Tutorial on Non-Deterministic Semantics
Part III: More Advanced Topics

Arnon Avron and Anna Zamansky

UNILOG 2013, Rio de Janeiro
What this tutorial is about

Non-deterministic Semantics (Matrices):
Incorporating the notion of "non-deterministic computations" from automata and computability theory into logical truth-tables. We would like to show: Non-deterministic semantics is a natural and useful paradigm.
What this tutorial is about

Non-deterministic Semantics (Matrices):
Incorporating the notion of “non-deterministic computations” from automata and computability theory into logical truth-tables.
What this tutorial is about

Non-deterministic Semantics (Matrices):
Incorporating the notion of "non-deterministic computations" from automata and computability theory into logical truth-tables.

We would like to show:
Non-deterministic semantics is a natural and useful paradigm.
Already covered topics

- Basic definitions and properties of Nmatrices.
- Application: canonical Gentzen-type systems.
- Application: semantics and sequent calculi for Logics of Formal (In)consistency
Overview of Part III - More Advanced Topics

1. Constructive Canonical Systems
2. FOL Defs
3. FO C-systems
4. Canonical Systems with Quantifiers
Characterization of constructive connectives

- Extending the notion of canonical systems to the framework of single-conclusioned Gentzen-type calculi.
- Semantics: a combination of non-deterministic semantics with Kripke-style frames
Characterization of constructive connectives

- Extending the notion of canonical systems to the framework of *single-conclusioned* Gentzen-type calculi.
- Semantics: a combination of non-deterministic semantics with Kripke-style frames
- **Application**: constructive connectives can be characterized proof-theoretically by a set of canonical rules in *single-conclusion* canonical systems.
Reminder: what is a multiple-conclusioned canonical rule?

Stage 1.
\[\Gamma, \psi, \varphi \Rightarrow \Delta \]
\[\Gamma, \psi \land \varphi \Rightarrow \Delta \]
\[\Gamma \Rightarrow \Delta, \psi \]
\[\Gamma \Rightarrow \Delta, \varphi \]

Stage 2.
\[\psi, \varphi \Rightarrow \]
\[\psi \land \varphi \Rightarrow \]
\[\Rightarrow \psi \]
\[\Rightarrow \varphi \]
\[\Rightarrow \psi \land \varphi \]

Stage 3.
\[\{ p_1, p_2 \Rightarrow \}/ p_1 \land p_2 \Rightarrow \]
\[\Rightarrow p_1 ; \Rightarrow p_2 \}/ \Rightarrow p_1 \land p_2 \]
What is a single-conclusioned canonical rule?

Stage 1.

\[
\begin{align*}
\Gamma, \psi, \varphi & \Rightarrow \theta \\
\Gamma & \Rightarrow \psi \\
\Gamma & \Rightarrow \varphi
\end{align*}
\]

\[
\Gamma, \psi \land \varphi \Rightarrow \theta
\]

\[
\Gamma \Rightarrow \psi \land \varphi
\]

Stage 2.

\[
\psi, \varphi \Rightarrow
\]

\[
\Rightarrow \psi \Rightarrow \varphi
\]

\[
\Rightarrow \psi \land \varphi
\]

Stage 3.

\[
\{ p_1, p_2 \Rightarrow \}/ p_1 \land p_2 \Rightarrow
\]

\[
\Rightarrow p_1 ; \Rightarrow p_2 \}/ \Rightarrow p_1 \land p_2
\]
Example 1

Implication rules:

\[\{ p_1 \Rightarrow p_2 \} / \Rightarrow p_1 \supset p_2 \quad \{ \Rightarrow p_1 ; p_2 \Rightarrow \} / p_1 \supset p_2 \Rightarrow \]

Their applications:

\[\Gamma, \psi \Rightarrow \varphi \quad \Gamma \Rightarrow \psi \quad \Gamma, \varphi \Rightarrow \theta \]
\[\Gamma \Rightarrow \psi \supset \varphi \quad \Gamma, \psi \supset \varphi \Rightarrow \theta \]
Example 2

Semi-implication rules (Gurevich):

\[
\{ \Rightarrow p_1 ; p_2 \Rightarrow \} / p_1 \bowtie p_2 \Rightarrow \quad \{ \Rightarrow p_2 \} / \Rightarrow p_1 \bowtie p_2
\]

Their applications:

\[
\frac{\Gamma \Rightarrow \psi}{\Gamma, \psi \bowtie \varphi \Rightarrow \theta} \quad \frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \psi \bowtie \varphi}
\]

\[
\frac{\Gamma, \varphi \Rightarrow \theta}{\Gamma \Rightarrow \psi \bowtie \varphi}
\]
A canonical single-conclusioned calculus \(G \) is **coherent** if for every pair of rules \(\Theta_1/ \Rightarrow \diamond (p_1, ..., p_n) \) and \(\Theta_2/ \diamond (p_1, ..., p_n) \Rightarrow \), the set of clauses \(\Theta_1 \cup \Theta_2 \) is classically unsatisfiable (and so inconsistent, i.e., the empty sequent can be derived from it using only cuts).

Examples of coherent calculi:

\[
\begin{align*}
\{p_1 \Rightarrow p_2\} & / \Rightarrow p_1 \supset p_2 \quad \{\Rightarrow p_1 ; p_2 \Rightarrow\} & / p_1 \supset p_2 \Rightarrow \\
\{\Rightarrow p_1 ; p_2 \Rightarrow\} & / p_1 \rightsquigarrow p_2 \Rightarrow \quad \{\Rightarrow p_2\} & / \Rightarrow p_1 \rightsquigarrow p_2
\end{align*}
\]

For a canonical calculus \(G \), \(\vdash_G \) is consistent iff \(G \) is coherent.
Characterization of constructiveness

Constructive connective

A connective is called constructive iff it can be defined by a coherent set of canonical rules.
A generalized Kripke-frame

A triple $W = \langle W, <, v \rangle$, where:

- $\langle W, < \rangle$ is a nonempty partially ordered set
- $v : W \times F \rightarrow \{t, f\}$ is a **persistent** function:

 if $v(w, \psi) = t$, then for every $w' \geq w$, $v(w', \psi) = t$.

- A sequent $\Gamma \Rightarrow \Delta$ is **locally true** in $w \in W$ if either

 $v(w, \psi) = f$ for some $\psi \in \Gamma$, or $v(w, \psi) = t$ for some $\psi \in \Delta$.

- A sequent is **true** in $w \in W$ if it is locally true in every $w' \geq w$.

- W is a **model** of a sequent if it is locally true in every $w \in W$.
G-legality of frames

Let G be a canonical coherent single-conclusioned system. A generalized frame is G-legal if it respects the introduction and elimination rules of G.

Respecting introduction rules
The conclusion is locally true in $w \in W$ whenever the premises are true in w.

Respecting elimination rules
The conclusion is locally true in $w \in W$ whenever the definite premises are true in w and the negative premises are locally true in w.
Example 1

Implication rules:

\[
\{p_1 \Rightarrow p_2\} \ / \ \Rightarrow p_1 \supset p_2
\]

\[
v(w, \psi \supset \varphi) = t \text{ if } v(w', \psi) = f \text{ or } v(w', \varphi) = t \text{ for every } w' \geq w
\]

\[
\{\Rightarrow p_1 ; p_2 \Rightarrow\} \ / \ p_1 \supset p_2 \Rightarrow
\]

\[
v(w, \psi \supset \varphi) = f \text{ if } v(w, \psi) = t \text{ and } v(w, \varphi) = f
\]

The known semantics for intuitionistic implication!
Example 2

Semi-implication rules (Gurevich):

\[
\{ \Rightarrow p_2 \} / \Rightarrow p_1 \leadsto p_2
\]

\[\nu(w, \psi \leadsto \varphi) = t \text{ if } \nu(w, \varphi) = t\]

\[
\{ \Rightarrow p_1 ; p_2 \Rightarrow \} / p_1 \leadsto p_2 \Rightarrow
\]

\[\nu(w, \psi \leadsto \varphi) = f \text{ if } \nu(w, \psi) = t \text{ and } \nu(w, \varphi) = f\]

Non-deterministic (e.g., for the case when \(\nu(w', \psi) = \nu(w', \varphi) = f\) for every \(w' \geq w\))
Main results

Soundness and completeness:
A sequent s is provable from a set of sequents S in G iff every G-legal frame which is a model of S is also a model of s.

Decidability:
Every coherent canonical system is decidable.

Cut-elimination:
Every coherent canonical system admits strong cut-elimination.

Modularity:
The characterization of a constructive connective is independent of the system in which it is included.
Extension: basic systems

- Unlike in canonical systems, in basic sequent systems it is possible to control the context formulas.
- This allows one to have a larger variety of rules, and thus to handle more logics. For example,
 - Bi-intuitionistic logic:
 \[
 \frac{\Gamma, \psi \Rightarrow \varphi}{\Gamma \Rightarrow \psi \supset \varphi} \quad \frac{\Gamma \Rightarrow \psi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma, \psi \supset \varphi \Rightarrow \Delta}
 \]
 \[
 \frac{\psi \Rightarrow \varphi, \Delta}{\psi \prec \varphi \Rightarrow \Delta} \quad \frac{\Gamma \Rightarrow \psi, \Delta \quad \Gamma, \varphi \Rightarrow \Delta}{\Gamma \Rightarrow \psi \prec \varphi, \Delta}
 \]
 - The modal logic K:
 \[
 \frac{\Gamma \Rightarrow \psi}{\Box \Gamma \Rightarrow \Box \psi}
 \]
Basic systems - main results

- Every basic system has a (non-deterministic) Kripke-style semantics.
- In fact, there is a general method to obtain a (non-deterministic) Kripke-style semantics for a given basic systems.
- In addition, there are complete semantic characterizations of analyticity and (strong) cut-admissibility in basic systems.
Extension: canonical Gödel systems

- For some important logics, sequent systems do not suffice ⇒ hypersequent systems.
- A single-conclusion hypersequent is a set of single-conclusion sequents denoted by:
 \[\Gamma_1 \Rightarrow E_1 \mid \Gamma_2 \Rightarrow E_2 \mid \ldots \mid \Gamma_n \Rightarrow E_n \]
- The only known “ideal” system for Gödel logic is the single-conclusion hypersequent system \(\text{HG} \) based on the rule:
 \[
 \frac{H \mid \Gamma, \Delta \Rightarrow E_1 \quad H \mid \Gamma, \Delta \Rightarrow E_2}{H \mid \Gamma \Rightarrow E_1 \mid \Delta \Rightarrow E_2} \quad (\text{com})
 \]
- Canonical Gödel systems: single-conclusion hypersequent systems with standard structural rules, (\text{com}), and any finite set of canonical single-conclusion logical rules.
Canonical Gödel systems - main results

- A general method to obtain (strongly) sound and complete Kripke semantics for canonical Gödel systems, based on linearly ordered frames.

- A general method to obtain (strongly) sound and complete many-valued semantics for canonical Gödel systems, based on the truth-values $[0, 1]$.

- The coherence criterion (from canonical single-conclusion sequent system) characterizes (strong) cut-admissibility in Canonical Gödel systems as well.
Non-deterministic semantics combined with Kripke-style frames are a powerful semantic formalism:

- Providing semantics for many natural classes of calculi (canonical single-conclusioned, basic, canonical Gödel, …)
- Semantic characterization of proof-theoretical properties of calculi.
Reminder: First-order languages

A first-order language L includes:

- A set of variables $x_1, x_2, \ldots,$
- Parentheses, logical connectives (e.g. \land, \lor, \supset, \neg) and quantifiers (e.g., \forall and \exists)
- The signature of L:
 - a (non-empty) set of predicate symbols
 - a set of constants
 - a set of function symbols
Matrices with unary quantifiers

\(M = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle \) is a (deterministic) matrix for a language \(L \) with unary quantifiers if:

1. \(\mathcal{V} \) is a nonempty set of truth-values,
2. \(\emptyset \neq \mathcal{D} \subset \mathcal{V} \) is a set of designated truth-values,
3. for every \(n \)-ary connective \(\Diamond \) of \(L \), \(\mathcal{O} \) includes an operation \(\tilde{\Diamond} : \mathcal{V}^n \rightarrow \mathcal{V} \),
4. for every unary quantifier \(Q \) of \(L \), \(\mathcal{O} \) includes an operation \(\tilde{Q} : P^+(\mathcal{V}) \rightarrow \mathcal{V} \).

Distribution quantifiers (coined by W.A. Carnielli)
Example

<table>
<thead>
<tr>
<th>H</th>
<th>$\forall(H)$</th>
<th>$\exists(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${t}$</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>${t,f}$</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>${f}$</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>
Matrices: objectual quantification

- *Variables range over objects from the domain and assignments map variables to elements of the domain.*
Matrices: objectual quantification

- **Variables range over objects from the domain and assignments** map variables to elements of the domain.
- \(S = \langle D, I \rangle \) - an \(L \)-structure.
 - An assignment \(G \) in \(S \) maps the variables of \(L \) to \(D \).
 - Extend \(G \) to terms:

\[
G(c) = I(c), \quad G(f(t_1, \ldots, t_n)) = I(f)(G(t_1), \ldots, G(t_n))
\]
Matrices: objectual quantification

- **Variables range over objects from the domain and assignments map variables to elements of the domain.**
- $S = \langle D, I \rangle$ - an L-structure.
 - An *assignment* G in S maps the variables of L to D.
 - Extend G to terms:
 \[
 G(c) = I(c), \quad G(f(t_1, ..., t_n)) = I(f)(G(t_1), ..., G(t_n))
 \]

The valuation $\nu_{S,G}$

- $\nu_{S,G}(p(t_1, ..., t_n)) = I(p)(G(t_1), ..., G(t_n))$.
- $\nu_{S,G}(\diamond(\psi_1, ..., \psi_n)) = \tilde{\diamond}(\nu_{S,G}(\psi_1), ..., \nu_{S,G}(\psi_n))$.
- $\nu_{S,G}(Qx\psi) = \tilde{Q}({\nu_{S,G}\{x:=a\}(\psi) \mid a \in D})$.
 - where $G\{x:=a\}$ coincides with G except for assigning $a \in D$ to x.
Matrices: substitutional quantification

- **In classical first-order substitutional semantics,** a universally quantified sentence is true iff each of its substitution instances is true.

- **Assumption:** every element of the domain has a name.

 Given an L-structure $S = \langle D, I \rangle$, extend the language with the set of individual constants $\{\overline{a} \mid a \in D\}$ interpreted as the corresponding domain elements.
Matrices: substitutional quantification

- In classical first-order substitutional semantics, a universally quantified sentence is true iff each of its substitution instances is true.

- Assumption: every element of the domain has a name.

Given an L-structure $S = \langle D, I \rangle$, extend the language with the set of individual constants $\{a | a \in D\}$ interpreted as the corresponding domain elements.

The valuation v_S

- $v_S(p(t_1, \ldots, t_n)) = I(p)(I(t_1), \ldots, I(t_n))$
- $v_S(\diamond(\psi_1, \ldots, \psi_n)) = \tilde{\diamond}(v_S(\psi_1), \ldots, v_S(\psi_n))$
- $v_S(Qx\psi) = \tilde{Q}(\{v_S(\psi{\bar{a}/x}) | a \in D\})$
Nmatrices with unary quantifiers

\[M = \langle V, D, O \rangle \] is a non-deterministic matrix (Nmatrix) for a language \(L \) with unary quantifiers if:

1. \(V \) is a nonempty set of truth-values,
2. \(\emptyset \neq D \subseteq V \) is a set of designated truth-values,
3. for every \(n \)-ary connective \(\Diamond \) of \(L \), \(O \) includes an operation \(\tilde{\Diamond} : V^n \to P^+(V) \),
4. for every unary quantifier \(Q \) of \(L \), \(O \) includes an operation \(\tilde{Q} : P^+(V) \to P^+(V) \).
Example

Consider the two-valued Nmatrix $\mathcal{M}_1 = \langle \{ t, f \}, \{ t \}, \mathcal{O} \rangle$ for a language L over $\{ Q, \forall, \neg \}$, where \mathcal{O} contains the following operations:

<table>
<thead>
<tr>
<th>H</th>
<th>$\tilde{Q}(H)$</th>
<th>H</th>
<th>$\tilde{\forall}(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${ t }$</td>
<td>${ t }$</td>
<td>${ t }$</td>
<td>${ t }$</td>
</tr>
<tr>
<td>${ t, f }$</td>
<td>${ t, f }$</td>
<td>${ t, f }$</td>
<td>${ f }$</td>
</tr>
<tr>
<td>${ f }$</td>
<td>${ f }$</td>
<td>${ f }$</td>
<td>${ f }$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>$\neg a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>${ t, f }$</td>
</tr>
<tr>
<td>f</td>
<td>${ t }$</td>
</tr>
</tbody>
</table>
Nmatrices: objectual quantification

\[\nu_{S,G}(p(t_1, \ldots, t_n)) = I(p)(G(t_1), \ldots, G(t_n)). \]
Nmatrices: objectual quantification

\[\nu_{S,G}(p(t_1, \ldots, t_n)) = I(p)(G(t_1), \ldots, G(t_n)). \]

\[\nu_{S,G}(\diamond(\psi_1, \ldots, \psi_n)) \in \tilde{\diamond}(\nu_{S,G})(\psi_1), \ldots, \nu_{S,G}(\psi_n)). \]
Nmatrices: objectual quantification

- $\nu_{S,G}(p(t_1, ..., t_n)) = I(p)(G(t_1), ..., G(t_n))$.
- $\nu_{S,G}(<\psi_1, ..., \psi_n>) \in \tilde{\Diamond}(\nu_{S,G}(\psi_1), ..., \nu_{S,G}(\psi_n))$.
- $\nu_{S,G}(Q \times \psi) \in \tilde{Q}[\{\nu_{S,G}[x:=a](\psi) \mid a \in D\}]$.

???
Substitutional quantification

Reminder: For $S = \langle D, I \rangle$, the language extended by individual constants is denoted by $L(D)$

Let $S = \langle D, I \rangle$ be an L-structure. A valuation in an Nmatrix M for L is a function v from sentences of $L(D)$ to \mathcal{V}, satisfying:

- $v((p(t_1, \ldots, t_n)) = I(p)(I(t_1), \ldots, I(t_n))$
- $v(\forall (\psi_1, \ldots, \psi_n)) \in \tilde{\forall}(v(\psi_1), \ldots, v(\psi_n))$
- $v(Qx\psi) \in \tilde{Q}({v(\psi\{\overline{a}/x\}) \mid a \in D})$
The problem of α-equivalence

- $\psi \equiv_\alpha \psi'$ if ψ can be obtained from ψ' by renaming bound variables.
- Problem: two α-equivalent sentences are not necessarily assigned the same truth-value.
- Example:

<table>
<thead>
<tr>
<th>H</th>
<th>$\neg\forall[H]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{t}</td>
<td>{t}</td>
</tr>
<tr>
<td>{t,f}</td>
<td>{f}</td>
</tr>
<tr>
<td>{f}</td>
<td>{f}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>$\neg a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>{t,f}</td>
</tr>
<tr>
<td>f</td>
<td>{t}</td>
</tr>
</tbody>
</table>

Consider: $\neg\forall xp(x)$ and $\neg\forall yp(y)$
Definition of a non-deterministic valuation - corrected

Let $S = \langle D, I \rangle$ be an L-structure. A valuation in an Nmatrix \mathcal{M} for L is a function v from closed sentences of $L(D)$ to \mathcal{V} satisfying:

- $v(p(t_1, \ldots, t_n)) = I(p)(I(t_1), \ldots, I(t_n))$.
- $v(\top(\psi_1, \ldots, \psi_n)) \in \tilde{\top}(v(\psi_1), \ldots, v(\psi_n))$.
- $v(Qx\psi) \in \tilde{Q}(\{v(\psi{\bar{a}/x}) \mid a \in D\})$.
- If $\psi_1 \equiv_\alpha \psi_2$, then $v(\psi_1) = v(\psi_2)$.
Other problems to handle

- Terms denoting the same objects cannot be used interchangeably.
- Void quantification for first-order quantifiers \forall and \exists.
- Example:

<table>
<thead>
<tr>
<th>H</th>
<th>$\forall[H] $</th>
</tr>
</thead>
<tbody>
<tr>
<td>{t}</td>
<td>{t}</td>
</tr>
<tr>
<td>{t,f}</td>
<td>{f}</td>
</tr>
<tr>
<td>{f}</td>
<td>{f}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>$\neg a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>{t,f}</td>
</tr>
<tr>
<td>f</td>
<td>{t}</td>
</tr>
</tbody>
</table>

Let $S = \langle \{1, 2\}, I \rangle$, $I(p)(1) = I(p)(2) = t$ and $I(c) = I(d) = 1$.

Consider: (i) $\neg p(c)$ and $\neg p(d)$, (ii) $\neg \forall x p(c)$ and $\neg p(c)$.

Solution: add appropriate congruence relations. For instance, $A \sim_{void} QxA$ if $x \not\in Fv(A)$.
Analyticity

Analyticity of an Nmatrix M

for every L-structure S and every partial M-legal S-valuation v_p
defined on a set of L-sentences closed under subformulas: v_p can
be extended to a full M-legal valuation.
Analyticity

Analyticity of an Nmatrix M

for every L-structure S and every partial M-legal S-valuation v_p defined on a set of L-sentences closed under subformulas: v_p can be extended to a full M-legal valuation.

- Analyticity is not guaranteed anymore when congruence relations are involved.
- Some good cases:
 - Analyticity for \equiv_α is always guaranteed.
 - Denote $\varphi_1 \sim^{dc} \varphi_2$ if φ_2 can be obtained from φ_1 by renaming bound variables and deleting/adding void quantifiers. Analyticity for \sim^{dc} is guaranteed iff $a \in \tilde{Q}_M(\{a\})$ for every quantifier Q of L and every $a \in \mathcal{V}$.
Using congruences in the propositional case

- Introducing congruences can be useful also in the propositional case (e.g. equivalence in all contexts of $\psi \land \varphi$ and $\varphi \land \psi$).
- Analyticity should be handled with care (question for further research)
Application: first-order C-systems

Language: $L_{QC} = \{\land, \lor, \supset, \neg, \lozenge, \forall, \exists\}$.

Logic: QBK is obtained by adding the following axioms to some standard Hilbert-type system for classical positive FOL:

(N1) $\neg \varphi \lor \varphi$

(b) $(\lozenge \varphi \land \varphi \land \neg \varphi) \supset \psi$

(k) $\lozenge \psi \lor (\psi \land \neg \psi)$

(DC) $\varphi_1 \supset \varphi_2$ whenever $\varphi_1 \sim^{dc} \varphi_2$.

$\varphi_1 \sim^{dc} \varphi_2$ if φ_2 can be obtained from φ_1 by renaming bound variables and deleting/adding void quantifiers.
Extensions of QBK

(c) \(\neg \neg \varphi \subseteq \varphi \)

(e) \(\varphi \subseteq \neg \neg \varphi \)

\[
\ldots
\]

(a\(\forall\)) \(\forall x \circ \varphi \subseteq o(\forall x \varphi) \)

(a\(\exists\)) \(\forall x \circ \varphi \subseteq o(\exists x \varphi) \)

(o\(\forall\)) \(\exists x \circ \varphi \subseteq o(\forall x \varphi) \)

(o\(\exists\)) \(\exists x \circ \varphi \subseteq o(\exists x \varphi) \)

Example: da-Costa’s original \(C_1^* \) is equivalent to QBKcilə.
The idea of semantics

- Truth-value: $v(\varphi) = \langle x, y \rangle$, where x expresses truth/falsity of φ and y expresses truth/falsity of $\neg \varphi$.
The idea of semantics

- **Truth-value:** \(v(\varphi) = \langle x, y \rangle \), where \(x \) expresses truth/falsity of \(\varphi \) and \(y \) expresses truth/falsity of \(\neg \varphi \).

- **Possible values:**
 - \(v(\varphi) = \langle 1, 0 \rangle = t \) - \(\varphi \) is true and \(\neg \varphi \) is false
 - \(v(\varphi) = \langle 0, 1 \rangle = f \) - \(\varphi \) is false and \(\neg \varphi \) is true
 - \(v(\varphi) = \langle 1, 1 \rangle = \top \) - \(\varphi \) is true and \(\neg \varphi \) is true

- **Addition:** Every \(M \)-legal valuation should also respect the congruences for \(\alpha \)-equivalence and void quantification (but analyticity is preserved!).
3-valued Semantics for QBK

The Nmatrix $QM = \langle \mathcal{V}, \mathcal{D}, \mathcal{O} \rangle$ is defined by:

$\mathcal{V} = \{ t, \top, f \}$, $\mathcal{D} = \{ t, \top \}$, and $\mathcal{F} = \{ f \}$:

$a \tilde{\land} b = \begin{cases} D & \text{if } a \in D \text{ and } b \in D \\ F & \text{if } a \in F \text{ or } b \in F \end{cases}$

$a \tilde{\lor} b = \begin{cases} D & \text{if } a \in D \text{ or } b \in D \\ F & \text{if } a \in F \text{ and } b \in F \end{cases}$

$\tilde{\neg} a = \begin{cases} D & \text{if } a \in \{ \top, f \} \\ F & \text{if } a = t \end{cases}$

$\tilde{\forall}(H) = \begin{cases} D & \text{if } H \subseteq D \\ F & \text{otherwise} \end{cases}$

$\tilde{\exists}(H) = \begin{cases} D & \text{if } H \cap D \neq \emptyset \\ F & \text{otherwise} \end{cases}$
Effects of \((a_Q)\) and \((o_Q)\) for \(Q \in \{\forall, \exists\}\)

\[
\begin{align*}
(a_\forall) \quad & \forall x \circ \varphi \supset o(\forall x \varphi) \\
(a_\exists) \quad & \forall x \circ \varphi \supset o(\exists x \varphi) \\
o_\forall \quad & \exists x \circ \varphi \supset o(\forall x \varphi) \\
o_\exists \quad & \exists x \circ \varphi \supset o(\exists x \varphi)
\end{align*}
\]

\[
\begin{align*}
\text{Cond}(a_\forall) : & \forall^{\circ}(\{t\}) = \{t\} \\
\text{Cond}(a_\exists) : & \exists^{\circ}(\{t\}) = \exists^{\circ}(\{t, f\}) = \{t\} \\
\text{Cond}(o_\forall) : & \forall^{\circ}(\{t\}) = \exists^{\circ}(\{t, T\}) = \{t\} \\
\text{Cond}(o_\exists) : & \exists^{\circ}(\{t\}) = \exists^{\circ}(\{t, T\}) = \\
& \exists^{\circ}(\{t, f\}) = \exists^{\circ}(\{t, T, f\}) = \{t\}
\end{align*}
\]
The Nmatrix $\mathbf{M}_{C_1^*}$

$\mathcal{V} = \mathcal{T} \cup \mathcal{I} \cup \mathcal{F}, \quad \mathcal{T} = \{ t^i_j \mid i \geq 0, j \geq 0 \}, \quad \mathcal{I} = \{ \top^i_j \mid i \geq 0, j \geq 0 \}, \quad \mathcal{F} = \{ f \}, \quad \mathcal{D} = \mathcal{T} \cup \mathcal{I}.$

$a \tilde{\lor} b = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{D} \text{ and } b \in \mathcal{F} \\ \mathcal{T} & \text{if } a \in \mathcal{F} \text{ and } b \notin \mathcal{I}, \text{ or} \\ \mathcal{D} & \text{if } b \in \mathcal{T} \text{ and } a \notin \mathcal{I} \\ \text{otherwise} \end{cases}$

$a \tilde{\land} b = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{F} \text{ or } b \in \mathcal{F} \\ \mathcal{T} & \text{if } a \in \mathcal{T} \text{ and } b \in \mathcal{T}, \text{ or} \\ \mathcal{D} & \text{if } a = \top^i_j \text{ and } b \in \{ \top^i_j+1, t^i_{j+1} \} \\ \text{otherwise} \end{cases}$

$\tilde{\neg} a = \begin{cases} \mathcal{F} & \text{if } a \in \mathcal{T} \\ \mathcal{T} & \text{if } a \in \mathcal{F} \\ \{ \top^i_j+1, t^i_{j+1} \} & \text{if } a = \top^i_j \end{cases}$

$\tilde{\forall}(H) = \begin{cases} \mathcal{T} & \text{if } H \subseteq \mathcal{T} \\ \mathcal{D} & \text{if } H \subseteq \mathcal{D} \text{ and } H \cap \mathcal{I} \neq \emptyset \\ \mathcal{F} & f \in H \end{cases}$

$\tilde{\exists}(H) = \begin{cases} \mathcal{T} & \text{if } H \subseteq \mathcal{T} \cup \mathcal{F} \text{ and } H \cap \mathcal{T} \neq \emptyset \\ \mathcal{D} & \text{if } H \cap \mathcal{I} \neq \emptyset \\ \mathcal{F} & H = \{ f \} \end{cases}$
Application: \(\neg \exists x \neg p(x) \not\vdash_{C_1^*} \forall x p(x) \)

- A much easier semantic proof: refutation using \(M_{C_1^*} \).

\[S = \langle \{a, b\}, I \rangle \]

\[I(p)(a) = \top_0 \quad I(p)(b) = f \]

Next define a partial valuation \(\nu \) on the set of subformulas of \(\{\neg \exists x \neg p(x), \forall x p(x)\} \) as follows:

\[\nu(p(a)) = \top_0 \quad \nu(p(b)) = f \quad \nu(\neg p(a)) = \top_0 \quad \nu(\neg p(b)) = t_0 \]

\[\nu(\exists x \neg p(x)) = \top_0 \quad \nu(\neg \exists x \neg p(x)) = t_0^2 \quad \nu(\forall x p(x)) = f \]

\(\nu \) is \(M_{C_1^*} \)-legal, and (by the analyticity of \(M_{C_1^*} \)) it can be extended to a full \(M_{C_1^*} \)-legal valuation.
Reminder: propositional canonical systems

Each logical rule satisfies:

1. Introduces exactly one formula in its conclusion.
2. The introduced formula: $\diamond(\psi_1, \ldots, \psi_n)$.
3. All active formulas in its premises are in $\{\psi_1, \ldots, \psi_n\}$.
4. No restrictions on the side formulas.

Direct correspondence: A canonical system is coherent iff it admits cut-elimination iff it has a characteristic $2N$-matrix.
Canonical quantifier rules

\[\Gamma, A\{t/w\} \Rightarrow \Delta \quad \frac{\Gamma \Rightarrow A\{z/w\}, \Delta}{\Gamma \Rightarrow \forall w A, \Delta} \]

where \(z \) is a variable free for \(w \) in \(A \), \(z \) is not free in \(\Gamma \cup \Delta \cup \{\forall w A\} \), and \(t \) is any term free for \(w \) in \(A \).

\[\Downarrow \]

\[\frac{A\{t/w\} \Rightarrow}{\forall w A \Rightarrow} \quad \frac{\Rightarrow A\{z/w\}}{\Rightarrow \forall w A} \]

\[\Downarrow \]

\[\{p(c) \Rightarrow\}/\forall w p(w) \Rightarrow \quad \{\Rightarrow p(y)\}/ \Rightarrow \forall w p(w) \]

An eigenvariable is marked by a variable, and a term is marked by a constant.
Constructive Canonical Systems
FOL Defs
FO C-systems
Canonical Systems with Quantifiers

Canonical systems

A canonical system includes

1. Axioms: $\psi \Rightarrow \psi'$ for $\psi \equiv_\alpha \psi'$
2. Structural Weakening and Cut rules:
 \[
 \Gamma \Rightarrow \Delta \quad (\text{Weakening})
 \]
 \[
 \Gamma, \psi \Rightarrow \Delta, \psi \Rightarrow \Delta \quad (\text{Cut})
 \]
3. Substitution rule:
 \[
 \Gamma \Rightarrow \Delta \quad (S)
 \]

 where Γ', Δ' are substitution instances of Γ, Δ resp.
Coherence

- A canonical calculus G is **coherent** if for every two canonical rules of G of the form $\Theta_1/\Rightarrow A$ and $\Theta_2/ A \Rightarrow$, the set of clauses $\Theta_1 \cup \Theta_2$ is classically inconsistent.
- *The coherence of a canonical calculus G is decidable.*
- **Examples:**
 - Coherent:
 - $\{ p(c) \Rightarrow \} / \forall x \ p(x) \Rightarrow \ \{ \Rightarrow p(y) \} / \Rightarrow \forall x \ p(x)$
 - *Non-coherent:*
 - $\{ \Rightarrow p(c) \} / \Rightarrow Qxp(x) \quad \{ p(d) \Rightarrow \} / \Rightarrow Qxp(x)$
Correspondence Theorem

The following statements concerning a canonical system G with unary quantifiers are equivalent:

1. G is coherent.
2. G has a characteristic 2Nmatrix.

Strong cut-elimination

G admits **strong cut-elimination** if whenever $S \vdash s$, then s has a proof from S in G, where cuts are applied only on substitution instances of formulas from S.

More General Quantifiers

- A natural step: \(n \)-ary quantifiers:

 If \(Q \) is an \(n \)-ary quantifier, then \(Qx(\psi_1, \ldots, \psi_n) \) is a formula.

- Examples:

 1. **Unary quantifiers**: \(\forall, \exists \).
 2. **Binary quantifiers**: bounded universal and existential quantifiers \(\forall \) and \(\exists \), where:

 - \(\forall(\psi_1, \psi_2) \) means \(\forall x(\psi_1 \rightarrow \psi_2) \).
 - \(\exists(\psi_1, \psi_2) \) means \(\exists x(\psi_1 \land \psi_2) \).
Nmatrices with n-ary quantifiers

- An n-ary quantifier Q in an Nmatrix $M = \langle V, D, O \rangle$ is interpreted by a function $\tilde{Q}: P^+(V^n) \to P^+(V)$.
- Example: for every $E \in P^+(\{t, f\}^2)$:

$$\tilde{\forall}(E) = \begin{cases} \{f\} & \text{if } \langle t, f \rangle \in E \\ \{t\} & \text{otherwise} \end{cases} \quad \tilde{\exists}(E) = \begin{cases} \{t\} & \text{if } \langle t, t \rangle \in E \\ \{f\} & \text{otherwise} \end{cases}$$

The definition of an M-valuation ν is now modified as follows:

$$\nu(Qx(\psi_1, ..., \psi_n)) \in \tilde{Q}_M(\{\langle v(\psi_1\{a/x\}), ..., v(\psi_n\{a/x\}) \rangle \mid a \in D\})$$

The framework of canonical systems can be extended to the case of n-ary quantifiers, the direct correspondence still holds.
Example

<table>
<thead>
<tr>
<th>\mathbf{H}</th>
<th>$\neg (\mathbf{H})$</th>
<th>$\exists [\mathbf{H}]$</th>
<th>$\tilde{Q}_2 [\mathbf{H}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\langle t, t \rangle}$</td>
<td>${t}$</td>
<td>${t}$</td>
<td>${t, f}$</td>
</tr>
<tr>
<td>${\langle t, f \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle f, f \rangle}$</td>
<td>${t}$</td>
<td>${f}$</td>
<td>${t, f}$</td>
</tr>
<tr>
<td>${\langle f, t \rangle}$</td>
<td>${t}$</td>
<td>${t}$</td>
<td>${f}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle t, f \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t, f}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle f, t \rangle}$</td>
<td>${t}$</td>
<td>${t}$</td>
<td>${t, f}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle f, f \rangle}$</td>
<td>${t}$</td>
<td>${t}$</td>
<td>${t, f}$</td>
</tr>
<tr>
<td>${\langle f, t \rangle, \langle t, t \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle f, t \rangle, \langle f, t \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle f, t \rangle, \langle t, f \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle f, f \rangle, \langle t, f \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t, f}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle t, f \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle f, t \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle t, f \rangle, \langle f, t \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle t, f \rangle, \langle f, t \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
<tr>
<td>${\langle t, t \rangle, \langle t, f \rangle, \langle f, t \rangle, \langle f, f \rangle}$</td>
<td>${f}$</td>
<td>${t}$</td>
<td>${t}$</td>
</tr>
</tbody>
</table>
Summary

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
Summary

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
- Allows for a **systematic and modular** approach
Summary

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
- Allows for a **systematic and modular** approach
- Insights into the syntax-semantics interface
Summary

- Non-deterministic semantics is a useful paradigm:
 - Semantic tool for proof-theoretical investigations
 - Characterization of various non-classical logics
- Allows for a **systematic and modular** approach
- Insights into the syntax-semantics interface
- Provides important tools for Universal Logic.

Thank you for your attention!