
Temporal Logics I: Theory

Daniel Shahaf

Tel-Aviv University

November 2007



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

1 / 61 c© Daniel Shahaf, Nov 2007

Table of Contents

1 Linear-time Temporal Logic

2 Büchi Automata

3 Automata Recognizing Interpretations

4 Extensions of Linear-time Temporal Logic

5 Branching-time Temporal Logic

Next week: Applications.



Temporal
Logics I:
Theory

Introduction
Motivation

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

2 / 61 c© Daniel Shahaf, Nov 2007

Motivation for Temporal Logics

Classical logic is absolute: everything is either true or false.
And if it is true, it is always true.

Life is more complicated.
Situations change over time.
Today affects tomorrow.
Need to know what consequences actions today might
have tomorrow.
It is necessary to formalize logic of time-disparate events.
Such logics are called temporal logics.



Temporal
Logics I:
Theory

Introduction
Motivation

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

2 / 61 c© Daniel Shahaf, Nov 2007

Motivation for Temporal Logics

Classical logic is absolute: everything is either true or false.
And if it is true, it is always true.
Life is more complicated.
Situations change over time.
Today affects tomorrow.

Need to know what consequences actions today might
have tomorrow.
It is necessary to formalize logic of time-disparate events.
Such logics are called temporal logics.



Temporal
Logics I:
Theory

Introduction
Motivation

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

2 / 61 c© Daniel Shahaf, Nov 2007

Motivation for Temporal Logics

Classical logic is absolute: everything is either true or false.
And if it is true, it is always true.
Life is more complicated.
Situations change over time.
Today affects tomorrow.
Need to know what consequences actions today might
have tomorrow.
It is necessary to formalize logic of time-disparate events.
Such logics are called temporal logics.



Temporal
Logics I:
Theory

Introduction
Motivation

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

3 / 61 c© Daniel Shahaf, Nov 2007

What Are Temporal Logics?

Logics that formalize the notion of “time”.
It’s interesting when time is infinite.

Many variants:

Branching- or Linear-time.
Points or Intervals.
Discrete or Continuous.

Past or Future.
Global or Compositional.
Propositional or First-order.

Uses: concurrent programs verification, circuit modelling,
the Elevator Problem. . .



Temporal
Logics I:
Theory

Introduction
Motivation

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

3 / 61 c© Daniel Shahaf, Nov 2007

What Are Temporal Logics?

Logics that formalize the notion of “time”.
It’s interesting when time is infinite.

Many variants:

Branching- or Linear-time.
Points or Intervals.
Discrete or Continuous.

Past or Future.
Global or Compositional.
Propositional or First-order.

Uses: concurrent programs verification, circuit modelling,
the Elevator Problem. . .



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

4 / 61 c© Daniel Shahaf, Nov 2007

1 Linear-time Temporal Logic
Examples
Syntax
Semantics
Comparison to Classical Logic



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

5 / 61 c© Daniel Shahaf, Nov 2007

Linear-time Temporal Logic

Linear-time temporal logic (LTL) is a discrete-time
propositional logic.
Time has a unique start moment, but no end.

Not perfect:
No past-oriented operators.
Continuous-time would be better.

Formally, an instance of modal logic.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

5 / 61 c© Daniel Shahaf, Nov 2007

Linear-time Temporal Logic

Linear-time temporal logic (LTL) is a discrete-time
propositional logic.
Time has a unique start moment, but no end.
Not perfect:

No past-oriented operators.
Continuous-time would be better.

Formally, an instance of modal logic.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

6 / 61 c© Daniel Shahaf, Nov 2007

Intuition

LTL is an extension of classical logic.
It removes nothing, and adds four new connectives:

� Unary, read ‘always’. Expresses that
something is true henceforth until the
end of time.

♦ Unary, read ‘eventually’. Describes things
that will definitely happen some day, but
does not say when.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

6 / 61 c© Daniel Shahaf, Nov 2007

Intuition

LTL is an extension of classical logic.
It removes nothing, and adds four new connectives:

� Unary, read ‘always’. Expresses that
something is true henceforth until the
end of time.

♦ Unary, read ‘eventually’. Describes things
that will definitely happen some day, but
does not say when.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

6 / 61 c© Daniel Shahaf, Nov 2007

Intuition

LTL is an extension of classical logic.
It removes nothing, and adds four new connectives:

© Unary, read ‘nexttime’. Talks about what
will (or will not) happen at the next point
in time.
In our semantics, a ‘next point in time’ will
always be well-defined.

U Binary, read ‘until’. Indicates that one thing
will not become false before some other
thing becomes true.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

6 / 61 c© Daniel Shahaf, Nov 2007

Intuition

LTL is an extension of classical logic.
It removes nothing, and adds four new connectives:

� ‘always’
♦ ‘eventually’

© ‘nexttime’
U ‘until’

With these connectives we will be able to discuss issues
such as:

“The dog ate my homework after I did them.”
“If you don’t eat, a cop will come for you.”
“Every day it rains in London.”
“I will continue the diet until I am 70 kg.”
“I will start studying tomorrow.”



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

6 / 61 c© Daniel Shahaf, Nov 2007

Intuition

LTL is an extension of classical logic.
It removes nothing, and adds four new connectives:

� ‘always’
♦ ‘eventually’

© ‘nexttime’
U ‘until’

With these connectives we will be able to discuss issues
such as:
“The dog ate my homework after I did them.”
“If you don’t eat, a cop will come for you.”
“Every day it rains in London.”
“I will continue the diet until I am 70 kg.”
“I will start studying tomorrow.”



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

7 / 61 c© Daniel Shahaf, Nov 2007

The Two Flavours of U

Two common interpretations to U:
Strong until (“Us”): ϕUsψ implies ♦ψ.
Weak until (“Uw”): �ϕ implies ϕUwψ.

Both are used.

They are equivalent.
Each can be expressed in terms of the other.

ϕUsψ ≡ (ϕUwψ) ∧ ♦ψ
ϕUwψ ≡ (ϕUsψ) ∨�ϕ



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

7 / 61 c© Daniel Shahaf, Nov 2007

The Two Flavours of U

Two common interpretations to U:
Strong until (“Us”): ϕUsψ implies ♦ψ.
Weak until (“Uw”): �ϕ implies ϕUwψ.

Both are used.
They are equivalent.
Each can be expressed in terms of the other:

ϕUsψ ≡ (ϕUwψ) ∧ ♦ψ
ϕUwψ ≡ (ϕUsψ) ∨�ϕ



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

8 / 61 c© Daniel Shahaf, Nov 2007

Examples

Let ϕ = “Socrates is alive”. Suppose that ϕ holds at t = 0.

“Socrates is mortal”:

♦¬ϕ.
Better:

ϕUs(�¬ϕ).

“Socrates is immortal”:

�ϕ.

“Socrates is immortal”:

ϕUwF.

“Socrates will be born tomorrow”:

¬ϕ ∧©ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

8 / 61 c© Daniel Shahaf, Nov 2007

Examples

Let ϕ = “Socrates is alive”. Suppose that ϕ holds at t = 0.

“Socrates is mortal”: ♦¬ϕ.
Better:

ϕUs(�¬ϕ).
“Socrates is immortal”:

�ϕ.

“Socrates is immortal”:

ϕUwF.

“Socrates will be born tomorrow”:

¬ϕ ∧©ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

8 / 61 c© Daniel Shahaf, Nov 2007

Examples

Let ϕ = “Socrates is alive”. Suppose that ϕ holds at t = 0.

“Socrates is mortal”: ♦¬ϕ.
Better: ϕUs(�¬ϕ).

“Socrates is immortal”:

�ϕ.
“Socrates is immortal”:

ϕUwF.

“Socrates will be born tomorrow”:

¬ϕ ∧©ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

8 / 61 c© Daniel Shahaf, Nov 2007

Examples

Let ϕ = “Socrates is alive”. Suppose that ϕ holds at t = 0.

“Socrates is mortal”: ♦¬ϕ.
Better: ϕUs(�¬ϕ).

“Socrates is immortal”: �ϕ.
“Socrates is immortal”:

ϕUwF.
“Socrates will be born tomorrow”:

¬ϕ ∧©ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

8 / 61 c© Daniel Shahaf, Nov 2007

Examples

Let ϕ = “Socrates is alive”. Suppose that ϕ holds at t = 0.

“Socrates is mortal”: ♦¬ϕ.
Better: ϕUs(�¬ϕ).

“Socrates is immortal”: �ϕ.
“Socrates is immortal”: ϕUwF.
“Socrates will be born tomorrow”:

¬ϕ ∧©ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

8 / 61 c© Daniel Shahaf, Nov 2007

Examples

Let ϕ = “Socrates is alive”. Suppose that ϕ holds at t = 0.

“Socrates is mortal”: ♦¬ϕ.
Better: ϕUs(�¬ϕ).

“Socrates is immortal”: �ϕ.
“Socrates is immortal”: ϕUwF.
“Socrates will be born tomorrow”: ¬ϕ ∧©ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

9 / 61 c© Daniel Shahaf, Nov 2007

Properties of the Temporal Operators

Duality: �¬ϕ ≡ ¬♦ϕ

Commutativity: ©�ϕ ≡ �©ϕ (and likewise for ♦).
Distributivity: ©(ϕUψ) ≡ (©ϕ)U(©ψ)
Distributivity: (p ∧ q)Usr ≡ (pUsr) ∧ (qUsr)
Idempotency: ��ϕ ≡ �ϕ, ♦♦ϕ ≡ ♦ϕ.

The compounds ‘�♦’ and ‘♦�’ are idempotent as well.

Universality of Us: ♦ϕ ≡ TUsϕ.

=⇒ {¬,∧,©,Us} is universal.

Fixpoint characterizations:
♦ϕ ≡ ϕ ∨©♦ϕ, �ϕ ≡ ϕ ∧©�ϕ,
ϕUψ ≡ ψ ∨ (ϕ ∧©(ϕUψ)).
ϕ ∧�(ϕ→©ϕ)→ �ϕ



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

9 / 61 c© Daniel Shahaf, Nov 2007

Properties of the Temporal Operators

Duality: �¬ϕ ≡ ¬♦ϕ

Commutativity: ©�ϕ ≡ �©ϕ (and likewise for ♦).
Distributivity: ©(ϕUψ) ≡ (©ϕ)U(©ψ)
Distributivity: (p ∧ q)Usr ≡ (pUsr) ∧ (qUsr)
Idempotency: ��ϕ ≡ �ϕ, ♦♦ϕ ≡ ♦ϕ.

The compounds ‘�♦’ and ‘♦�’ are idempotent as well.
Universality of Us: ♦ϕ ≡ TUsϕ.
=⇒ {¬,∧,©,Us} is universal.

Fixpoint characterizations:
♦ϕ ≡ ϕ ∨©♦ϕ, �ϕ ≡ ϕ ∧©�ϕ,
ϕUψ ≡ ψ ∨ (ϕ ∧©(ϕUψ)).
ϕ ∧�(ϕ→©ϕ)→ �ϕ



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

9 / 61 c© Daniel Shahaf, Nov 2007

Properties of the Temporal Operators

Duality: �¬ϕ ≡ ¬♦ϕ

Commutativity: ©�ϕ ≡ �©ϕ (and likewise for ♦).
Distributivity: ©(ϕUψ) ≡ (©ϕ)U(©ψ)
Distributivity: (p ∧ q)Usr ≡ (pUsr) ∧ (qUsr)
Idempotency: ��ϕ ≡ �ϕ, ♦♦ϕ ≡ ♦ϕ.

The compounds ‘�♦’ and ‘♦�’ are idempotent as well.
Universality of Us: ♦ϕ ≡ TUsϕ.
=⇒ {¬,∧,©,Us} is universal.
Fixpoint characterizations:
♦ϕ ≡ ϕ ∨©♦ϕ, �ϕ ≡ ϕ ∧©�ϕ,
ϕUψ ≡ ψ ∨ (ϕ ∧©(ϕUψ)).

ϕ ∧�(ϕ→©ϕ)→ �ϕ



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

9 / 61 c© Daniel Shahaf, Nov 2007

Properties of the Temporal Operators

Duality: �¬ϕ ≡ ¬♦ϕ

Commutativity: ©�ϕ ≡ �©ϕ (and likewise for ♦).
Distributivity: ©(ϕUψ) ≡ (©ϕ)U(©ψ)
Distributivity: (p ∧ q)Usr ≡ (pUsr) ∧ (qUsr)
Idempotency: ��ϕ ≡ �ϕ, ♦♦ϕ ≡ ♦ϕ.

The compounds ‘�♦’ and ‘♦�’ are idempotent as well.
Universality of Us: ♦ϕ ≡ TUsϕ.
=⇒ {¬,∧,©,Us} is universal.
Fixpoint characterizations:
♦ϕ ≡ ϕ ∨©♦ϕ, �ϕ ≡ ϕ ∧©�ϕ,
ϕUψ ≡ ψ ∨ (ϕ ∧©(ϕUψ)).
ϕ ∧�(ϕ→©ϕ)→ �ϕ



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

10 / 61 c© Daniel Shahaf, Nov 2007

Syntax of LTL

We define a formula recursively as follows:
Every atomic proposition p ∈ P is an LTL formula.
If ϕ, ψ are LTL formulas, then ¬ϕ and ϕ ∨ ψ are LTL
formulas.
If ϕ, ψ are LTL formulas, then �ϕ, ♦ϕ, ©ϕ, and ϕUψ
are LTL formulas.

Examples:
p ∨ ¬p is a formula.
pU¬�q is a formula.
(�(♦©p ∨ ¬q))Ur is a formula.

Alternative notation: Gϕ ≡ �ϕ, Fϕ ≡ ♦ϕ, Xϕ ≡ ©ϕ.
These stand for “Globally” (or “Generally”), “Future”, and
“neXt”.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

10 / 61 c© Daniel Shahaf, Nov 2007

Syntax of LTL

We define a formula recursively as follows:
Every atomic proposition p ∈ P is an LTL formula.
If ϕ, ψ are LTL formulas, then ¬ϕ and ϕ ∨ ψ are LTL
formulas.
If ϕ, ψ are LTL formulas, then �ϕ, ♦ϕ, ©ϕ, and ϕUψ
are LTL formulas.

Examples:
p ∨ ¬p is a formula.
pU¬�q is a formula.
(�(♦©p ∨ ¬q))Ur is a formula.

Alternative notation: Gϕ ≡ �ϕ, Fϕ ≡ ♦ϕ, Xϕ ≡ ©ϕ.
These stand for “Globally” (or “Generally”), “Future”, and
“neXt”.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

10 / 61 c© Daniel Shahaf, Nov 2007

Syntax of LTL

We define a formula recursively as follows:
Every atomic proposition p ∈ P is an LTL formula.
If ϕ, ψ are LTL formulas, then ¬ϕ and ϕ ∨ ψ are LTL
formulas.
If ϕ, ψ are LTL formulas, then �ϕ, ♦ϕ, ©ϕ, and ϕUψ
are LTL formulas.

Examples:
p ∨ ¬p is a formula.
pU¬�q is a formula.
(�(♦©p ∨ ¬q))Ur is a formula.

Alternative notation: Gϕ ≡ �ϕ, Fϕ ≡ ♦ϕ, Xϕ ≡ ©ϕ.
These stand for “Globally” (or “Generally”), “Future”, and
“neXt”.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

11 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL

Let B = {T,F}.
A temporal frame is a tuple 〈S ,R〉, where S is a finite or
countable non-empty set of states and R is a functional
relation imposing a total order on S .
We assume that every s ∈ S has an R-successor and
denote the latter R(s).

Thus, every temporal frame is a frame of modal logic.

Given a set P of atomic propositions, a temporal
interpretation is a tuple 〈S ,R, I 〉, where 〈S ,R〉 is a
temporal frame and I : S × P → B is a temporal
interpretation function.
Given a state (point in time) s and an atomic
proposition p, the truth value of p at s is given by I(s, p).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

11 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL

Let B = {T,F}.
A temporal frame is a tuple 〈S ,R〉, where S is a finite or
countable non-empty set of states and R is a functional
relation imposing a total order on S .
We assume that every s ∈ S has an R-successor and
denote the latter R(s).

Thus, every temporal frame is a frame of modal logic.
Given a set P of atomic propositions, a temporal
interpretation is a tuple 〈S ,R, I 〉, where 〈S ,R〉 is a
temporal frame and I : S × P → B is a temporal
interpretation function.
Given a state (point in time) s and an atomic
proposition p, the truth value of p at s is given by I(s, p).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

12 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Compound Formulas

Let Rn(s) = Rn−1(R(s)) be the nth successor of s.

The truth value of a compound formula under a temporal
interpretation I = 〈S ,R, I 〉 is:

For classical connectives, nothing changes:
I(s, p ∧ q) = I(s, p) ∧̃ I(s, q)
I(s,¬p) = ¬̃I(s, p)
For the universal temporal connectives:
I(s,©ϕ) = I(R(s), ϕ)

I(s, ϕUsψ) =


T,

if ∃n.
(
I(Rn(s), ψ)

and ∀0 ≤ i < n. I(Ri(s), ϕ)
)
;

F, otherwise.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

12 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Compound Formulas

Let Rn(s) = Rn−1(R(s)) be the nth successor of s.

The truth value of a compound formula under a temporal
interpretation I = 〈S ,R, I 〉 is:

For classical connectives, nothing changes:
I(s, p ∧ q) = I(s, p) ∧̃ I(s, q)
I(s,¬p) = ¬̃I(s, p)

For the universal temporal connectives:
I(s,©ϕ) = I(R(s), ϕ)

I(s, ϕUsψ) =


T,

if ∃n.
(
I(Rn(s), ψ)

and ∀0 ≤ i < n. I(Ri(s), ϕ)
)
;

F, otherwise.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

12 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Compound Formulas

Let Rn(s) = Rn−1(R(s)) be the nth successor of s.

The truth value of a compound formula under a temporal
interpretation I = 〈S ,R, I 〉 is:

For classical connectives, nothing changes:
I(s, p ∧ q) = I(s, p) ∧̃ I(s, q)
I(s,¬p) = ¬̃I(s, p)
For the universal temporal connectives:
I(s,©ϕ) = I(R(s), ϕ)

I(s, ϕUsψ) =


T,

if ∃n.
(
I(Rn(s), ψ)

and ∀0 ≤ i < n. I(Ri(s), ϕ)
)
;

F, otherwise.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

12 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Compound Formulas

Let Rn(s) = Rn−1(R(s)) be the nth successor of s.

The truth value of a compound formula under a temporal
interpretation I = 〈S ,R, I 〉 is:

For classical connectives, nothing changes:
I(s, p ∧ q) = I(s, p) ∧̃ I(s, q)
I(s,¬p) = ¬̃I(s, p)
For the universal temporal connectives:
I(s,©ϕ) = I(R(s), ϕ)

I(s, ϕUsψ) =


T,

if ∃n.
(
I(Rn(s), ψ)

and ∀0 ≤ i < n. I(Ri(s), ϕ)
)
;

F, otherwise.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

13 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Equivalence to N

Suppose we evaluate I(s, p).
The only states we can reach from s are {Rn(s) | n ∈ N}.

We do not and cannot know the past.
We assumed that S was totally ordered with successors.

Therefore, without loss of generality we can assume that
S ' N.

Taking n 7→ Rn(s).

Redefine: I ∈ N× P → B
Several equivalent views:

A subset of N× P.
A sequence of subsets of P.
A sequence of classical interpretations.
And so on.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

13 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Equivalence to N

Suppose we evaluate I(s, p).
The only states we can reach from s are {Rn(s) | n ∈ N}.

We do not and cannot know the past.
We assumed that S was totally ordered with successors.
Therefore, without loss of generality we can assume that
S ' N.

Taking n 7→ Rn(s).

Redefine: I ∈ N× P → B
Several equivalent views:

A subset of N× P.
A sequence of subsets of P.
A sequence of classical interpretations.
And so on.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

14 / 61 c© Daniel Shahaf, Nov 2007

Formal Definition of LTL: Examples

p ∧ q is satisfied by every interpretation that maps both
〈0, p〉 and 〈0, q〉 to T.
♦(ϕ ∧©ψ) is satisfied by an interpretation I iff there is
some n ≥ 0 such that I(n, ϕ) = I(n + 1, ψ) = T.
(¬ψ)Uwψ is valid.
(¬ψ)Usψ is not valid.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

15 / 61 c© Daniel Shahaf, Nov 2007

Past-tense Operators

What happens if we permit past-tense operators on our ray-like
timeline?

The inverses of Us and X are sufficient.
Their definitions are symmetric.
But need to decide how to interpret them at t = 0.

Increases the language’s expressiveness.
A formula can “know” what state # it is evaluated in.
Or ask the previous state whether p was true in it.
Neither is possible otherwise.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

15 / 61 c© Daniel Shahaf, Nov 2007

Past-tense Operators

What happens if we permit past-tense operators on our ray-like
timeline?

The inverses of Us and X are sufficient.
Their definitions are symmetric.
But need to decide how to interpret them at t = 0.

Increases the language’s expressiveness.
A formula can “know” what state # it is evaluated in.
Or ask the previous state whether p was true in it.
Neither is possible otherwise.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

16 / 61 c© Daniel Shahaf, Nov 2007

Comparison to Classical Logic

LTL is a superset of Classical Logic.
Extends it with the temporal operators.

The extension abdicates truth-functionality:
Can’t tell anything about ©ϕ from ϕ itself.
The same is true for Us and friends.

The Law of Non-contradiction is more complicated.
Even if tomorrow is self-contradictory, we might still be
sure of today’s propositions!



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

16 / 61 c© Daniel Shahaf, Nov 2007

Comparison to Classical Logic

LTL is a superset of Classical Logic.
Extends it with the temporal operators.

The extension abdicates truth-functionality:
Can’t tell anything about ©ϕ from ϕ itself.
The same is true for Us and friends.

The Law of Non-contradiction is more complicated.
Even if tomorrow is self-contradictory, we might still be
sure of today’s propositions!



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic
Examples
Syntax
Semantics
Comparison to
Classical Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

16 / 61 c© Daniel Shahaf, Nov 2007

Comparison to Classical Logic

LTL is a superset of Classical Logic.
Extends it with the temporal operators.

The extension abdicates truth-functionality:
Can’t tell anything about ©ϕ from ϕ itself.
The same is true for Us and friends.

The Law of Non-contradiction is more complicated.
Even if tomorrow is self-contradictory, we might still be
sure of today’s propositions!



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

17 / 61 c© Daniel Shahaf, Nov 2007

2 Büchi Automata
ω-Regular Languages
Büchi Automata
Properties of Büchi Automata



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

18 / 61 c© Daniel Shahaf, Nov 2007

Infinite Words

A finite word over an alphabet Σ is a function
w : {0, 1, . . . ,n} → Σ.
Similarly, we may define an infinite (countable) word
over Σ as a function w : N→ Σ.

We will use the infinite repetition operator to describe
infinite words:
We will write ‘pω’ for the word consisting
of ℵ0 repetitions of p.

Examples:
The word ‘0ω’ is defined by w(n) = 0 for all n.
The word ‘(01)ω’ is defined by w(n) = (n mod 2).
The word ‘14159 . . . ’ is defined by
w(n − 1) = the nth decimal digit of π.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

18 / 61 c© Daniel Shahaf, Nov 2007

Infinite Words

A finite word over an alphabet Σ is a function
w : {0, 1, . . . ,n} → Σ.
Similarly, we may define an infinite (countable) word
over Σ as a function w : N→ Σ.
We will use the infinite repetition operator to describe
infinite words:
We will write ‘pω’ for the word consisting
of ℵ0 repetitions of p.

Examples:
The word ‘0ω’ is defined by w(n) = 0 for all n.
The word ‘(01)ω’ is defined by w(n) = (n mod 2).
The word ‘14159 . . . ’ is defined by
w(n − 1) = the nth decimal digit of π.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

18 / 61 c© Daniel Shahaf, Nov 2007

Infinite Words

A finite word over an alphabet Σ is a function
w : {0, 1, . . . ,n} → Σ.
Similarly, we may define an infinite (countable) word
over Σ as a function w : N→ Σ.
We will use the infinite repetition operator to describe
infinite words:
We will write ‘pω’ for the word consisting
of ℵ0 repetitions of p.

Examples:
The word ‘0ω’ is defined by w(n) = 0 for all n.
The word ‘(01)ω’ is defined by w(n) = (n mod 2).
The word ‘14159 . . . ’ is defined by
w(n − 1) = the nth decimal digit of π.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

19 / 61 c© Daniel Shahaf, Nov 2007

ω-Regular Expressions

Reminder:
A

n ω-

regular expression over an alphabet Σ is either:
1 The empty string;
2 An atom σ ∈ Σ;
3 A concatenation ‘pq’;
4 An alternation ‘p | q’;
5 A repetition ‘p∗’.

6 An infinite repetition ‘pω’.

where p, q are (parenthesized)

ω-

regular expressions.

Note:
Without loss of generality, we can assume that every ω-regular
expression is of the form ⋃

αiβ
ω
i , where αi and βi are regular

regular expressions.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

19 / 61 c© Daniel Shahaf, Nov 2007

ω-Regular Expressions

Definition:
An ω-regular expression over an alphabet Σ is either:

1 The empty string;
2 An atom σ ∈ Σ;
3 A concatenation ‘pq’;
4 An alternation ‘p | q’;
5 A finite repetition ‘p∗’;
6 An infinite repetition ‘pω’.

where p, q are (parenthesized) ω-regular expressions.

Note:
Without loss of generality, we can assume that every ω-regular
expression is of the form ⋃

αiβ
ω
i , where αi and βi are regular

regular expressions.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

19 / 61 c© Daniel Shahaf, Nov 2007

ω-Regular Expressions

Definition:
An ω-regular expression over an alphabet Σ is either:

1 The empty string;
2 An atom σ ∈ Σ;
3 A concatenation ‘pq’;
4 An alternation ‘p | q’ (also written ‘p ∪ q’);
5 A finite repetition ‘p∗’;
6 An infinite repetition ‘pω’.

where p, q are (parenthesized) ω-regular expressions.

Note:
Without loss of generality, we can assume that every ω-regular
expression is of the form ⋃

αiβ
ω
i , where αi and βi are regular

regular expressions.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

20 / 61 c© Daniel Shahaf, Nov 2007

ω-Regular Expressions

Examples:
Every regular expression is an ω-regular expression.
(0 | 1)ω is the set of all infinite words over Σ = {0, 1}.
0ω describes the singleton {λn. 0}.
(0 | 1)∗ 1ω is the set of words that contain only finitely
many zeroes.

Problem cases
0ω1
0ω1ω

(1ω)∗

(1∗)ω
(1ω)ω

Conclusion:
If an ω-regular expression contains an infinite repetition other
than at the end, it might be empty, trivial, or undefined.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

20 / 61 c© Daniel Shahaf, Nov 2007

ω-Regular Expressions

Examples:
Every regular expression is an ω-regular expression.
(0 | 1)ω is the set of all infinite words over Σ = {0, 1}.
0ω describes the singleton {λn. 0}.
(0 | 1)∗ 1ω is the set of words that contain only finitely
many zeroes.

Problem cases
0ω1
0ω1ω

(1ω)∗

(1∗)ω
(1ω)ω

Conclusion:
If an ω-regular expression contains an infinite repetition other
than at the end, it might be empty, trivial, or undefined.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

20 / 61 c© Daniel Shahaf, Nov 2007

ω-Regular Expressions

Examples:
Every regular expression is an ω-regular expression.
(0 | 1)ω is the set of all infinite words over Σ = {0, 1}.
0ω describes the singleton {λn. 0}.
(0 | 1)∗ 1ω is the set of words that contain only finitely
many zeroes.

Problem cases
0ω1
0ω1ω

(1ω)∗

(1∗)ω
(1ω)ω

Conclusion:
If an ω-regular expression contains an infinite repetition other
than at the end, it might be empty, trivial, or undefined.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

21 / 61 c© Daniel Shahaf, Nov 2007

Büchi Automata

Büchi automata are a generalization of finite automata to
infinite inputs.

Proposed by J. R. Büchi in 1962.

Formally, a Büchi automaton is an NFA.
Most concepts—such as ‘execution’—carry over
unchanged.

The languages accepted by Büchi automata are a subset
of Σω.

Note: Σω and Σ∗ are disjoint.
All words considered are infinite.

The languages accepted by Büchi automata are called
“ω-regular languages”.

These languages are exactly those accepted by ω-regular
expressions.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

22 / 61 c© Daniel Shahaf, Nov 2007

Büchi Automata: Formal Definition

A Büchi automaton is a 5-tuple A = 〈S ,Σ, ρ,S0,F〉,
where:

S is a finite set of states;
Σ is an alphabet (finite non-empty set);
ρ is a transition function;

S0 is a set of initial states;
F is a set of accepting states.

The transition function ρ is S × Σ→ 2S .

An execution on a word w is a series s0, s1, . . . where
s0 ∈ S0 and sn+1 ∈ ρ

(
sn ,w(n)

)
for all n.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

23 / 61 c© Daniel Shahaf, Nov 2007

Büchi Automata: Acceptance Criteria

Let w ∈ Σω and let s = {si}i∈N be an execution of A on w.

The execution s accepts the word w iff there is some
f ∈ F such that sn = f for infinitely many values of n.
We say that an automaton A accepts a word w if any
execution of A on w is accepting.

Examples:

q0start q1

0,1

1

1

L(A) =
(
(0 | 1) 1

)ω

q0start q1

0,1

1

1

L(A) = (0 | 1)∗ 1ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

23 / 61 c© Daniel Shahaf, Nov 2007

Büchi Automata: Acceptance Criteria

Let w ∈ Σω and let s = {si}i∈N be an execution of A on w.

The execution s accepts the word w iff there is some
f ∈ F such that sn = f for infinitely many values of n.
We say that an automaton A accepts a word w if any
execution of A on w is accepting.

Examples:

q0start q1

0,1

1

1

L(A) =
(
(0 | 1) 1

)ω

q0start q1

0,1

1

1

L(A) = (0 | 1)∗ 1ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

23 / 61 c© Daniel Shahaf, Nov 2007

Büchi Automata: Acceptance Criteria

Let w ∈ Σω and let s = {si}i∈N be an execution of A on w.

The execution s accepts the word w iff there is some
f ∈ F such that sn = f for infinitely many values of n.
We say that an automaton A accepts a word w if any
execution of A on w is accepting.

Examples:

q0start q1

0,1

1

1

L(A) =
(
(0 | 1) 1

)ω

q0start q1

0,1

1

1

L(A) = (0 | 1)∗ 1ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

23 / 61 c© Daniel Shahaf, Nov 2007

Büchi Automata: Acceptance Criteria

Let w ∈ Σω and let s = {si}i∈N be an execution of A on w.

The execution s accepts the word w iff there is some
f ∈ F such that sn = f for infinitely many values of n.
We say that an automaton A accepts a word w if any
execution of A on w is accepting.

Examples:

q0start q1

0,1

1

1

L(A) =
(
(0 | 1) 1

)ω
q0start q1

0,1

1

1

L(A) = (0 | 1)∗ 1ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

24 / 61 c© Daniel Shahaf, Nov 2007

Generalized Büchi Automata

We could consider automata of the form
A = 〈S ,Σ, ρ,S0,F〉 where F = {F1, . . . ,Fk} is a set of
sets of states.
An execution would be accepting if it passed infinitely
often through every Fi .
It is sufficient to require that every Fi has some fi ∈ Fi
that is visited infinitely often.

Are these more expressive than Büchi automata?
No; we can construct a Büchi automaton that efficiently
simulates a generalized Büchi automaton, as follows:

Build k copies of the generalized automaton.
Each copy accepts one Fi .



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

24 / 61 c© Daniel Shahaf, Nov 2007

Generalized Büchi Automata

We could consider automata of the form
A = 〈S ,Σ, ρ,S0,F〉 where F = {F1, . . . ,Fk} is a set of
sets of states.
An execution would be accepting if it passed infinitely
often through every Fi .
It is sufficient to require that every Fi has some fi ∈ Fi
that is visited infinitely often.

Are these more expressive than Büchi automata?

No; we can construct a Büchi automaton that efficiently
simulates a generalized Büchi automaton, as follows:

Build k copies of the generalized automaton.
Each copy accepts one Fi .



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

24 / 61 c© Daniel Shahaf, Nov 2007

Generalized Büchi Automata

We could consider automata of the form
A = 〈S ,Σ, ρ,S0,F〉 where F = {F1, . . . ,Fk} is a set of
sets of states.
An execution would be accepting if it passed infinitely
often through every Fi .
It is sufficient to require that every Fi has some fi ∈ Fi
that is visited infinitely often.

Are these more expressive than Büchi automata?
No; we can construct a Büchi automaton that efficiently
simulates a generalized Büchi automaton, as follows:

Build k copies of the generalized automaton.
Each copy accepts one Fi .



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

25 / 61 c© Daniel Shahaf, Nov 2007

Properties of Büchi Automata

Closure under union:

Trivial:⊎
〈Si ,Σ, ρi ,S0i ,Fi〉 = 〈

⊎
Si ,Σ, ρ,

⊎
S0i ,

⊎
Fi〉

where ρ(si , σ) = ρi(si , σ) if si ∈ Si .

Closure under intersection:

Build the cross-product automaton.
Not good enough! (Why?)
Solution: build two copies of the cross-product automaton.

Closure under determinization:

Does not hold.
Counter-example: L = (0 | 1)∗ 1ω
Proof uses pumping.

Closure under complementation:

Holds—but the complement may be non-deterministic:
L =

(
(0 | 1)∗ 0

)ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

25 / 61 c© Daniel Shahaf, Nov 2007

Properties of Büchi Automata

Closure under union:
Trivial:⊎
〈Si ,Σ, ρi ,S0i ,Fi〉 = 〈

⊎
Si ,Σ, ρ,

⊎
S0i ,

⊎
Fi〉

where ρ(si , σ) = ρi(si , σ) if si ∈ Si .

Closure under intersection:

Build the cross-product automaton.
Not good enough! (Why?)
Solution: build two copies of the cross-product automaton.

Closure under determinization:

Does not hold.
Counter-example: L = (0 | 1)∗ 1ω
Proof uses pumping.

Closure under complementation:

Holds—but the complement may be non-deterministic:
L =

(
(0 | 1)∗ 0

)ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

25 / 61 c© Daniel Shahaf, Nov 2007

Properties of Büchi Automata

Closure under union:
Trivial:⊎
〈Si ,Σ, ρi ,S0i ,Fi〉 = 〈

⊎
Si ,Σ, ρ,

⊎
S0i ,

⊎
Fi〉

where ρ(si , σ) = ρi(si , σ) if si ∈ Si .

Closure under intersection:
Build the cross-product automaton.
Not good enough! (Why?)

Solution: build two copies of the cross-product automaton.

Closure under determinization:

Does not hold.
Counter-example: L = (0 | 1)∗ 1ω
Proof uses pumping.

Closure under complementation:

Holds—but the complement may be non-deterministic:
L =

(
(0 | 1)∗ 0

)ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

25 / 61 c© Daniel Shahaf, Nov 2007

Properties of Büchi Automata

Closure under union:
Trivial:⊎
〈Si ,Σ, ρi ,S0i ,Fi〉 = 〈

⊎
Si ,Σ, ρ,

⊎
S0i ,

⊎
Fi〉

where ρ(si , σ) = ρi(si , σ) if si ∈ Si .

Closure under intersection:
Build the cross-product automaton.
Not good enough! (Why?)
Solution: build two copies of the cross-product automaton.

Closure under determinization:

Does not hold.
Counter-example: L = (0 | 1)∗ 1ω
Proof uses pumping.

Closure under complementation:

Holds—but the complement may be non-deterministic:
L =

(
(0 | 1)∗ 0

)ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

25 / 61 c© Daniel Shahaf, Nov 2007

Properties of Büchi Automata

Closure under union:
Trivial:⊎
〈Si ,Σ, ρi ,S0i ,Fi〉 = 〈

⊎
Si ,Σ, ρ,

⊎
S0i ,

⊎
Fi〉

where ρ(si , σ) = ρi(si , σ) if si ∈ Si .

Closure under intersection:
Build the cross-product automaton.
Not good enough! (Why?)
Solution: build two copies of the cross-product automaton.

Closure under determinization:
Does not hold.
Counter-example: L = (0 | 1)∗ 1ω
Proof uses pumping.

Closure under complementation:

Holds—but the complement may be non-deterministic:
L =

(
(0 | 1)∗ 0

)ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

25 / 61 c© Daniel Shahaf, Nov 2007

Properties of Büchi Automata

Closure under union:
Trivial:⊎
〈Si ,Σ, ρi ,S0i ,Fi〉 = 〈

⊎
Si ,Σ, ρ,

⊎
S0i ,

⊎
Fi〉

where ρ(si , σ) = ρi(si , σ) if si ∈ Si .

Closure under intersection:
Build the cross-product automaton.
Not good enough! (Why?)
Solution: build two copies of the cross-product automaton.

Closure under determinization:
Does not hold.
Counter-example: L = (0 | 1)∗ 1ω
Proof uses pumping.

Closure under complementation:
Holds—but the complement may be non-deterministic:
L =

(
(0 | 1)∗ 0

)ω



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

26 / 61 c© Daniel Shahaf, Nov 2007

Non-emptiness of Büchi Automata

We wish to decide programmatically whether a given
(generalized) Büchi automaton A = 〈S ,Σ, ρ,S0,F〉 accepts
a non-empty language.

Let w ∈ L(A). Consider an accepting run s of A on w.
Let fi ∈ Fi ∈ F be the accepting states through which
s passes infinitely.

Then all fi must belong to the same strongly connected
component of A.

That SCC must be reachable from some starting
state s0 ∈ S0.
And, if k = 1, it must contain a cycle through f1.

Clearly, to check non-emptiness, it is sufficient to check
that such an SCC exists.
This may be done in linear time!



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

26 / 61 c© Daniel Shahaf, Nov 2007

Non-emptiness of Büchi Automata

We wish to decide programmatically whether a given
(generalized) Büchi automaton A = 〈S ,Σ, ρ,S0,F〉 accepts
a non-empty language.

Let w ∈ L(A). Consider an accepting run s of A on w.
Let fi ∈ Fi ∈ F be the accepting states through which
s passes infinitely.
Then all fi must belong to the same strongly connected
component of A.

That SCC must be reachable from some starting
state s0 ∈ S0.
And, if k = 1, it must contain a cycle through f1.

Clearly, to check non-emptiness, it is sufficient to check
that such an SCC exists.
This may be done in linear time!



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata
ω-Regular
Languages
Büchi Automata
Properties of Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

26 / 61 c© Daniel Shahaf, Nov 2007

Non-emptiness of Büchi Automata

We wish to decide programmatically whether a given
(generalized) Büchi automaton A = 〈S ,Σ, ρ,S0,F〉 accepts
a non-empty language.

Let w ∈ L(A). Consider an accepting run s of A on w.
Let fi ∈ Fi ∈ F be the accepting states through which
s passes infinitely.
Then all fi must belong to the same strongly connected
component of A.

That SCC must be reachable from some starting
state s0 ∈ S0.
And, if k = 1, it must contain a cycle through f1.

Clearly, to check non-emptiness, it is sufficient to check
that such an SCC exists.
This may be done in linear time!



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

27 / 61 c© Daniel Shahaf, Nov 2007

3 Automata Recognizing Interpretations
Overview
Closures
Building the Automaton



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

28 / 61 c© Daniel Shahaf, Nov 2007

The Language Defined by a Formula

Recall that an interpretation function I : N× P → B could also
be defined as I : N→ (P → B) or as I : N→ 2P .

Thus, an interpretation may be viewed as a sequence of
subsets of P.
Or as an infinite word over the alphabet Σ = 2P .

Büchi automata recognize infinite words over finite
alphabets.

We will show that Büchi automata can recognize
interpretations that satisfy a given LTL formula.
In other words, we will show that the language defined by
a temporal interpretation is an ω-regular language.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

28 / 61 c© Daniel Shahaf, Nov 2007

The Language Defined by a Formula

Recall that an interpretation function I : N× P → B could also
be defined as I : N→ (P → B) or as I : N→ 2P .

Thus, an interpretation may be viewed as a sequence of
subsets of P.
Or as an infinite word over the alphabet Σ = 2P .

Büchi automata recognize infinite words over finite
alphabets.

We will show that Büchi automata can recognize
interpretations that satisfy a given LTL formula.
In other words, we will show that the language defined by
a temporal interpretation is an ω-regular language.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

28 / 61 c© Daniel Shahaf, Nov 2007

The Language Defined by a Formula

Recall that an interpretation function I : N× P → B could also
be defined as I : N→ (P → B) or as I : N→ 2P .

Thus, an interpretation may be viewed as a sequence of
subsets of P.
Or as an infinite word over the alphabet Σ = 2P .

Büchi automata recognize infinite words over finite
alphabets.

We will show that Büchi automata can recognize
interpretations that satisfy a given LTL formula.
In other words, we will show that the language defined by
a temporal interpretation is an ω-regular language.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

29 / 61 c© Daniel Shahaf, Nov 2007

Examples

Examples:
To which formulas do the following automata correspond?

q0start q1

{p}

∅
∅

{p}

ϕ ≡ �♦p

q0start q1
∅

∅,{p} ∅

ϕ ≡ ♦�¬p



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

29 / 61 c© Daniel Shahaf, Nov 2007

Examples

Examples:
To which formulas do the following automata correspond?

q0start q1

{p}

∅
∅

{p}

ϕ ≡ �♦p

q0start q1
∅

∅,{p} ∅

ϕ ≡ ♦�¬p



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

30 / 61 c© Daniel Shahaf, Nov 2007

Proof Overview

Goal: To build a Büchi automaton that accepts the set of
interpretations I : N× P → B that satisfy a given LTL
formula ϕ.

1 Define closures and closure labellings.
2 Characterise valid closure labellings.
3 Define the automaton in terms of labellings.

Note:
Since emptiness of Büchi automata is decidable, it follows
immediately from this construction that satisfiability of LTL
formulas is decidable.

Note:
In this proof, U ≡ Us.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

30 / 61 c© Daniel Shahaf, Nov 2007

Proof Overview

Goal: To build a Büchi automaton that accepts the set of
interpretations I : N× P → B that satisfy a given LTL
formula ϕ.

1 Define closures and closure labellings.
2 Characterise valid closure labellings.
3 Define the automaton in terms of labellings.

Note:
Since emptiness of Büchi automata is decidable, it follows
immediately from this construction that satisfiability of LTL
formulas is decidable.

Note:
In this proof, U ≡ Us.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

31 / 61 c© Daniel Shahaf, Nov 2007

Detour: More U Operators

The proof will use the dual operator of Us, defined by:

ϕŨψ ≡ ¬
(
(¬ϕ)Us(¬ψ)

)
The Ũ operator resembles the weak U operator:

ϕŨψ ≡ �ψ ∨
(
♦(ϕ ∧ ψ) ∧ ψUsϕ

)
.

And has a fixpoint identity:
ϕŨψ ≡ ψ ∧

(
ϕ ∨©

(
ϕŨψ

))
.

ϕUψ ≡ ψ ∨
(
ϕ ∧©(ϕUψ)

)
.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

32 / 61 c© Daniel Shahaf, Nov 2007

The Closure of a Formula

Definition:
The closure of a temporal formula ϕ is the smallest set cl (ϕ)
such that:

ϕ ∈ cl (ϕ)
If ϕ ∈ {α ∧ β, α ∨ β,©α, αUβ} for some α, β,
then α ∈ cl (ϕ) and β ∈ cl (ϕ).

(The other connectives will be dealt with later.)



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).

A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

1 F /∈ τ(i);

2 For each p ∈ P, if p ∈ τ(i) then p ∈ σ(i),
and if ¬p ∈ τ(i) then p /∈ σ(i);

3 If ϕ ∧ ψ ∈ τ(i) then ϕ ∈ σ(i) and ψ ∈ σ(i);
4 If ϕ ∨ ψ ∈ τ(i) then ϕ ∈ σ(i) or ψ ∈ σ(i);
5 If ©ϕ ∈ τ(i) then ϕ ∈ τ(i + 1);



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

1 F /∈ τ(i);
2 For each p ∈ P, if p ∈ τ(i) then p ∈ σ(i),

and if ¬p ∈ τ(i) then p /∈ σ(i);

3 If ϕ ∧ ψ ∈ τ(i) then ϕ ∈ σ(i) and ψ ∈ σ(i);
4 If ϕ ∨ ψ ∈ τ(i) then ϕ ∈ σ(i) or ψ ∈ σ(i);
5 If ©ϕ ∈ τ(i) then ϕ ∈ τ(i + 1);



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

1 F /∈ τ(i);
2 For each p ∈ P, if p ∈ τ(i) then p ∈ σ(i),

and if ¬p ∈ τ(i) then p /∈ σ(i);
3 If ϕ ∧ ψ ∈ τ(i) then ϕ ∈ σ(i) and ψ ∈ σ(i);
4 If ϕ ∨ ψ ∈ τ(i) then ϕ ∈ σ(i) or ψ ∈ σ(i);

5 If ©ϕ ∈ τ(i) then ϕ ∈ τ(i + 1);



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

1 F /∈ τ(i);
2 For each p ∈ P, if p ∈ τ(i) then p ∈ σ(i),

and if ¬p ∈ τ(i) then p /∈ σ(i);
3 If ϕ ∧ ψ ∈ τ(i) then ϕ ∈ σ(i) and ψ ∈ σ(i);
4 If ϕ ∨ ψ ∈ τ(i) then ϕ ∈ σ(i) or ψ ∈ σ(i);
5 If ©ϕ ∈ τ(i) then ϕ ∈ τ(i + 1);



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

6 If ϕUψ ∈ τ(i) then
either ψ ∈ τ(i),
or ϕ ∈ τ(i) and ϕUψ ∈ τ(i + 1);

7 If ϕŨψ ∈ τ(i)
then ψ ∈ τ(i),
and either ϕ ∈ τ(i) or ϕŨψ ∈ τ(i + 1);

8 If ϕUψ ∈ τ(i), then
∃j ≥ i such that ψ ∈ τ(j).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

6 If ϕUψ ∈ τ(i) then
either ψ ∈ τ(i),
or ϕ ∈ τ(i) and ϕUψ ∈ τ(i + 1);

7 If ϕŨψ ∈ τ(i)
then ψ ∈ τ(i),
and either ϕ ∈ τ(i) or ϕŨψ ∈ τ(i + 1);

8 If ϕUψ ∈ τ(i), then
∃j ≥ i such that ψ ∈ τ(j).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

33 / 61 c© Daniel Shahaf, Nov 2007

Closure Labellings

Definition:
A closure labelling of a sequence σ : N→ 2P is a mapping
τ : N→ 2cl(ϕ).
A closure labelling τ of a sequence σ is said to be valid if it
satisfies the following conditions for all i ∈ N:

6 If ϕUψ ∈ τ(i) then
either ψ ∈ τ(i),
or ϕ ∈ τ(i) and ϕUψ ∈ τ(i + 1);

7 If ϕŨψ ∈ τ(i)
then ψ ∈ τ(i),
and either ϕ ∈ τ(i) or ϕŨψ ∈ τ(i + 1);

8 If ϕUψ ∈ τ(i), then
∃j ≥ i such that ψ ∈ τ(j).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

34 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings I

Theorem
If a formula ϕ is satisfied by a sequence σ : N→ 2P , then there
is some valid closure labelling τ such that ϕ ∈ τ(0).

Proof
Consider the closure labelling given by

τ(n) = {ψ ∈ cl (ϕ) | I(n, ψ) = T} .

Its validity follows immediately from the semantics of LTL. It
satisfies ϕ ∈ τ(0) since σ satisfies ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

34 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings I

Theorem
If a formula ϕ is satisfied by a sequence σ : N→ 2P , then there
is some valid closure labelling τ such that ϕ ∈ τ(0).

Proof
Consider the closure labelling given by

τ(n) = {ψ ∈ cl (ϕ) | I(n, ψ) = T} .

Its validity follows immediately from the semantics of LTL. It
satisfies ϕ ∈ τ(0) since σ satisfies ϕ.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

35 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings II

Theorem
Consider a formula ϕ and a sequence σ : N→ 2P .
If τ : N→ 2cl(ϕ) is a valid closure labelling, then σi |=

∧
τ(i).

Proof

For classical connectives and for X it is immediate.
For Us: Suppose ϕUsψ ∈ τ(i).
Since τ is valid, ∃j ≥ i such that ψ ∈ τ(j). By the
induction hypothesis, σj |= ψ.
Without loss of generality, ψ /∈ τ(k) for every k ∈ [i, j).
Again by validity of τ , we obtain that ϕ ∈ τ(k) and
ϕUsψ ∈ τ(k + 1). Thus, by the inductive hypothesis,
σk+1 |= ϕ for i ≤ k < j .
For Ũ, it is immediate, and also follows by duality.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

35 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings II

Theorem
Consider a formula ϕ and a sequence σ : N→ 2P .
If τ : N→ 2cl(ϕ) is a valid closure labelling, then σi |=

∧
τ(i).

Proof
For classical connectives and for X it is immediate.

For Us: Suppose ϕUsψ ∈ τ(i).

Since τ is valid, ∃j ≥ i such that ψ ∈ τ(j). By the
induction hypothesis, σj |= ψ.
Without loss of generality, ψ /∈ τ(k) for every k ∈ [i, j).
Again by validity of τ , we obtain that ϕ ∈ τ(k) and
ϕUsψ ∈ τ(k + 1). Thus, by the inductive hypothesis,
σk+1 |= ϕ for i ≤ k < j .
For Ũ, it is immediate, and also follows by duality.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

35 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings II

Theorem
Consider a formula ϕ and a sequence σ : N→ 2P .
If τ : N→ 2cl(ϕ) is a valid closure labelling, then σi |=

∧
τ(i).

Proof
For classical connectives and for X it is immediate.
For Us: Suppose ϕUsψ ∈ τ(i).
Since τ is valid, ∃j ≥ i such that ψ ∈ τ(j). By the
induction hypothesis, σj |= ψ.

Without loss of generality, ψ /∈ τ(k) for every k ∈ [i, j).
Again by validity of τ , we obtain that ϕ ∈ τ(k) and
ϕUsψ ∈ τ(k + 1). Thus, by the inductive hypothesis,
σk+1 |= ϕ for i ≤ k < j .

For Ũ, it is immediate, and also follows by duality.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

35 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings II

Theorem
Consider a formula ϕ and a sequence σ : N→ 2P .
If τ : N→ 2cl(ϕ) is a valid closure labelling, then σi |=

∧
τ(i).

Proof
For classical connectives and for X it is immediate.
For Us: Suppose ϕUsψ ∈ τ(i).
Since τ is valid, ∃j ≥ i such that ψ ∈ τ(j). By the
induction hypothesis, σj |= ψ.
Without loss of generality, ψ /∈ τ(k) for every k ∈ [i, j).
Again by validity of τ , we obtain that ϕ ∈ τ(k) and
ϕUsψ ∈ τ(k + 1). Thus, by the inductive hypothesis,
σk+1 |= ϕ for i ≤ k < j .

For Ũ, it is immediate, and also follows by duality.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

35 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings II

Theorem
Consider a formula ϕ and a sequence σ : N→ 2P .
If τ : N→ 2cl(ϕ) is a valid closure labelling, then σi |=

∧
τ(i).

Proof
For classical connectives and for X it is immediate.
For Us: Suppose ϕUsψ ∈ τ(i).
Since τ is valid, ∃j ≥ i such that ψ ∈ τ(j). By the
induction hypothesis, σj |= ψ.
Without loss of generality, ψ /∈ τ(k) for every k ∈ [i, j).
Again by validity of τ , we obtain that ϕ ∈ τ(k) and
ϕUsψ ∈ τ(k + 1). Thus, by the inductive hypothesis,
σk+1 |= ϕ for i ≤ k < j .
For Ũ, it is immediate, and also follows by duality.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

36 / 61 c© Daniel Shahaf, Nov 2007

Valid Closure Labellings III

Theorem (Conclusion)
A sequence σ : N→ 2P satisfies a formula ϕ if and only if there
is valid closure labelling τ : N→ 2cl(ϕ) of σ such that ϕ ∈ τ(0).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

37 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements: Outline

The theorem specifies two conditions: τ(0) should contain ϕ,
and τ : N→ 2cl(ϕ) should be a valid closure labelling of σ.

They give rise to requirements of four kinds:
initial conditions; those local to a state; those local
to a state and its successor; and eventualities.
These will be enforced, respectively, by the choice
of start states, by the definition of states, by the
transition function, and by the accepting states.
(The automaton’s alphabet is fixed at Σ = 2P .)

The current state of the automaton will correspond to the
current label (τ(n) after n transitions).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

37 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements: Outline

The theorem specifies two conditions: τ(0) should contain ϕ,
and τ : N→ 2cl(ϕ) should be a valid closure labelling of σ.

They give rise to requirements of four kinds:
initial conditions; those local to a state; those local
to a state and its successor; and eventualities.
These will be enforced, respectively, by the choice
of start states, by the definition of states, by the
transition function, and by the accepting states.
(The automaton’s alphabet is fixed at Σ = 2P .)

The current state of the automaton will correspond to the
current label (τ(n) after n transitions).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

37 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements: Outline

The theorem specifies two conditions: τ(0) should contain ϕ,
and τ : N→ 2cl(ϕ) should be a valid closure labelling of σ.

They give rise to requirements of four kinds:
initial conditions; those local to a state; those local
to a state and its successor; and eventualities.
These will be enforced, respectively, by the choice
of start states, by the definition of states, by the
transition function, and by the accepting states.
(The automaton’s alphabet is fixed at Σ = 2P .)

The current state of the automaton will correspond to the
current label (τ(n) after n transitions).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

38 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements I

Initial conditions
We require that ϕ ∈ τ(0). Since τ(0) is the initial state of an
execution of the automaton, we require all initial states to
contain ϕ.

State-local conditions
We require that F /∈ τ(i) and that if ϕ ∧ ψ ∈ τ(i) or
ϕ ∨ ψ ∈ τ(i), then accordingly ϕ and/or ψ are in τ(i) as well.
Since τ(i) is a state, we will require all states to have these
three properties.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

38 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements I

Initial conditions
We require that ϕ ∈ τ(0). Since τ(0) is the initial state of an
execution of the automaton, we require all initial states to
contain ϕ.

State-local conditions
We require that F /∈ τ(i) and that if ϕ ∧ ψ ∈ τ(i) or
ϕ ∨ ψ ∈ τ(i), then accordingly ϕ and/or ψ are in τ(i) as well.
Since τ(i) is a state, we will require all states to have these
three properties.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

39 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements II

Transition conditions
We impose requirements on τ(n + 1) when τ(n) contains one
of ©ϕ, ϕUsψ, or ϕŨψ.
We will define the transition function in a manner that only
allows transitions that meet these requirements.
Further, the transition function also checks that τ corresponds
to σ: it validates (by examining the input “letter” σ(i)) that all
atomic propositions in τ(i) are true and that all false atomic
propositions are not in τ(i).
Eventualities are not checked by the transition function.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

40 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements III

Acceptance conditions
The acceptance condition guarantees fulfillment of
eventualities.
Since eventualities that are not satisfied at time t reappear at
time t + 1, it is sufficient to check that each eventuality is
either satisfied infinitely often or disappears eventually—thus,
no “memory” is required.
Thus, for each eventuality ϕi Usψi ∈ cl (ϕ), we require that the
execution either passes infinitely through states that contain
(ϕiUsψi and) ψi , or passes infinitely through states that do not
contain ϕi Usψi .

This is a generalized Büchi condition.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

40 / 61 c© Daniel Shahaf, Nov 2007

Meeting the Requirements III

Acceptance conditions
The acceptance condition guarantees fulfillment of
eventualities.
Since eventualities that are not satisfied at time t reappear at
time t + 1, it is sufficient to check that each eventuality is
either satisfied infinitely often or disappears eventually—thus,
no “memory” is required.
Thus, for each eventuality ϕi Usψi ∈ cl (ϕ), we require that the
execution either passes infinitely through states that contain
(ϕiUsψi and) ψi , or passes infinitely through states that do not
contain ϕi Usψi .
This is a generalized Büchi condition.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

41 / 61 c© Daniel Shahaf, Nov 2007

Truth in Advertising

We have defined an automaton.
Now, need to prove that it recognizes satisfying
interpretations.

It is immediate from the theorem I proved and from the
semantics of LTL.
Filling the details is left as an exercise for the reader.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations
Overview
Closures
Building the
Automaton

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

41 / 61 c© Daniel Shahaf, Nov 2007

Truth in Advertising

We have defined an automaton.
Now, need to prove that it recognizes satisfying
interpretations.

It is immediate from the theorem I proved and from the
semantics of LTL.
Filling the details is left as an exercise for the reader.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

42 / 61 c© Daniel Shahaf, Nov 2007

4 Extensions of Linear-time Temporal Logic
Motivation
Defining New Operators
Restricted Büchi Automata



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

43 / 61 c© Daniel Shahaf, Nov 2007

Motivation

Having shown that Büchi automata are at least as powerful as
LTL, let us turn to the converse.

What LTL formula ϕ generates{
σ ∈ N→ 2P | ∀n ∈ N. p1 ∈ σ(2n)

}
?

Problem: How can we tell whether we are in an even state
or not?
How can we assure that ϕ is true on all odd
states—regardless of the values of {σ(2n + 1) | n ∈ N}?
We cannot!

Lemma (Wolper ’82–’83)
Any temporal logic formula built from an atomic proposition p
and containing at most n X-operators has the same truth value
for all formulas of the form pk(¬p)pω (k > n).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

43 / 61 c© Daniel Shahaf, Nov 2007

Motivation

Having shown that Büchi automata are at least as powerful as
LTL, let us turn to the converse.

What LTL formula ϕ generates{
σ ∈ N→ 2P | ∀n ∈ N. p1 ∈ σ(2n)

}
?

Problem: How can we tell whether we are in an even state
or not?
How can we assure that ϕ is true on all odd
states—regardless of the values of {σ(2n + 1) | n ∈ N}?

We cannot!

Lemma (Wolper ’82–’83)
Any temporal logic formula built from an atomic proposition p
and containing at most n X-operators has the same truth value
for all formulas of the form pk(¬p)pω (k > n).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

43 / 61 c© Daniel Shahaf, Nov 2007

Motivation

Having shown that Büchi automata are at least as powerful as
LTL, let us turn to the converse.

What LTL formula ϕ generates{
σ ∈ N→ 2P | ∀n ∈ N. p1 ∈ σ(2n)

}
?

Problem: How can we tell whether we are in an even state
or not?
How can we assure that ϕ is true on all odd
states—regardless of the values of {σ(2n + 1) | n ∈ N}?
We cannot!

Lemma (Wolper ’82–’83)
Any temporal logic formula built from an atomic proposition p
and containing at most n X-operators has the same truth value
for all formulas of the form pk(¬p)pω (k > n).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

44 / 61 c© Daniel Shahaf, Nov 2007

A Closer Look

Like � and Us, the operator ‘even (p)’ may be defined
recursively: even (p) = p ∧©©even (p)
Convince: it is possible to extend LTL and the
construction of Büchi automata from LTL formulas to
include this operator—without invalidating the theorem or
the axiomatization.

The same is true for other definable operators.
Divisible by n

True in t = 0, k, k + `, 2k +
`, 2k + 2`, 3k + 2`, . . .

Divisible by either n or 2

True iff t = αk + β` for some
α, β (where k, ` are given)

Thus, we want to add all of these to LTL—at the same
time.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

44 / 61 c© Daniel Shahaf, Nov 2007

A Closer Look

Like � and Us, the operator ‘even (p)’ may be defined
recursively: even (p) = p ∧©©even (p)
Convince: it is possible to extend LTL and the
construction of Büchi automata from LTL formulas to
include this operator—without invalidating the theorem or
the axiomatization.
The same is true for other definable operators.
Divisible by n

True in t = 0, k, k + `, 2k +
`, 2k + 2`, 3k + 2`, . . .

Divisible by either n or 2

True iff t = αk + β` for some
α, β (where k, ` are given)

Thus, we want to add all of these to LTL—at the same
time.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

45 / 61 c© Daniel Shahaf, Nov 2007

The Common Description

All of these may be defined recursively in a similar manner.
All of these are closed under boolean combinations.

This is similar to . . . ?

We will extend LTL by adding operators definable by
automata.

Most general case: Büchi automata.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

45 / 61 c© Daniel Shahaf, Nov 2007

The Common Description

All of these may be defined recursively in a similar manner.
All of these are closed under boolean combinations.

This is similar to linear grammars.

We will extend LTL by adding operators definable by
automata.

Most general case: Büchi automata.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

46 / 61 c© Daniel Shahaf, Nov 2007

The Operator Defined by an Automaton

Let A = 〈Σ,S , ρ,S0,F〉 be an automaton, where
Σ = {σ1, . . . , σn} and n > 0 is the arity of the operator A.

Then A(ϕ1, . . . , ϕn) is true at time t0
iff there is some w = σw0σw1 . . . ∈ Σω

such that ϕwj is true at t0 + j for every j ∈ N.

Consider:
(σ1σ2 . . . σn)ω ∈ A

(σk)ω ∈ A
A = Us, A = Uw

A = even

“Extended Temporal Logic” (ETL)
is LTL with automaton-definable operators.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

46 / 61 c© Daniel Shahaf, Nov 2007

The Operator Defined by an Automaton

Let A = 〈Σ,S , ρ,S0,F〉 be an automaton, where
Σ = {σ1, . . . , σn} and n > 0 is the arity of the operator A.

Then A(ϕ1, . . . , ϕn) is true at time t0
iff there is some w = σw0σw1 . . . ∈ Σω

such that ϕwj is true at t0 + j for every j ∈ N.

Consider:
(σ1σ2 . . . σn)ω ∈ A

(σk)ω ∈ A
A = Us, A = Uw

A = even

“Extended Temporal Logic” (ETL)
is LTL with automaton-definable operators.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

47 / 61 c© Daniel Shahaf, Nov 2007

Extended Temporal Logics

Both ‘Uw’ and ‘even’ can be implemented by automata
all of whose states are accepting.
Such automata are looping automata.

The subset of ETL they correspond to is known as ETL`.

Theorem (Vardi): ETL` is equivalent to ETL in terms of
expressive power.

ETL` is easier to manipulate.
Complete axiomatizations are known (unlike ETL).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

47 / 61 c© Daniel Shahaf, Nov 2007

Extended Temporal Logics

Both ‘Uw’ and ‘even’ can be implemented by automata
all of whose states are accepting.
Such automata are looping automata.

The subset of ETL they correspond to is known as ETL`.

Theorem (Vardi): ETL` is equivalent to ETL in terms of
expressive power.

ETL` is easier to manipulate.
Complete axiomatizations are known (unlike ETL).



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

48 / 61 c© Daniel Shahaf, Nov 2007

Finite Operators ETL

We now turn to a third variant, ETLf (for “finite”).
Let A = 〈Σ,S , ρ,S0,F〉 be an automaton as before.
Then A(ϕ1, . . . , ϕn) is true at time t0
iff there is some w = σw0σw1 . . . σwk−1 ∈ Σ∗

such that ϕwj is true at at t0 + j for every j < k.

ETLf and ETL` are dual.
ETLf , ETL`, and ETL are equipotent.
ETLf has complete axiomatizations.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL
Motivation
Defining New
Operators
Restricted Büchi
Automata

Branching-
time Temporal
Logic

Summary

48 / 61 c© Daniel Shahaf, Nov 2007

Finite Operators ETL

We now turn to a third variant, ETLf (for “finite”).
Let A = 〈Σ,S , ρ,S0,F〉 be an automaton as before.
Then A(ϕ1, . . . , ϕn) is true at time t0
iff there is some w = σw0σw1 . . . σwk−1 ∈ Σ∗

such that ϕwj is true at at t0 + j for every j < k.

ETLf and ETL` are dual.
ETLf , ETL`, and ETL are equipotent.
ETLf has complete axiomatizations.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

49 / 61 c© Daniel Shahaf, Nov 2007

5 Branching-time Temporal Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree Logics



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

50 / 61 c© Daniel Shahaf, Nov 2007

Motivation for BrTL

Linear time is nice when we are certain about the future.
However, more often we are uncertain.

We would like to be able to discuss would might happen,
not only what definitely will happen.

“If it rains tomorrow, will you still come?”
“If NASDAQ falls, what will you do?”

There is more than one possible future.
Let our logic reflect that.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

50 / 61 c© Daniel Shahaf, Nov 2007

Motivation for BrTL

Linear time is nice when we are certain about the future.
However, more often we are uncertain.
We would like to be able to discuss would might happen,
not only what definitely will happen.

“If it rains tomorrow, will you still come?”
“If NASDAQ falls, what will you do?”

There is more than one possible future.
Let our logic reflect that.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

50 / 61 c© Daniel Shahaf, Nov 2007

Motivation for BrTL

Linear time is nice when we are certain about the future.
However, more often we are uncertain.
We would like to be able to discuss would might happen,
not only what definitely will happen.

“If it rains tomorrow, will you still come?”
“If NASDAQ falls, what will you do?”

There is more than one possible future.
Let our logic reflect that.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

51 / 61 c© Daniel Shahaf, Nov 2007

The Futures

Informally, the possible futures are represented as a tree.
Although less restricted graphs can be considered.

The tree has infinite depth.
A future is an infinite path on the tree, starting at the
root.

Formally, an (infinite) sequence of vertices.
If 〈u, v〉 is an edge, then v is a possible (immediate)
successor to u.
To uniquely identify a node, we need to know:

Some future that contains it.
Its index on that future.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

51 / 61 c© Daniel Shahaf, Nov 2007

The Futures

Informally, the possible futures are represented as a tree.
Although less restricted graphs can be considered.

The tree has infinite depth.
A future is an infinite path on the tree, starting at the
root.

Formally, an (infinite) sequence of vertices.
If 〈u, v〉 is an edge, then v is a possible (immediate)
successor to u.
To uniquely identify a node, we need to know:

Some future that contains it.
Its index on that future.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

52 / 61 c© Daniel Shahaf, Nov 2007

Questions to Ask

It is meaningful to ask:
Does some future f1 of node v satisfy formula ϕ?
Do all futures f2 of every node on f1 satisfy ϕ?
Do all nodes on f1 satisfy ψ?

These questions fall into two fundamentally different
categories:

Some are concerned with futures of given nodes.
Others, with properties of nodes on given futures.

Accordingly, we will have formulas to describe properties
of nodes, and (auxiliary) formulas to describe properties of
futures.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

52 / 61 c© Daniel Shahaf, Nov 2007

Questions to Ask

It is meaningful to ask:
Does some future f1 of node v satisfy formula ϕ?
Do all futures f2 of every node on f1 satisfy ϕ?
Do all nodes on f1 satisfy ψ?

These questions fall into two fundamentally different
categories:

Some are concerned with futures of given nodes.
Others, with properties of nodes on given futures.

Accordingly, we will have formulas to describe properties
of nodes, and (auxiliary) formulas to describe properties of
futures.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

53 / 61 c© Daniel Shahaf, Nov 2007

Formulas in BrTL

A state formula is:
1 An atomic proposition p ∈ P;
2 A boolean combination of state formulas;
3 One of ∀ϕ, ∃ϕ, where ϕ is a path formula.

A path formula is:
1 A state formula;
2 A boolean combination of path formulas;
3 One of ©ϕ, ϕUsψ, where ϕ and ψ are path formulas.

The formulas of BrTL are the state formulas.
The path formulas are solely an auxiliary.
Defining them explicitly aids the analysis of state formulas.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

53 / 61 c© Daniel Shahaf, Nov 2007

Formulas in BrTL

A state formula is:
1 An atomic proposition p ∈ P;
2 A boolean combination of state formulas;
3 One of ∀ϕ, ∃ϕ, where ϕ is a path formula.

A path formula is:
1 A state formula;
2 A boolean combination of path formulas;
3 One of ©ϕ, ϕUsψ, where ϕ and ψ are path formulas.

The formulas of BrTL are the state formulas.
The path formulas are solely an auxiliary.
Defining them explicitly aids the analysis of state formulas.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

53 / 61 c© Daniel Shahaf, Nov 2007

Formulas in BrTL

A state formula is:
1 An atomic proposition p ∈ P;
2 A boolean combination of state formulas;
3 One of ∀ϕ, ∃ϕ, where ϕ is a path formula.

A path formula is:
1 A state formula;
2 A boolean combination of path formulas;
3 One of ©ϕ, ϕUsψ, where ϕ and ψ are path formulas.

The formulas of BrTL are the state formulas.
The path formulas are solely an auxiliary.
Defining them explicitly aids the analysis of state formulas.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

54 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Recall that LTL semantics involve linear temporal
interpretations 〈S ,R, I 〉.

BrTL semantics are a generalization of LTL semantics:
A (branching-time) temporal frame is a tuple 〈S ,R〉,
where S is is a set of states and R is a binary relation
on S , such that every s ∈ S has at least one R-successor.

The set of R-successors of s will be written R(s).
A (branching-time) temporal interpretation function is
as before.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

54 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Recall that LTL semantics involve linear temporal
interpretations 〈S ,R, I 〉.
BrTL semantics are a generalization of LTL semantics:

A (branching-time) temporal frame is a tuple 〈S ,R〉,
where S is is a set of states and R is a binary relation
on S , such that every s ∈ S has at least one R-successor.

The set of R-successors of s will be written R(s).
A (branching-time) temporal interpretation function is
as before.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);
I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);
I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:

I(`, ϕ) = I
(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);
I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);

I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);
I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:

I(`, ϕ) = I
(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);
I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);
I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);

I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:

I(`, ϕ) = I
(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);
I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);
I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);
I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:

I(`, ϕ) = I
(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);
I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);
I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);
I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:
I(`, ϕ) = I

(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);
I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);
I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);
I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:
I(`, ϕ) = I

(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);

I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

55 / 61 c© Daniel Shahaf, Nov 2007

Semantics of BrTL

Let ϕ, ψ be state formulas; α, β be path formulas; p, q be
atoms; s ∈ S be a state; and ` : N→ S be a path.

An interpretation I = 〈S ,R, I 〉 assigns a truth-value to
every path and state formula.
For state formulas:

I(s, p) = I(s, p);
I(s, ϕ ◦ ψ) = I(s, ϕ) ◦̃ I(s, ψ);
I(s,∀α) = T iff I(`, α) = T whenever `(0) = s;
I(s,∃α) = T iff there is some path ` starting at s such
that I(`, α) = T.

For path formulas:
I(`, ϕ) = I

(
`(0), ϕ

)
;

I(`, α ◦ β) = I(`, α) ◦̃ I(`, β);
I(`,©α) and I(`, αUsβ)—
as in LTL, evaluated along ` as linear timeline.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

56 / 61 c© Daniel Shahaf, Nov 2007

Examples

Chess boards.

There are reachable positions where White cannot win.
White can win.
At most one king is in check.
If the White king has moved, White won’t castle.

Any decision-making process or algorithm.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

56 / 61 c© Daniel Shahaf, Nov 2007

Examples

Chess boards.
There are reachable positions where White cannot win.
White can win.
At most one king is in check.
If the White king has moved, White won’t castle.

Any decision-making process or algorithm.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

57 / 61 c© Daniel Shahaf, Nov 2007

Weakening the Logic

The logic we have introduced is known as CTL∗.
It is very powerful and highly expressive.

Unfortunately, this comes at a price:
Its decision problem is unusually complex.
Thus, we would like to limit CTL∗ somewhat, while
retaining its advantages.
One popular way is Computation Tree Logic (CTL),
which forbids applying temporal operators to anything
but state formulas.

Applying a temporal operator to a path formula is no
longer permitted.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

57 / 61 c© Daniel Shahaf, Nov 2007

Weakening the Logic

The logic we have introduced is known as CTL∗.
It is very powerful and highly expressive.
Unfortunately, this comes at a price:
Its decision problem is unusually complex.
Thus, we would like to limit CTL∗ somewhat, while
retaining its advantages.

One popular way is Computation Tree Logic (CTL),
which forbids applying temporal operators to anything
but state formulas.

Applying a temporal operator to a path formula is no
longer permitted.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

57 / 61 c© Daniel Shahaf, Nov 2007

Weakening the Logic

The logic we have introduced is known as CTL∗.
It is very powerful and highly expressive.
Unfortunately, this comes at a price:
Its decision problem is unusually complex.
Thus, we would like to limit CTL∗ somewhat, while
retaining its advantages.
One popular way is Computation Tree Logic (CTL),
which forbids applying temporal operators to anything
but state formulas.

Applying a temporal operator to a path formula is no
longer permitted.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

58 / 61 c© Daniel Shahaf, Nov 2007

Introducing CTL

The only difference between CTL and CTL∗ is in the
definition of path formulas.

In CTL, a path formula is one of ©ϕ, ϕUsψ, where ϕ
and ψ are state formulas.

Therefore, in CTL, temporal operators appear only as
part of the compound connectives ∀©, ∀U, ∀�, ∀♦, ∃©,
∃U, ∃�, ∃♦.

For instance, ‘∀�©ϕ’ is a CTL∗ formula, but not a CTL
formula.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

58 / 61 c© Daniel Shahaf, Nov 2007

Introducing CTL

The only difference between CTL and CTL∗ is in the
definition of path formulas.

In CTL, a path formula is one of ©ϕ, ϕUsψ, where ϕ
and ψ are state formulas.
Therefore, in CTL, temporal operators appear only as
part of the compound connectives ∀©, ∀U, ∀�, ∀♦, ∃©,
∃U, ∃�, ∃♦.

For instance, ‘∀�©ϕ’ is a CTL∗ formula, but not a CTL
formula.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

58 / 61 c© Daniel Shahaf, Nov 2007

Introducing CTL

The only difference between CTL and CTL∗ is in the
definition of path formulas.

In CTL, a path formula is one of ©ϕ, ϕUsψ, where ϕ
and ψ are state formulas.
Therefore, in CTL, temporal operators appear only as
part of the compound connectives ∀©, ∀U, ∀�, ∀♦, ∃©,
∃U, ∃�, ∃♦.

For instance, ‘∀�©ϕ’ is a CTL∗ formula, but not a CTL
formula.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

59 / 61 c© Daniel Shahaf, Nov 2007

CTL and CTL∗

Examples:
‘∃�♦p’ is not a CTL formula.
‘∃�∃♦p’ and ‘∃�p’ are CTL formulas..

Consider the following interpretation:

q0
¬pstart

q1
p

q2
¬p

Not a tree, but can be made into one.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

59 / 61 c© Daniel Shahaf, Nov 2007

CTL and CTL∗

Examples:
‘∃�♦p’ is not a CTL formula.
‘∃�∃♦p’ and ‘∃�p’ are CTL formulas..

Consider the following interpretation:

q0
¬pstart

q1
p

q2
¬p

Not a tree, but can be made into one.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic
Motivation
Structure
Formal Definition
Examples
Computation Tree
Logics

Summary

59 / 61 c© Daniel Shahaf, Nov 2007

CTL and CTL∗

Examples:
‘∃�♦p’ is not a CTL formula.
‘∃�∃♦p’ and ‘∃�p’ are CTL formulas..

Consider the following interpretation:

q0
¬pstart

q1
p

q2
¬p

Not a tree, but can be made into one.



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

60 / 61 c© Daniel Shahaf, Nov 2007

Summary

1 Linear-time Temporal Logic

2 Büchi Automata

3 Automata Recognizing Interpretations

4 Extensions of Linear-time Temporal Logic

5 Branching-time Temporal Logic



Temporal
Logics I:
Theory

Introduction

Linear-time
Temporal
Logic

Büchi
Automata

Automata
Recognizing
Interpretations

Extensions of
LTL

Branching-
time Temporal
Logic

Summary

Time is an illusion. Lunchtime doubly so.
—Douglas Adams

The End.


	Introduction
	Motivation for Temporal Logics

	Linear-time Temporal Logic
	Examples
	Syntax
	Semantics
	Comparison to Classical Logic

	Büchi Automata
	-Regular Languages
	Büchi Automata
	Properties of Büchi Automata

	Automata Recognizing Interpretations
	Overview
	Closures
	Building the Automaton

	Extensions of Linear-time Temporal Logic
	Motivation
	Defining New Operators
	Restricted Büchi Automata

	Branching-time Temporal Logic
	Motivation
	Structure
	Formal Definition
	Examples
	Computation Tree Logics

	Summary

