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The Interplay of Knowledge and Action

When the agent entertains a plan for 
achieving some goal, he must consider not 
only whether the physical prerequisites of 
the plan have been satisfied, but also 
whether he has all the information 
necessary to carry out the plan.
Agent must be able to reason about what 
he can do to obtain necessary information 
that he lacks.



AI Planning

Artificial intelligence planning systems 
are usually based on the assumption 
that, if there is an action an agent is 
physically able to perform, and 
carrying out that action would result 
in achievement of a goal P, then the 
agent can achieve P.



The Test Notion

The essence of a test is that it is an 
action with a directly observable 
result that depends conditionally on 
an unobservable precondition.



The Instance of Test

In the use of litmus paper to test the 
pH of a solution, the observable result 
is whether the paper has turned red 
or blue, and the unobservable 
precondition is whether the solution is 
acid or alkaline.



Bad Attempt of the Test Formalization  

If we tried to formalize the result of such a test by 
making simple assertion about what the agent knows 
subsequent to the action, we would have to include 
the result that the agent knows whether the solution 
is acid or alkaline as a separate assertion from the 
result that he knows the color of the paper.
If we did this, however, we would completely miss the 
point that knowledge of the pH of the solution is 
inferred from other knowledge, rather than being a 
direct observation.
In effect, we would be stipulating what actions can be 
used as tests, rather than creating a formalism within 
which we can infer what actions can be used as tests.   



The Interplay of Knowledge and Action

Finally ,we must be able to infer that, if the 
agent knows

That the test took place
The observable result of the test
How the observable result depends on the 
unobservable precondition

Then we will know the unobservable precondition.



The Conclusion of the Interplay of 
Knowledge and Action

From the preceding discussion we can conclude that any 
formalism that enables us to draw inferences about 
tests at this level of detail must be able to represent the 
following types of assertions:

1. After A performs Act, he knows whether Q is true.
2. After A performs Act, he knows that he has just 

performed Act.
3. A knows that Q will be true after he performs Act if and 

only if P is true now.
4. If (1),(2) and (3) are true,  then, after performing Act, 

A will know whether P was true before he performed 
Act.



Formal Theories of 
Knowledge



A Modal Logic of Knowledge
The first step in devising a formalism for 
reasoning about knowledge is to decide what 
general properties of knowledge we want that 
formalism to capture.



The properties of knowledge:

Anything that is known by someone must be 
true. If P is False, we would not want to say 
that anyone knows P.
If someone knows something, he knows that 
he knows it.



A Modal Logic of Knowledge

Probably the most important fact 
about knowledge that we will want to 
capture is that agent can reason on 
the basis of their knowledge.
All our examples depends on the 
assumption that, if an agent trying to 
solve a problem has all the relevant 
information, he will apply his 
knowledge to produce a solution.



A Modal Logic of Knowledge

The principle people normally use in 
reasoning about what other people know 
seems to be something like this:

If we can infer that something is a consequence of 
what someone knows, then , lacking information 
to the contrary, we will assume that the other 
person can draw the same inference.

We will make the simplifying assumption 
that agents actually do draw all logically 
valid inferences from their knowledge.



Common Knowledge

Finally, we will need to include the 
fact that these basic properties of 
knowledge are themselves common 
knowledge. 
By this we mean that everyone knows 
these, and everyone knows that 
everyone knows them, ad infinitum.



A Modal Logic of Knowledge
The language we will use initially is that of 
propositional logic, augmented by an 
operator Know and terms denoted agents.
The formula Know( A, P) is interpreted to 
mean that the agent denoted by the term A 
knows the proposition expressed by the 
formula P.
So, if John denoted John and Likes( Bill, 
Marry) means that Bill likes Mary, 
Know( John, Likes( Bill, Marry)) means that 
John knows that Bill likes Mary. 



The axioms of the logic are inductively The axioms of the logic are inductively 
defined as all instances of the following defined as all instances of the following 
schemata:schemata:

2. ( , )M Know A P P→

3. ( , ) ( ,( ( , )))M Know A P Know A Know A P→

4. ( ,( )) ( ( , ) ( , ))M Know A P Q Know A P Know A Q→ → →

M5. If  is an axiom, then ( , ) is an axiom.P Know A P

1. , such that  is an axiom of the ordinary
       propositional logic. 
M P P

Closed under the principle that:



The Theorems of the Logic:

The closure of the axioms under the inference 
rule modus ponens
defines the theorems of the system.
This system is very similar to those studied in 
modal logic. In fact, if A is held Fixed, the 
resulting system is isomorphic to the modal 
logic S4. We will refer to this system as the 
modal logic of knowledge.

→(from (P Q) and P, infer Q)



A Possible-Worlds Analysis of Knowledge

Kripke (1963) introduced the idea 
that a world should be regarded as 
possible, not absolutely, but only 
relative to other worlds.
The relation of one world’s being a 
possible alternative to another is 
called the accessibility relation.



A Possible-Worlds Analysis of Knowledge
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To analyze statements of the form Know( A, P), we will 
introduce a relation K, such that K(A, W , W ) means 

that the possible world W  is compatible or consistent 

with what A knows in the possible wor

.
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In other worlds, for all that A knows in W , he might just

as well be in W . It is the set of worlds {w | K(A, W , w )} 

that we will use to characterize what A knows in W



A Possible-Worlds Analysis of Knowledge

We will discuss A’s knowledge in W in 
terms of this set, the set of states of 
affairs that are consistent with his 
knowledge in W, rather than in terms 
of the set of propositions he knows. 



A knows that P but A doesn’t know whether Q.
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A Possible-Worlds Analysis of Knowledge

Some of the properties of knowledge can 
be captured by putting constraints on the 
accessibility relation K.

  

∀
0

0 1 1 0 0

For instance, requiring that the actual world
W  be compatible with what each knower
knows in W , i.e., a (K(a ,W ,W )), is 
equivalent to saying that anything that is 
known is true.



A Possible-Worlds Analysis of Knowledge

The definition of K implies that , if A 
knows that P in     , then P must be 
true in every world     such that 

To capture the fact that agents can 
reason with their knowledge, we will 
assume the converse is also true.

0W
1W

0 1K(A,W ,W ).



P is true in every world that is 
compatible with what A knows.
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If A knows that P, then he knows that he knows that P
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P

P

P

P

P

P

BK

AK

BK

BK

AK BK
0W

2W

1W



A Possible-Worlds Analysis of Knowledge

Given these constraints and assumptions, 
whenever we want to assert or deduce 
something that would de expressed in the 
modal logic of knowledge by Know(A,P), we 
can instead assert or deduce that P is true 
in every world that is compatible with what 
A knows.
We can express this in ordinary first-order 
logic, by treating possible worlds as 
individuals, so that K is just an ordinary 
relation.



A Possible-Worlds Analysis of Knowledge

We will therefore introduce an operator 
T such that T(W,P) means that the 
formula P is true in the possible world 
W.
If we let W denote the actual world, we 
can convert the assertion Know(A,P) 
into

1 1 1( ( , , ) ( , ))w K A W w T w P∀ →



A Possible-Worlds Analysis of Knowledge

It may seem that we have not made any real 
progress, although we have gotten rid of one 
nonstandard operator, Know, we have introduced 
another one, T.
However, T has an important property that Know does 
not. Namely, T “distributes” over ordinary logical 
operators. So we can transform any formula so that T 
is applied only to atomic formulas.
We can then turn T into an ordinary first-order 
relation by treating all the atomic formulas as names 
of atomic propositions, or we can get rid of T by 
replacing the atomic formulas with predicates on 
possible worlds.



Knowledge, Equality and Quantification

The formalization of knowledge presented 
so far is purely propositional; a number of 
additional problems arise when we attempt 
to extend the theory to handle equality and 
quantification.
For instance, we are not entitled to infer 
Know(A,P(C)) from B=C and Know(A,P(B)) 
because A might not know that the identity 
holds.  



The Equality
The possible-world analysis of knowledge provides a 
very neat solution to this problem, once we realize 
that a term can denote different objects in different 
possible worlds.
For instance, if B is the expression “the number of 
planets” and C is “nine”, then, although B=C is true in 
the actual world, it would be false in a world in which 
there was a tenth planet.
Thus, we will say that an equality statement such as 
B=C is true in a possible world W just in case the 
denotation of the term B in W is the same as the 
denotation of the term C in W. 



The Equality

Given this interpretation, the inference of 
Know(A,P(C)) from B=C and Know(A,P(B)) 
will be blocked (as it should be).
To infer Know(A,P(C)) from Know(A,P(B)) 
by identity substitution, we would have to 
know that B and C denote the same object 
in every world compatible with what A 
knows, but the truth of B=C guarantees 
only that they denote the same object in 
the actual world.



The Equality

On the other hand, if Know(A,P(B)) 
and Know(A,(B=C)) are both true, 
then in all worlds that are compatible 
with what A knows, the denotation of 
B is in the extension of P and is the 
same as the denotation of C; hence, 
the denotation of C is in the extension 
of P. From this we can infer that 
Know(A,P(C)) is true.



The Quantification
The introduction of quantifiers also causes 
problems.
For example, consider the sentence “Ralph 
knows that someone is a spy”.
This sentence has at least two interpretations:

One is that Ralph knows that there is at least 
one person who is a spy, although he may have 
no idea who that person is.
The other interpretation is that there is a 
particular person whom Ralph knows to be a 
spy.



The Quantification

This ambiguity can be explain as a 
difference of scope.
The idea is that indefinite noun 
phrases such as “someone” can be 
analyzed in context by paraphrasing 
sentences of the form P(“someone”) 
as “There exists a person x such that 
P(x)”, or, more formally,  ∃x(Person(x)^P(x))



The Quantification

So in the sentence “A knows that 
someone is a P” we can eliminate 
“someone” by applying the rule to 
either the whole sentence or only the 
subordinate clause, “someone is a P”.



The Quantification

So we have two representation for the 
sentence “Ralph knows that someone is 
a spy”.

(1) ( , ( ( ) ( )))Know Ralph x Person x Spy x∃ ∧

(2) ( ( ) ( , ( )))x Person x Know Palph Spy x∃ ∧



The Quantification
Another option to write formula similar to (2) is to 
point out that a sentence of the form “A knows 
who (or what) B is” intuitively seems to be 
equivalent to “there is someone (or something) 
that A knows to be B”. But this can be 
represented formally as  
To take a specific example, ”John knows who the 
President is” can be paraphrased as “There is 
someone whom John knows to be the President”, 
in formal representation:

(3) ( ( , ( President)))x Know John x∃ =

∃x(Know(A,(x=B))



The Quantification
The possible-world analysis, however, provides us with a 
very natural interpretation that            is true just in 
case there is some value x satisfies P.
If P is Know(A,Q(x)), then a value for x satisfies P(x) 
just in case that value satisfies Q(x) in every world that 
is compatible with what A knows. So (2) is satisfied if 
there is a particular person who is a spy in every world 
that is compatible with what A knows. That is, in every 
such world the same person is a spy. 
On the other hand, (1) is satisfied if, in every world 
compatible with that A knows, there is some person who 
is a spy, but it does not have to be the same one in each 
case.

∃x(P(x))



The Quantification
For instance, the proposition that John knows 
that 321-1234 is Bill’s telephone number might 
be represented as

which does not involve quantifying in. 
We would want to able to infer from this, 
however, that John knows what Bill’s telephone 
number is, which would be represented as

(4) Know(John,(321-1234=Phone-num(Bill)))

 ∃(5) x(Know(John,(x=Phone-num(Bill))))



The Quantification
It might seem that (5) can be derived from 
(4) simply by the logical principle of 
existential generalization, but that principle is 
not always valid in knowledge contexts. 
Suppose that (4) were not true, but that 
instead John simply knew that Mary and Bill 
had the same telephone number. We could 
represent this as

(6) Know(John,(Phone-num(Mary)=Phone-num(Bill)))



The Quantification

It is clear that we would not want to 
infer from (6) that John knows what 
Bill’s telephone number is – yet, if 
existential generalization were 
universally valid in knowledge 
contexts, this inference would be 
valid.



Standard Identifiers
It therefore seems that, in knowledge contexts, 
existential generalization can applied to some 
referring expressions (“321-1234”), but not to 
others (“Mary’s telephone number”).
We will call the expressions to which existential 
generalization can applied standard identifiers, 
since they seem to be the ones an agent would 
use to identify an object for another agent.



Rigid Designators

Standard identifiers are simply terms that 
have the same denotations in every 
possible world.
Following Kripke (1972) we will call terms 
that have the same denotation in every 
possible world rigid designators.
The conclusion that standard identifiers are 
rigid designators seems inescapable. 



A Possible-Worlds Analysis of 
Action



A Possible-Worlds Analysis of Action

In the precedent section, we have present 
a framework for describing what someone 
knows in terms of possible world.
To characterize the relation of knowledge to 
action, we need a theory of action in these 
same terms.
Most AI programs that reason about action 
are based on a view of the world as a set of 
possible states of affairs, with each action 
determining a binary relation between 
states of affairs – one being the outcome of 
performing the action in the other.



A Possible-Worlds Analysis of Action

Knowledge about the past and future can be handled by 
modal tense operators, with corresponding accessibility 
relations between possible worlds. 

1 2
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We could have a tense oparator Future such that Future(P) 
means that P will be true at some time to come. If we let F 
be an accessibility relation such that F(W ,W ) means that 
the world W  lies in th 1

1
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e future of the world W , then we 
can define Future(P) to be true in W  just in case there is 
some W  such that F(W ,W ) holds and P is true in W .



The Situation Calculus
The situation calculus is a first-order language in 
which predicates that can vary in truth-value over 
time are given an extra argument to indicate 
what situations they hold in, with a function 
Result that maps an agent, an action, and a 
situation into the situation that result from the 
agent’s performance of the action in the first 
situation.
Statements about the effects of actions are then 
expressed by formulas like P(Result(A,Act,S)), 
which means that P is true in the situation that 
results from A’s performing Act in situation S.



A Possible-Worlds Analysis of Action

To integrate these ideas into our logic 
of knowledge, we will reconstruct the 
situation the situation calculus as a 
modal logic.
In parallel to the operator Know for 
talking about knowledge, we 
introduce an object language 
operator Res for talking about the 
results of events. 



A Possible-Worlds Analysis of Action

Res will be a two-place operator whose first 
argument is a term denoting an event, and 
whose second argument is a formula.
Res(E,P) will mean that it is possible for the 
event E to occur and that, if it did, the 
formula P would then be true.
The possible-world semantics for Res will 
be specified in terms of an accessibility 
relation R, parallel to K, such that 
means that     is the situation that would 
result from the event :E happening    . 

1 2R(:E,W ,W )

1W
2W



A Possible-Worlds Analysis of Action

 ∀ ∧ →1 2 3 1 1 1 2 1 1 3 2 3R1. w ,w ,w ,e ((R(e ,w ,w ) R(e ,w ,w )) (w =w ))

∀
≡ ∃ ∧

1 1 1

1 1 1 2 1 1 1 2 2 1

R2. w ,t ,p

       (T(w ,Res(t ,p )) w (R(D(w ,t ),w ,w ) T(w ,p )))



A Possible-Worlds Analysis of Action

The type of event we will normally be concerned 
with is the performance of an action by an agent.
We will let Do(A,Act) be a description of the event 
consisting of the agent denoted by A performing 
the action denoted by Act.
We will want Do(A,Act) to be the standard way to 
referring to the event of A’s carrying out the 
action Act, so Do will be a rigid function.
Hence, Do(A,Act) will be a rigid designator of an 
event if A is a rigid designator of an agent and 
Act a rigid designator of an action. 



0W

1:AK
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2:Do(:A ,:Act)R

2:Do(:A ,:Act)R

≡
∀ →∃ ∧

1 2

1 1 0 1 2 2 1 2 2

True(Know(A ,Res(Do(A ,Act),P)))

w (K(:A ,W ,w ) w (R(:Do(:A ,:Act),w ,w ) T(w ,P)))



Complex Combinations of Actions
∀

→
∧

→

1 1 2 3 1

1 1

1 1 1 2 3 1 1 2

1 1

1 1 1 2 3 1 1 3

R3. w ,t ,t ,t ,p

      ((T(w ,p )

         (D(w ,Do(t ,If(p ,t ,t )))=D(w ,Do(t ,t ))))

       (¬T(w ,p )

         (D(w ,Do(t ,If(p ,t ,t )))=D(w ,Do(t ,t )))))

 ∀ 1 1 2 1

1 1 1 2

1 1 1 2 1 2

R4. w ,t ,t ,p

      (D(w ,Do(t ,While(p ,t )))=

       D(w ,Do(t ,If(p ,(t ;While(p ,t )),Nil)))



Complex Combinations of Actions

To define the denotation of events that 
consist or carrying out action sequences, 
we need some notation for talking about 
sequences of events.
First, we will let “;” be a polymorphic 
operator in the object language, creating 
descriptions of event sequences in addition 
to action sequences.



Complex Combinations of Actions

Speaking informally, if E1 and E2 are event 
descriptions, then (E1;E2) names the event 
sequence consisting of E1 following by E2, 
just as (Act1;Act2) names the action 
sequence consisting of Act1 followed by 
Act2.
In the metalanguage, event sequences will 
be indicated with angle brackets, so that 
<:E1,:E2> will mean :E1 followed by :E2. 



Complex Combinations of Actions

 ∀ 1 1 2 3

1 1 2 3

1 1 2 1 1 3

R5. w ,t ,t ,t

      (D(w ,Do(t ,(t ;t )))=

       D(w ,Do(t ,t );Do(@(D(w ,t )),t ))))

 

   

∀
→

1 2 1 2

1 1 1 2

1 1 2 1 1 2 2

R6. w ,w ,t ,t

      (R(D(w ,t ),w ,w )

     (D(w ,(t ;t ))= D(w ,t ),D(w ,t ) ))



Complex Combinations of Actions

Finally, we need to define the accessibility 
relation R for event sequences and for 
events in which the null action is carried 
out.

 ∀
≡ ∃ ∧

1 2 1 2

1 2 1 2 3 1 1 3 2 3 2

R7. w ,w ,e ,e

      (R( e ,e w ,w ) w (R(e ,w ,w ) R(e ,w ,w )))

∀ 1 1 1 1 1R8. w ,a (R(:Do(a ,:Nil),w ,w ))



An Integrated Theory of 
knowledge and Action



The Dependence of Action on Knowledge

As we point out in the introduction, 
knowledge and action interact in two 
principal ways: 

Knowledge is often required prior to 
taking action
Actions can change what is known.



The Dependence of Action on Knowledge

Our main thesis is that the knowledge 
prerequisites for an action can be 
analyzed as a matter of knowledge 
what action to take.

  



The Dependence of Action on Knowledge

Recall the example of trying to open a locked 
safe.
Why is it that, for an agent to achieve this goal 
by using the plan “Dial the combination of the 
safe”, he must to know the combination?
The reason is that an agent could know that 
dialing the combination of the safe would result 
in the safe’s being open, but still not know what 
to do because he does not know what the 
combination of safe is.

 



The Dependence of Action on Knowledge

  

In our possible-world semantics of knowledge , the 
usual way of knowing what entity is referred to by 
a description B is by having some description C that 
is a rigid designator, and by knowing that B=C.
In particular, knowing what action is referred to by 
an action description means having a rigid 
designator for the action described.
But, if this is all the knowledge that is required for 
carrying out the action, then a rigid designator for 
an action must be an executable description of the 
action-in the same sense that a computer program 
is an executable description of a computation to an 
interpreter for the language in which the program is 
written.



The Dependence of Action on Knowledge

In many of these cases, if an agent knows 
the general procedure and what objects the 
procedure is to be applied to, then he 
knows everything that is relevant to the 
task.
That is, we assume that anyone who knows 
what combination he is to dial and what 
safe he is to dial it on thereby knows what 
action he is to perform. 



The Dependence of Action on Knowledge

There are other procedures we might also 
wish to assume that any one could 
perform, but that cannot be represented as 
rigid functions.
Suppose that, in the blocks world, we let 
Puton(B,C) denote the action of putting B 
on C. Even though we would not want to 
question anyone’s ability to perform Puton 
in general, knowing what objects B and C 
are will not de sufficient to perform 
Puton(B,C); knowing where they are is also 
necessary.



We could have a special axiom stating that 
knowing what action Puton(B,C) is requires 
knowing where B and C are, but this will be 
superfluous if we simply assume that everyone 
knows the definition of Puton in terms of more 
primitive actions.
If we define Puton(X,Y) as something like:

The Dependence of Action on Knowledge

(Movehand(Location(X));
 Grasp;
 Movehand(Location(Top(Y)));
 Ungrasp;)



To formalize this theory, we will introduce a 
new object language operator Can.
Can(A,Act,P) will mean that A can achieve P by 
performing Act.
We will not give a possible-world semantics for 
Can directly; instead we will give a definition of 
Can in terms of Know and Res.

The Dependence of Action on Knowledge

∀ ∃ ∧ →a( x(Know(a,((x=Act) Res(Do(a,Act),P))))
     Can(a,Act,P))



Complex Action
For an agent to be able to achieve a goal by 
performing a complex action, all that is really 
necessary is that he know what to do first, and 
that he know that he will know what to do at 
each subsequent step.

∀ ∃ ∧

→

1

1

a( x(Know(a,((Do(a,(x;Act ))=Do(a,Act)

                        Res(Do(a,x),Can(a,Act ,P)))))

     Can(a,Act,P))



The Dependence of Action on Knowledge

Finally, with the following metalanguage axiom 
we can state that these are only two conditions 
under which an agent can use a particular action 
to achieve a goal:

 ∀
→
≡

∨

∃

1 1 2 3 1

2 1 1

1 1 3 1

1 1 3 2 3 1

4 1 1 2 4 2 3

C1. w ,t ,t ,t ,p

       ((t =@(D(w ,t )))

       (T(w ,Can(t ,t ,p ))

       (T(w ,Exist(X,Know(t ,And(Eq(X,t ),Res(Do(t ,t ),p )))))

       t (T(w ,Exist(X,Know(t ,And(Eq(Do(t ,(X;t )),Do(t ,t )),

2

2 4 1

                                                    Res(Do(t ,X),

                                                           Can(t ,t ,p ))))))))))

   



The Dependence of Action on Knowledge

A knows what action Act is and knows that P 
would be true as a result of his doing Act
Or there is an action description               such 
that, for some action X, A knows that his doing X 
followed by        is the same event as his Act and 
knows that his doing X would result his being able 
to achieve P by doing        .      

3

1

1 2 1Letting t =A, t =A  and t =Act, C1 says that, for any formula P, 

if A  is the standard identifier of the agent denoted by A, then A 

can achieve P by doing Act if and only if : 

4 1t =Act

1Act

1Act



An Integrated Theory of knowledge 
and Action

 

                   :

∀
→

∃ ∧
1

2 1 1 1 1 1, 2

2 1

D1.

        (:Safe(x )

        w (R(:Do(a ,:Dial(:Comb(w ,x ),x )),w w )

Open(w ,x )))

1 1 1w ,a ,x

As a simple illustration of these concept, we will 
show how to derive the fact that an agent can open 
a safe, given the premise that he knows the 
combination.
To do this, the only additional fact we need is that, if 
an agent does dial the correct combination of safe, 
the safe will the be open: 



Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))

0

1

1

1

1. T(W ,                                                           ASS

       And(Safe(@(x )),

              Exist(Y,Know(A,Eq(Y,Comb(@(x )))))))) 

2. :Safe(x )                                           

∀ →1 0 0, 1

1 1

          1, L2, L9

3. w (K(:A(W ),W w )                                 1, L2, L7, K1, L11,

         (:C=:Comb(w ,x )))                              L13, L10, L12

0 0 14. K(:A(W ),W ,w )                                         ASS

1 15. :C=:Comb(w ,x )                                      3,4

1 1 1 1

1

1

6. :Dial(:C,x )=:Dial(:Comb(w ,x ),x )               5

7. T(w ,                                                          L10, L12, L12a,

        Eq(@(:Dial(:C,x )),                                  L13 

1 1

 

              Dial(Comb(@(x )),@(x ))))  



Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))

 

            

∃

∧

2 0

1 1 1

1 2

2 1

1

8. w (R(:Do(:A(W ),                                    2, D1

                       :Dial(:Comb(w ,x ),x )),

                w ,w )

        :Open(w ,x )))  

9. T(w ,                         

       

0

1 1

1

                              L11, L10, L12a, 

       Res(Do(@(D(W ,A)),                             L9, L2

                     Dial(Comb(@(x )),@(x ))),

       Open(@(x )))) 



Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))

1 1

1 1

0

1 1

10. T(w ,And(Eq(@(:Dial(:C,x )),                   7, 9, L2        

                     Dial(Comb(@(x )),@(x ))),

                 Res(Do(@(D(W ,A)), 

                             Dial(Comb(@(x )),@(x )

 →
1

1 1

1

)),

                        Open(@(x )))))

                                   DIS(4,10)

    T(w ,And(Eq(@(:Dial(:C,x )),                        

                   Dial(Comb(@(x )),@(

0 0 111. K(: A(W ),W ,w )

1

0

1 1

1

x ))),

               Res(Do(@(D(W ,A)), 

                           Dial(Comb(@(x )),@(x ))),

                     Open(@(x )))))



Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))

0

1

12. T(W ,                                                     11, L11, K1

          Know(A, 
                     And(Eq(@(:Dial(:C,x )),                  

                                   Dial(Comb(@( 1 1

0

1 1

1

x )),@(x ))),

                             Res(Do(@(D(W ,A)), 

                                           Dial(Comb(@(x )),@(x ))),

                                    Open(@(x ))))))



Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))

0

1

13. T(W ,Exist(X,                                         12, L7

                      Know(A,
                               And(Eq(X,
                                           Dial(Comb(@(x )),

       1

0

1

                                           @(x ))),             

                                      Res(Do(@(D(W ,A)),

                                                  Dial(Comb(@(x )),

             1

1

                                            @(x ))), 

                                             Open(@(x )))))



Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))

0

1 1

1

0

14. T(W ,                                                        13,C1

         Can(A,
                Dial(Comb(@(x )),@(x )),

                Open(@(x ))))                              

15. T(W ,       

       →
1

1

0 1 1 1

                                                  DIS(1,14)

        And(Safe(@(x ),

               Exist(Y,Know(A,Eq(Y,Comb(@(x ))))))))

      T(W ,Can(A,Dial(Comb(@(x ))@(x )),Open(@(x ))))



16. True(All(X,                                                                    15, L4, L8, L1
                    Imp(And(Safe(X),
                                   Exist(Y,
                                             Know(A,
                                                         Eq(Y,Comb(X))))))             
                            Can(A,Dial(Comb(X),X),Open(X))))

Prove: True(All(X,Imp(And(Safe(X),Exist(Y,Know(A,Eq(Y,Comb(X))))))
                                      Can(A,Dial(Comb(X),X),Open(X))))



The effect of a noninformative 
action on the agent’s knowledge
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The effect of a informative action 
on the agent’s knowledge
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The Effect of Action on Knowledge

∀
→

∀ ≡

∃ ∧ ∧

≡

1 2 1

1 1 2

3 1 2 3

4 1 1 4 1 4 3

2 3

T1. w ,w ,a

       (R(Do(a ,:Test),w ,w )

        w (K(a ,w ,w )

               ( w (K(a ,w ,w ) R(:Do(a ,:Test),w ,w ))

               (:Red(w ) :Red(w )))))



Given:True(Know(A,Imp(Acid,Res(Do(A,Test),And(Acid,Red)))))
          True(Know(A,Imp(Not(Acid),Res(Do(A,Test),
          And(Not(Acid),Not(Red))))))
          True(Acid)
Prove: True(Res(Do(A,Test),Know(A,Acid)))



                        

∀ →
→

∃ ∧

1 0 1

1

2 1 2

1. w (K(:A,W ,w )                              Given, L1, L4, R2,

          (:Acid(w )                                 L2, L9, L12, L11a

           w (R(:Do(:A,:Test),w ,w )

:A ∧
∀ →

→
∃ ∧

2 2

1 0 1

1

2 1 2

cid(w ) :Red(w ))))

2. w (K(:A,W ,w )                            Given, L1, L4, R2, L2,

          (¬:Acid(w )                             L6, L9, L12, L11a

          w (R(:Do(:A,:Test),w ,w )

         )∧2 2        ¬:Acid(w ¬:Red(w ))))



03. :Acid(W )                                             L1, L9

            :

→

∃ ∧
∧

0

2 1 2

2

4. :Acid(W )

   w (R(:Do(:A,:Test),w ,w )                1, K2

:Red(w ))  2Acid(w )
0 15. R(:Do(:A,:Test),W ,W )                       3,4

16. :Red(W )                                             3,4
∀ ≡

∃ ∧
∧

≡

2 0 2

3 0 3

1 2

1 2

7. w (K(:A,W ,w )                             5, T1

         ( w (K(:A,W ,w )

                 R(:Do(:A,:Test),w ,w )

         (:Red(W ) :Red(w ))))



1 28. K(:A,W ,w )                                   ASS

0 39. K(:A,W ,W )                                   7, 8

3 210. R(:Do(:A,:test),W ,w )                 7, 8
≡1 211. :Red(W ) :Red(w )                        7, 8

212. :Red(w )                                      6, 11
→

∃ ∧

∧

313. ¬: Acid(W )

4 3 4

4 4

                              2, 9

    w (R(:Do(:A,:Test),W ,w )

          ¬:Acid(w ) ¬:Red(w ))



314. ¬:Acid(W )                                   ASS

3 415. R(:Do(:A,:Test),W ,W )                13, 14
416. ¬:Red(W )                                    13, 14

2 417. w =W                                         15, R1
218. ¬:Red(w )                                    16, 17

19. False                                            12, 18
320. :Acid(W )                                       DIS(14,19)
→

∃ ∧
∧

3

4 3 4

4 4

21. :Acid(W )                                           1, 9

     w (R(:Do(:A,:Test),W ,w )

           :Acid(w ) :Red(w ))



           

28. True(Res(Do(A,Test),Know(A,Acid)))     27, L9, L11a,L12,
                                                                 K2,R2,L1

3 422. R(:Do(:A,:Test),W ,W )                         20, 21

423. :Acid(W )                                              20, 21

2 424. w =W                                                   15, 22

225. :Acid(w )                                               23, 24
→1 2 226. K(:A,W ,w ) :Acid(w )                         DIS(8, 25)

∧
∀ →

0 1

2 1 2 2

27. R(:Do(:A,:Test),W ,W )                        5, 26

    w (K(:A,W ,w ) :Acid(w ))



The effect of the test on the agent’s knowledge
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