¬Ab2(x)→¬Penguin(x)]
• Tweety still doesn’t fly because we cant 

reduce the set of penguins!



Names are abstract

• If we remove from the KB (slide 15) the 
sentence (tweety≠ chily), we will get the 
same problem we have just introduced.

• KB |≠<Flies(tweety)
• But only 

KB|≠<(tweety≠chilly)→Flies(tweety) 
• We don’t know yet how to conclude that 

names are unique by default.



…One bad Apple…

• It doesn’t have to be chilly.
• Enough to say: ∃x[Bird(x)∧¬Flies(x)]
• So we wont be able to conclude that 

tweety is a flying bird by default.



The beginning 
• The original problem considered by McCarthy was 

“missionaries and cannibals”
• His goal wasn’t getting the solution but rather excluding the 

solutions that are not explicitly stated
• For instance, taking a bigger boat or going over a bridge.
• Our assumption should be that the problem contains all the 

information needed for its solving.
• Stating that there is no bridge is obviously not a solution 

because there are infinitely many other solutions theoretically 
possible, like taking a helicopter.



Formula circumscription

• Its circumscription generalization in which 
extension of a Formula minimize rather 
then a predicate.

• For example predicate expression 
(∀x.Bird(x)) instead of predicate constant 
(Bird(tweety)).



Domain circumscription

• This circumscription type is based on 
minimizing the domain of first-order logic, 
rather then the extension of predicates.

• To be exact model considered less then 
another if it has a smaller domain.



Ray Reiter's coin

• Circumscription does not always handle well 
disjunctive sentences.

• An example provided by Ray Reiter is:
• A coin tossed over a check board
• As a result it should fall on ether black or white.
• By circumscription we can conclude all the 

places it cant fall on
• Like: the floor, the moon and so on…
• So we exclude predicates like on(coin,moon)



problem

• What if it falls on both?
• We can not conclude by circumscription a 

a model with extension of on(coin,black) 
and on(coin,white).

• Because this extension won’t be minimal
• The minimal extension of on is a model 

with only ONE of them true.



Theory curbing
• Theory curbing is a solution proposed by 

Thomas Eiter, Georg Gottlob, and Yuri Gurevich. 
• The idea is that the model with 

on(coin,black)∧on(coin,white) is a model of a 
greater formula (w.r.t to predicate on) then both 
possible models

• Meaning that this model is the least upper bound 
of the 2 selected models

• So beside the circumscription we select (by 
curbing) the least upper bound models of all sets 
of models the circumscription contains.
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