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1 Introduction

1.1 Background and related work

An error correcting code, is a scheme which helps to detect and correct errors

in a given data. A (k, n) - linear error correcting code C = {Cn} is a family

of linear spaces, of dimension k, where each Cn contains words of length n,

which we call the codewords. The two basic parameters of interest when

dealing with error correcting codes are

� The rate : The ratio k
n
, which is an indicator of how much redundant

information is present in the codewords.

� The (relative) distance : The minimal ratio of coordinates, for which

two codewords of the same length differ.

It is easy to see that given a corrupt codeword, one could deduce the

original codeword from it (atleast information theoretically), as long as the

corruption does not reach half of the relative distance. It is known since

[Sha01] and [Ham50] that optimal error correcting codes (in terms of rate and

distance) exist. I.e, codes with constant rate and constant relative distance.

However, optimality in terms of rate and distance is not the end of the road,

and since then there has been a lot of interest regarding the local properties

of error correcting codes. The notion of locality in codes, says that one can

look at a small fraction of symbols of a given word, and detect/correct errors

in it. Few notions of locality in codes are

� Local correctability (LCC) : We say that a code C is locally

correctable if there is a randomized algorithm, which given a string w

which is close to a codeword c, and a coordinate i, computes ci (with

good probability) by making a small amount of queries to w.

� Local Testability (LTC) : We say that a code C is locally testable

if there is a randomized algorithm, which given a string w, decides

whether w is a codeword of C, or far from any codeword of C (usually

with probability which depends on the distance from C), by making a

a small amount of queries to w.
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� Low density parity check (LDPC) : We say that a code C is an

LDPC code, if there is a subset of the dual code B ⊂ C⊥, such that

sp(B) = C⊥ , and each z ∈ B has small weight (where weight is the

number of non-zero coordinates). We think about the set B as the set

of constraints which define the code.

Although the definition of an LDPC code does not explicitly refer to

testing or locality, the concepts of LDPC and LTC codes are closely related,

and one can think of an LDPC code as having a ”local characterization”.

More precisely, given such a set B as in the definition of LDPC above, one

could devise a test by choosing some z ∈ B and check whether z ·w = 0 (for

our input w). We see that by definition, a word w will pass the test for every

choice of z if and only if it is a codeword of C. Moreover, the fact that z has

small weight, means we only have to query a small number of coordinates

from w in order to compute z ·w. While LDPC codes provide a low-weight

characterization, the definition of LDPC does not promise any robustness

for the test (I.e, it might so happen that a word is very far for C, but will

pass the test with a high probability).

In [KS08], Kaufman and Sudan showed that in some algebraic contexts,

when the characterization is generated as the orbit of the affine group, the ex-

istence of a local characterization is in fact a sufficient condition for obtaining

the robustness needed for local testing.

In this paper, we deal with the question of existence of local character-

izations for a special kind of error correcting code, called the multiplicity

code, which was first defined in [KSY14]. In [KSY14], multiplicity codes

were proved to be locally decodable, and in [KMRZS17], they served as a

building block for the construction of the state of the art locally decodable

codes. However, the question of local testability, was stated as an interest-

ing open question in [Kop13], and for all we know, it remains open to this

day. Inspired by the result in [KS08] (about deriving local testing from local

characterization in some algebraic contexts), we hope that our results about

the local characterization of multiplicity codes, will serve as a stepping stone

towards proving their local testability, although unfortunately, the result in

[KS08] cannot be used directly as it is stated, mainly because the alphabet
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of the code is not the underlying field over which it is linear.

1.2 Our results and techniques

In this paper, we analyse how well two of the natural tests for multiplicity

codes do, in terms of local characterization. For positive integers m, d, s, q

(where q is a prime power), multiplicity codes are defined as the set of vec-

tors of evaluations of degree 6 d polynomials in m variables over the field Fq,
and their derivatives of order < s (see Section 2.3). The standard and well

known local testing algorithm for Reed-Muller codes (see [FS95] for example)

tests a given function by restricting it to a random line in the m dimensional

space, and check if the restriction can be realised as a 6 d univariate poly-

nomial. One could naturally generelize this test for multiplicity codes, by

checking if the line restriction can be realised as a univariate polynomial and

its s derivatives (where the univariate derivatives can be computed using the

multivariate ones). We call this kind of test the ”line test”. In the case of

Reed-Muller codes, the line test works for q > d+ 2, which is tight for these

kind of codes. We prove both an upper and a lower bound on the parameters

for which the line test is a local characterisation for multiplicity codes. Our

two main results regarding this test are stated formally in Theorems 5.2 and

7.1. Stated informally :

Theorem 1.1 (The line test for large q (informal)). The line test is a local

characterization for multiplicity codes, when q > d+ 2.

Theorem 1.2 (The line test for small q (Informal)). The line test is not a

local characterization for q 6 d.

We also devise a similar test, in which we consider restrictions to two

dimensional planes. We call this test the ”plane test”. In Section 8 we

analyse the plane test in the case s = 2 and prove:

Theorem 1.3 (The plane test for s = 2 (Informal)). The plane test is a local

characterization for s = 2, q > 2, and d < 2q − 1.

The characterization results in Theorems 1.1 and 1.3 can (in both cases)

be separated into two parts :

5



� Completeness : Every codeword of the multiplicity code passes all

the tests.

� Soundness : Every word which passes all the tests is a codeword of

the multiplicity code.

We refer to the words given as an input to the test as tables. The com-

pleteness part of Theorems 1.1 and 1.3 are the trivial parts of the proofs, and

follow directly from the construction of the tests. The soundness proof for

Theorem 1.1 is pretty straightforward and is done by elementary methods.

Given some ”table” (allegedly the valuation vector of some function and its

derivatives) which passes every line test, we use the result in [FS95] for Reed-

Muller codes as a black-box, in order to obtain a low degree polynomial, P ,

for which its evaluations match the 0 − th derivative part of the table. We

are then left to show that the rest of the table is consistent with the deriva-

tives of P . This is done by showing that the tests impose a sufficiently large

number of linear constraints on the table, such that the only way of passing

all of them is by being consistent with P . To see this, the main observation

will be that these constraints are closely related to the standard Reed-Muller

codes, where the number of variables is now s (the number of derivatives in

our context of the multiplicity code).

The proof of Theorem 1.3 uses heavier machinery. In Section 3, we de-

velop an understanding of the relation between tables of valuations and poly-

nomials which are consistent with them. This is done by relying on the theory

of Grobner bases [CLO13], and the combinatorial Nullstensatz [Alo99]. We

also use a generalization of the combinatorial Nullstensatz for multiplicities

higher than 1 [BS09]. In Lemma 3.13 we devise a purely algebraic criteria

(i.e, in terms of polynomials and ideals) for when a table represents a code-

word of the multiplicity code. In the proof of Theorem 1.3, this criteria is

constantly being used, in order to translate between questions of tables and

evaluations to the question of whether some specific polynomial is low de-

gree. This translation between the algebraic objects and evaluation tables,

also helps us construct a polynomial which cheats the line test in Theorem

1.2. This is essentially done by
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1. Constructing a polynomial which vanishes (with multiplicity 1) on the

entire cube Fqm.

2. ”Homogenising” it (i.e, making the polynomial homogeneous).

3. Multiplying it by a suitable factor to make its degree equal d+ 1.

The result is a degree > d polynomial, for which every restriction to a line is

of degree d.

2 Preliminaries

We denote vectors (tuples) by either bold letters. We sometimes use capital

letters when thinking treating the vector as a multi-index (an element of Nm).

For X = X1, . . . , Xm we denote by F[X] the set of multivariate polynomials

in the variables X1, . . . Xm. We denote by F[X]6d the set of polynomials

of total degree at most d , and by F[X]loc6d the set of polynomials of local

degree at most d (i.e degree in each variable). Given a vector i ∈ Nm, we use

the notation

Xi def
=

m∏
j=1

X
ij
j .

For a vector i ∈ Nm, and a set S ⊂ [m], we define the vector iS by

(iS)j =

{
ij, j ∈ S
0, j /∈ S

.

Recall The definition of the binomial and multinumial coefficients for

natural numbers :

(
n

k

)
def
=

n!

k!(n− k)!(
n

k1, . . . , k`

)
=

n!

k1! · · · km!
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where
∑
ki = n. We extend this definition to I, J, J1, . . . , J` ∈ Nm by(

I

J

)
def
=

m∏
t=1

(
It
Jt

)
(

I

I1, . . . , I`

)
def
=

n∏
t=1

(
It

(J1)t · · · (J`)t

)
.

We also use the notations :

g(x)
def
= Xq −X ∈ Fq[X]

gb(X)
def
=

m∏
i=1

g(Xi)
bi ∈ Fq[X]

for b = (b1, . . . , bm) ∈ Nm.

2.1 Reed-Muller code

Definition 2.1. Let d,m be non-negative integer, and q a prime power. The

(m, d, q) - Reed-Muller code, is defined as the set of evaluation vectors, of m

- variate polynomials of degree 6 d, over Fqm. I.e

RM(m, d, q) =
{

(f(α))α∈Fq
m | f ∈ Fq[X1, . . . , Xm]6d

}
. (2.1)

Lemma 2.2 (Sweartz-Zippel). Let P ∈ F[X1, . . . , Xm] be a non-zero poly-

nomial of total degree d > 0 over a field F. Let S ⊂ F. Then

Prα∈Sm [P (α) = 0] 6
d

| S |

Corollary 2.3. RM(m, d, q) has relative distance atleast 1− d
q

(when q > d).

Proof. Since the code is linear, the distance is the minimal weight of a non-

zero codeword. Let f 6= 0. By using Swearz-Zippel with S = Fq, we conclude

that f vanishes on at most d
q

fraction of Fqm. Thus, f has a relative weight

of atleast 1− d
q
.
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2.2 Hasse Derivatives

Definition 2.4. (Hasse derivative) For a multivariate P (X) ∈ F[X] where

X = (X1, . . . Xm) for some m ∈ N and a non-negative vector i ∈ Nm , the

i-th Hasse derivative of P , denoted by P (i)(X), is the coefficient of Zi in the

polynomial P (X,Z) = P (X + Z). Thus

P (X + Z) =
∑
i

P (i)(X) · Zi

Hasse derivatives are linear. I.e, for all P,Q ∈ F[X] and λ ∈ F ,

(λP )(i)(X) = λP (i)(X)

P (i)(X) +Q(i)(X) = (P +Q)(i)(X)

.

Claim 2.5 (The product rule). For P,Q ∈ F[X] we have

(PQ)(r)(X) =
r∑
i=0

P (i)(X) ·Q(r−i)(X). (2.2)

Proof. We calculate the coefficient of Zr in PQ(X + Z). By definition we

have

(PQ)(X + Z) = P (X + Z) ·Q(X + Z)

=
(∑

P (i)(X)Zi
)
·
(∑

Q(i)(X)Zi
)

=
∑
`+k=r

P (`)(X)Q(k)(X) · Zr,

and the coefficient of Zr is indeed
∑r

i=0 P
(i)(X) ·Q(r−i)(X).

Definition 2.6 (Multiplicity). For P (X) ∈ F[X] and a ∈ Fm, the multiplic-

ity of P at a, denoted by mult(P, a), is the largest integer M such that for

every non-negative vector i, with wt(i) < M , we have P (i)(a) = 0. If M may

be taken arbitrarily large, we set mult(P, a) =∞ .

9



Note that by definition mult(P, a) > 0 for every a . One important prop-

erty about multiplicities, is a generalization of the Schwartz-Zippel lemma

for multivariate polynomials.

Lemma 2.7 (3.3 in [KSY14]). Let P ∈ F[X] be a nonzero polynomial of total

degree at most d. Then for any finite S ∈ F ,∑
a∈Sm

mult(P, a) 6 d· | S |m−1

In particular, for any integer s > 0,

Pra∈Sm [mult(P, a) > s] 6
d

s | S |
Remark 2.8. In the univariate case, this gives us a generalization of the

”degree mantra” . A non-zero univariate polynomial P ∈ F[X] of degree < d

satisfies ∑
a∈Fq

mult(P, a) 6 d

2.3 Multiplicity codes

Definition 2.9 (Multiplicity code). Let s, d,m be non-negative integers, and

let q be a prime power. Let

Σm,s = Fq{i:wt(i)<s} ' F(m+s−1
m ).

For P (X) ∈ Fq[X1, . . . Xm], we define the order s evaluation of P at a ,

denote by P (<s)(a) to be the vector (P (i)(a))i:wt(i)<s ∈ Σm,s . The multiplicity

code Mult(m, d, s, q) is defined as follows. The alphabet of the code is Σm,s,

and the length is qm. Every polynomial P (X) ∈ Fq[X1, . . . , Xm] of deg(P ) 6

d defines a codeword by
(
P (<s)(a)

)
a:a∈Fq

m ∈ (Σm,s)
qm.

Definition 2.10. We will use the notation MRMq(m, d, s) := Mult(m, d, s, q)

(”Reed-Muller multiplicity codes”) and MRSq(d, s) := Mult(1, d, s, q) (”Reed-

Solomon multiplicity codes”).

The following lemma states the relationship between the derivatives of a

polynomial to the derivatives of its restriction to a line. This lemma plays
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an important role in the local decodability result in [KSY14], and it will also

play an essential role in our results.

Lemma 2.11 ([KSY14], Sec 4). Let P ∈ F[X] be a multivariate polynomial

where X = (X1, . . . , Xm). Let a,b ∈ Fm, and define a univariate polynomial

by Q(t) = P (a + bt). Then

Q(j)(t) =
∑

i:wt(i)=j

P (i)(a + bt) · bi

Proof. By the definition of Hasse derivatives, we get the following two iden-

tities:

P (a + b(t+R)) = Q(t+R) =
∑
j

Q(j)(t)Rj

P (a + b(t+R)) =
∑
i

P (i)(a + bt)(bR)i

and by comparing coefficients of Rj we get

Q(j)(t) =
∑

i:wt(i)=j

P (i)(a + bt)bi

.

We would also like to derive a formula for the derivatives of restrictions

to a 2 dimensional plane.

Lemma 2.12. Let P ∈ F[X] be a multivariate polynomial where X =

(X1, . . . , Xm). Let a,b ∈ Fm, and define a bivariate polynomial by Q(t, r) =

P (at+ br + c). Then for j ∈ N2 :

Q(j)(t, r) =
∑
i∈Nm

P (i)(at+ br + c) ·
m∑
k=0

∑
S⊂[m]
|S|=k

wt(iS)=j1,wt(iS̄)=j2

aiSbiS̄ .

where S̄ is the complement of S (see the notation iS in section 2).
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Proof. Given R1, R2 ∈ F, we write the expression P (a(t+R1)+b(r+R2)+c)

in two different ways. Denote v = (t, r) and R = (R1, R2). Then on one

hand

P (a(t+R1) + b(r +R2) + c) = Q(t+R1, r +R2) = Q(v + R)

=
∑
j∈N2

Q(j)(v)Rj1
1 R

j2
2 .

On the other hand

P (a(t+R1) + b(r +R2) + c) = P (at+ br + c+R1a +R2b)

=
∑
i∈Nm

P (i)(at+ br + c) · (R1a +R2b)i

=
∑
i∈Nm

P (i)(at+ br + c) ·
m∏
`=1

(akR1 + bkR2)
i`

=
∑
i∈Nm

P (i)(at+ br + c) ·
m∑
k=0

∑
S⊂[m]
|S|=k

aiSbiS̄R
wt(iS)
1 R

wt(iS̄)
2 .

By comparing coefficients of Rj1
1 R

j2
2 for every j = (j1, j2) ∈ N2 we get the

result.

2.4 Grobner bases and Nullstellensatz

We now look at the ring ofm variate polynomials over a fieldR = F[X1, . . . , Xm]

. The theory of Grobner bases, describes the structure of ideals in this ring.

We briefly explain some of the essential concepts of this theory. We refer to

[CLO13] for a thorough treatment of this theory.

Definition 2.13. A monomial order � on R is a relation � on Zn>0, or

equivalently a relation on the set of monomials xα, α ∈ Zn>0 satisfying:

1. � is a total ordering.

2. If α � β and γ ∈ Zn>0 then α + γ � β + γ .
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3. � is a well-ordering. I.e, every non-empty A ⊂ Zn>0 has a minimal

element.

Example 2.1 (Lexicographic order). Let α, β ∈ Zm>0. We say α �lex β if

the minimal i which satisfies αi 6= βi, also satisfies αi > βi .

Example 2.2 (Total degree lexicographic order). The total degree lexico-

graphic order is defined as follows: A monomial m1 is greater than m2 if

it has higher total degree, where ties are broken lexicographically (i.e X1 >

X2 > · · · > Xm ). More formally , let α, β ∈ Zm>0. Then α �tot β if

wt(α) =
∑

αi > wt(β) =
∑

βi, or wt(α) = wt(β) and α �lex β

Definition 2.14. Let f(X) =
∑

i aiX
i and � a monomial order.

1. The multidegree of f is

multideg(f) = max {i | ai 6= 0}

(maximum is taken w.r.t �)

2. The leading coefficient of f is

LC(f) = amultideg(f) ∈ F

3. The leading monomial of f is

LM(f) = Xmultideg(f)

4. The leading term of f is

LT (f) = LC(f) · LM(f)

The following are very useful properties of multidegrees:
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Lemma 2.15 ([CLO13] Chapter 2, lemma 8). Let f, g ∈ F[X1, . . . , Xm] be

nonzero polynomials. Then:

1. multideg(fg) = multideg(f) +multideg(g).

2. If f + g 6= 0, then multideg(f + g) 6 max(multideg(f),multideg(g)).

If, in addition, multideg(f) 6= multideg(g), then equality occurs.

Definition 2.16 (Multivariate polynomial division). Let � be a monomial

order on Zn>0, and let F = (f1, . . . , fs) be an ordered s tuple of polynomials

in F[X]. Then every f ∈ F[X] can be written as

f = q1f1 + · · ·+ qsfs + r,

where qi, r ∈ F[X], and either r = 0 or r is a linear combination, with coeffi-

cients in F, of monomials, none of which is divisible by any of LT (f1), . . . , LT (fs).

We call r a reminder of the division by F . Moreover,

multideg(qifi) 6 multideg(f)

for every i ∈ [s]. The reminder r is not necessarily unique, and might be

dependent on the order of division.

Definition 2.17. Let I 6= {0} ⊆ F[X] be an ideal. Fix a monomial ordering

on F[X]. Then

1. We denote by LT (I) the set of leading terms of non-zero elements of

I.

LT (I) =
{
cXi | ∃f ∈ I \ {0} .LT (f) = cXi

}
2. We denote by 〈LT (I)〉 the ideal generated by elements of LT (I).

Definition 2.18. Let I 6= {0} ⊆ F[X] be an ideal. Fix a monomial ordering

on F[X]. A subset G = {g1, . . . , gt} ⊂ I is said to be a Grobner basis for

I, if

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉.
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Fact 2.1. Every ideal I ⊂ F[X1, . . . , Xm] is finitely generated, and moreover,

has a Grobner basis.

The importance of a Grobner basis, is that it gives us a natural way of

choosing representatives for the quotient space F[X1, . . . , Xm] /I .

Theorem 2.19 (Sec 2 Prop 1 in [CLO13]). Let I ⊂ F[X1, . . . , Xm] be an

ideal and G = {g1, . . . , gt} a Grobner basis. Then given f ∈ F[X1, . . . , Xm]

there is a unique r ∈ F[X1, . . . , Xm] such that

1. No term of r is divisible by any of LT (g1), . . . , LT (Gt) .

2. There is a g ∈ I such that f = g + r .

In other words, the reminder of the polynomial division by G is unique.

We call this r, the reduced form of f (relative to I).

Note that the reduced form of any polynomial is equivalent to this poly-

nomial modulo I. Thus, as said above, this theorem gives us a natural way

of choosing representatives modulo I.

Theorem 2.20. Let R = F[X] be the ring of polynomials, and I ⊂ R an

ideal. Let G be a Grobner basis for I. Then the set

B = {M(X) |M is a monomial which is not divisible by any of LT (g) for g ∈ G } ,

is a basis for R /I .

Proof. To see that this set is a spanning set, just note that by 2.19, any f can

be reduced to some r ∈ R /I such that every monomial of r is in B. To see

that it is independent, note that a linear combination
∑
αiMi of elements in

B is already a polynomial in its reduced form, and thus, it is zero in R /I if

and only if it is zero as a polynomial. In other words, αi = 0 for every i.

The following criterion determines whether G is a Grobner basis.

Definition 2.21 (LCM and S polynomials). Let f, g ∈ F[X] = F[X1, . . . , Xm]

be nonzero polynomials. Let α = multideg(f) and β = multideg(g).
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1. The least common multiple of LM(f) and LM(g), denoted LCM(f, g),

is Xγ, where γ = (γ1, . . . , γm) and γi = max {αi, βi} for each i.

2. The S− polynomial of f and g is

S(f, g) =
LCM(f, g)

LT (f)
· f − LCM(f, g)

LT (g)
· g

Theorem 2.22 (Buchberger’s Criterion (Sec 6 in [CLO13])). Let I ⊂ F[X]

be an ideal. Then a basis of G = {g1, . . . , gt} of I is a Grobner basis of I

if and only if for all pairs i 6= j, the reminder on division of S(gi, gj) by G

(listed in any order) is zero .

Note that we always have S = S(gi, gj) ∈ I by the definition of S. When

saying the reminder of the division by G is zero, we mean that there are {fi},
such that

S =
∑

figi,

and multideg(figi) 6 multideg(S) for every i (as in definition 2.16).

Theorem 2.23 (Combinatorical Nullstellensatz [Alo99]). Let F be a field,

and A1, . . . , Am ⊆ F . Let gi(X) =
∏

α∈Ai
(X − α) for i = 1, . . . ,m. Assume

a polynomial f ∈ F[X] satisfies f(α) = 0 for all α ∈ A1 × · · · × Am. Then

there are h1, . . . , ht such that

f =
∑

higi,

and deg(hi) + deg(gi) 6 deg(f) for all i.

When Ai = Fq denote

g(X) =
∏
α∈Fq

(X − α) = Xq −X.

Also, let Im denote the ideal

Im = {f ∈ R | ∀α ∈ Fqm f(α) = 0} .

Corollary 2.24. Im = 〈(g(X1), . . . , g(Xm))〉.
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Proof. Let f ∈ Im. By Theorem 2.23, taking Si = Fq for every i, we get that

f =
∑
higi for some {hi} and so f ∈ 〈(gi)mi=1〉. The other inclusion is trivial,

since g(Xi) = Xq
i −Xi vanishes on Fqm for every i.

Lemma 2.25. G = {g(Xi)} is a Grobner basis for Im (relative to the total

degree lexicographic order).

Proof. We use Theorem 2.22. We start by computing the S- polynomial for

gi, gj. For convenience we denote X = Xi, Y = Xj. We have

lcm(Xq, Y q) = XqY q

Now,

S(Xq −X, Y q − Y ) =
XqY q

Xq
· (Xq −X)− XqY q

Y q
· (Y q − Y )

= Y qXq −XY q −XY q − Y Xq = −(XqY +XY q)

= −Y (Xq −X)−X(Y q − Y ) = 0 mod Im.

Thus, the reminder is indeed zero, and the criteria in Theorem 2.22 is satis-

fied.

Let s ∈ N and let Im,s denote the ideal

Im,s = {f ∈ R | ∀α ∈ Fqm Mult(f ;α) ≥ s} .

In this notation, Im,1 = Im defined before.

For every b ∈ Nm, such that wt(b) = s, define

gb =
m∏
i=1

g(Xi)
bi .

Theorem 2.26 (Combinatorical Nullstellensatz with multiplicity, [BS09] Sec

3). Im,s = 〈gb〉wt(b)=s. Furthermore, the set Gm,s =
{
gb
}
wt(b)=s

is a Grobner

basis for Im,s.

Proof. To see that Im,s is indeed an ideal, fix f ∈ Im,s and g ∈ F[X]. Then for

r < s: (gf)(r) =
∑r

i=0 f
(i)·g(r−i) = 0 and so gf ∈ Im,s. Also, clearly, gb ∈ Im,s
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for every b with wt(b) = s. [BS09] Sec 3 shows that every f ∈ Im,s can be

expressed as a combination of the gb and, furthermore, f =
∑

b:wt(b)=s g
bhb

for some hb with deg(hb) 6 deg(f)− s deg(g).

In particular, this is true for the S polynomials in Theorem 2.22. I.e,

every such S polynomial can be expressed as S =
∑
gbhb where deg(gbhb) 6

deg(S). Thus, Buchberger’s criterion holds, and
{
gb
}

is a Grobner basis.

3 Polynomials and tables

In the context of codes and local testing, it is important to distinguish be-

tween a (possibly multivariate) polynomial, which is an algebraic object, de-

termined only by its coefficients, and the function it represents by evaluating

it on tuples from the relevant field. For example, the univariate polynomials

P1 = 0 and P2 = xq − x are identical as a functions on Fq, but different as

polynomials. In this section we would like to discuss polynomials and their

evaluations more formally.

Given parameters s, d,m ,recall from 2.3 the definition of Σm,s:

Σm,s = Fq{i:wt(i)<s} ' F(m+s−1
m ).

Definition 3.1. A table T is an element of (Σm,s)
qm . The multiplicity s,

evaluation function for m− variate polynomials, EV ALm,s : Fq[X1, . . . , Xm]→
(Σm,s)

qm is defined by

EV ALm,s =
(
P (i)(a)

)
wt(i)<s,a∈Fq

m

. We say that T ∈ (Σm,s)
qm is a table for P ∈ Fq[X1, . . . , Xm] if EV AL(P ) =

T .

Definition 3.2. (Table resrictions) Given a table T ∈ (Σm,s)
qm, we denote

its restriction to Σm,s′ by Ts′, for s′ < s (note that Σm,s′ is naturally embedded

in Σm,s).

Remark 3.3. Note that every polynomial determines its table EV AL(P ).

However, one table T might satisfy T = EV AL(P1) and T = EV AL(P2) for

P1 6= P2 .
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Definition 3.4. The multiplicity s evaluation function for m− variate poly-

nomials of (total) degree 6 d, EV ALd,m,s : F6d
q [X1, . . . , Xm] → (Σm,s)

qm is

defined by

EV ALd,m,s = EV ALm,s|F6d
q [X1,...,Xm]

Definition 3.5. The multiplicity s evaluation function for m− variate poly-

nomials of local degree 6 d, EV ALlocd,m,s : Floc6dq [X1, . . . , Xm] → (Σm,s)
qm is

defined by

EV ALlocd,m,s = EV ALm,s|Floc6d
q [X1,...,Xm]

Lemma 3.6.

Ker(EV ALm,s) = 〈
m∏
i=1

(Xq
i −Xi)

bi〉wt(b)=s.

Proof. By definition, the kernel of EV ALm,s is

Im,s = {f ∈ F[X1, . . . , Xm] | mult(f, α) = s∀α ∈ Fq} ,

and by 2.26,

Im,s = 〈
m∏
i=1

(Xq
i −Xi)

bi〉wt(b)=s.

Since Im,s clearly does not contain any non-zero polynomial of either local

or total degree less than sq, we conclude the following :

Corollary 3.7. For d < sq , both EV ALd,m,s and EV ALlocd,m,s are injective.

By the first isomorphism theorem, EV AL naturally induces a mapping

EV ALm,s : Fq[X1, . . . , Xm]
/
Im,s → (Σm,s)

qm .

Claim 3.8. EV ALm,s is an isomorphism when q > s.

Proof. We already know that EV ALm,s is injective. Thus, it is sufficient to

show that

dim
(
Fq[X1, . . . , Xm]

/
Im,s

)
> dim

(
(Σm,s)

qm
)
.
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Denote for b ∈ Nm , the polynomial

gb =
m∏
i=1

(Xq
i −Xi)

bi .

Then Im,s = 〈gb〉wt(b)=s .

Consider the set

A =

{(
m∏
i=1

Xji
i

)
Xbq | wt(b) < s, 0 6 ji < q

}
.

We first claim, that the elements, as represented in the set, appear without

repetitions. More formally,

Claim 3.9. For b1, b2, j1, j2 ∈ Nm with wt(b1), wt(b2) < s , 0 6 j1i , j
2
i < q :(

m∏
i=1

X
j1i
i

)
Xb1q =

(
m∏
i=1

X
j2i
i

)
Xb2q ⇒ b1 = b2, j1 = j2

.

And indeed, let b1, b2, j1, j2 as above. By looking at the power of Xi for

some i in the monomials above, we have

j1i + b1i q = j2i + b2i q

. Since q > s > b1i , b
2
i , both sides of the equation are representations of

the same natural number as a quotient and a reminder by q. Since such a

representation is unique, b1i = b2i , j
1
i = j2i . Since this is true for every i, we

have b1 = b2, j1 = j2 .

We conclude that the size of A is exactly

| A |=| {(b, j) ∈ Nm × Nm | 0 6 ji < q,wt(b) < s} |= qm ·
(
m+ s− 1

m

)
.

We claim this setA , is independent in the quotient space Fq[X1, . . . , Xm]
/
Im,s

. Indeed, note that every element of A is not divisible by any of the LT (gb) =

Xbq for wt(b) = s. Thus A is a subset of the basis from 2.20. In particular,
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it is an independent set. Thus

dim
(
Fq[X1, . . . , Xm]

/
Im,s

)
>| A |= dim

(
(Σm,s)

qm
)
,

as desired.

Note that from the proof of 3.8, we get the following

Corollary 3.10. The set

A =

{(
m∏
i=1

Xji
i

)
Xbq | wt(b) < s, 0 6 ji < q

}

is a basis for F[X]
/
Im,s for X = (X1, . . . , Xm).

This is since it is an independent set of size dim
(
F[X]

/
Im,s

)
.

We would also like to introduce another basis for the same quotient space.

Lemma 3.11. For b ∈ Nm, define

gb =
m∏
i=1

(Xq
i −Xi)

bi .

Then

Bm,s =
{
gbXI | wt(b) < s,∀i.0 6 Ii < q

}
is a basis for the quotient space F[X]

/
Im,s .

Proof. First note that | Bm,s |= qm ·
(
m+s−1
m

)
= dim

(
F[X]

/
Im,s

)
. Thus, it

is sufficient to show that B is an independent set, in the quotient space.By a

similar argument as in 3.9, we see that different elements in B have different

local degree at Xi for some i. Thus, as polynomials, they are independent.

Note also that each element in B is already in its reduced form, since any

element of B is not divisible by any of the leading terms LT (gb), in the

Grobner basis for Im,s. Thus, they are also independent in the quotient

space (since any vanishing linear combination in the quotient space
∑
αifi =

0mod Im,s is already in its reduced form, and thus
∑
αifi = 0 as polynomials,

but fi are independent as polynomials, and so αi = 0 for every i).
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Next, we would like to give a purely algebraic criteria, which states when

exactly a table belongs to the code MRMq(m, d, s).

Definition 3.12. Let T ∈ Σqm

m,s be a table. By 3.8, if q > s, there is a unique

element PT ∈ F[X]
/
Im,s , such that EV ALm,s(P ) = T . We think of PT as a

polynomial in its unique reduced form, obtained by division with the Grobner

basis of Im,s, and we call it the representing polynomial of T .

Lemma 3.13. Assume d < sq and q > s. Let T ∈ Σqm

m,s be a table, and PT

its representing polynomial. Then

T ∈MRMq(m, d, s) ⇐⇒ deg(PT ) 6 d.

Proof. First, assume deg(PT ) 6 d. Then, by definition, since EV ALm,s(P ) =

T , we have T ∈ MRMq(m, d, s). For the other direction, assume T ∈
MRMq(m, d, s). Then there is some Q ∈ F[X] of total degree 6 d such

that EV ALm,s(Q) = T . In particular, the local degree of Q is less than

d < sq. Note that PT also has local degree < sq (since by definition no

monomial in it is divisible by any term of the form Xqs
i ) . By 3.7, we have

Q = P , and thus deg(P ) = deg(Q) 6 d.

Lemma 3.14. Let T ∈ Σqm

m,s be a table, and let s′ 6 s. Assume the repre-

senting polynomial of T is :

P =
∑
I,J

wt(b)<s
Ii<q

αb,Ig
bXI

Then the representing polynomial of T |s′ is

P<s′ =
∑
I,J

wt(b)<s′

Ii<q

αb,Ig
bXI .

Proof. Note that P<s′ = P mod Im,s′ .ThusEV ALm,s′(P<s′) = EV ALm,s′(P ) =

T |s′ . We get that P<s′ satisfies both

1. EV ALm,s′(P ) = T |s′ .
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2. P ∈ Sp(Bm,s′).

We know from 3.8, that there is a unique polynomial which satisfies both

conditions, and it is the representing polynomial of T |s′ .

4 Bases and reductions

Consider the basis Bm,s of F[X]mod Im,s from 3.11. We denote by f the

reduction of f ∈ F[X] mod Im,s. We will now be interested in the case of

m = 2 (this will serve us in section 8). We would first like to introduce a

basis for the space of polynomials in two variables F[t, r], which interacts

”nicely” with the basis Bm,s.

Claim 4.1. Every polynomial A(t, r) ∈ F[t, r] can be expressed uniquely in

the form

A(t, r) =
∑

i∈N,j∈N,k<q

Ai,j,k(a,b, c)g(t)irjtk. (4.1)

In other words, D =
{
g(t)irjtk | k < q

}
is a basis for F[t, r]. Moreover, this

representation satisfies multideg(g(t)irjtk) 6 multideg(A(t, r)) both with re-

spect to the total degree lexicographic order where t > r, and the total degree

lexicographic order where r > t.

Proof. We start by showing that D is a spanning set, i.e, we show that an

arbitrary A(t, r) can be expressed as a linear combination of this set. We

prove the claim by induction on the local degree at t of A, degt(A(t, r)). Of

course, if degt(A(t, r)) < q, then A is simply of the form

A(t, r) =
∑
j

k<q

Ajr
jtk. (4.2)

For degt(A(t, r)) > q, we use multivariate polynomial division, to write

A(t, r) = Ã(t, r)g(t) +R (4.3)

where degt(Ã) 6 degt(A)− q, and degt(R) < q. By the induction hypothesis,

both R and Ã have a representation as above, which gives a representation
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for A. To see that the set D is also independent, note that each element

D(t, r) = g(t)irjtk ∈ D is uniquely determined by its local degree at t and at

r.Indeed, any such element satisfies:

degt(D) = qi+ k

which uniquely determines i, k, by uniqueness of division and reminder by q.

Also, degr(D) = j. In other words, every two distinct elements in D have

a different local degree (either at r or at t).This property ensures both that

the set D is independent in F[t, r], and that the elements in D have distinct

multidegrees, both w.r.t the total degree lexicographic order where t > r and

where r > t. It follows that any linear combination
∑
αifi of such elements

{fi} ⊂ D, has a multidegree of max {αifi} by 2.15.

We can also define a similar basis for F[X] mod I2,s which is slightly

different than B2,s. We define

B∗2,s =
{
g(t)britj | b ∈ {0, 1} , i+ bq < sq, j < q

}
. (4.4)

It is easy to see that its a basis, since every element in B2,s can be written as

a linear combination of elements in B∗2,s, and no monomial which appears in

an element in B∗2,s is divisible by LT (g(t)ig(r)j) for i+ j = s, and thus they

are all reduced and independent mod I2,s.

we use the notation j mod N to denote

j mod N =


j 0 ≤ j ≤ N

j mod N, j > N,N - j
N, j > N,N | j

Note that mod and mod are different only multiples of N .

Claim 4.2. For f ∈ F[t, r], denote by f the unique representation of f mod I2,s,

obtained by division by the Grobner basis Gm,2. Denote fi,j,k = g(t)irjtk, for

i, j ∈ N, k < q. Then:

1. fi,j,k = 0 for i > s, k < q.
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2. fs−1,j,k = fs−1,j mod (q−1),k mod (q−1).

3. degt(fi,j,k) 6 degt(fi,j,k), for k < q.

Proof. By 2.26, we have that

Gm,2 =
{
g(t)αg(r)β | α + β = s

}
(4.5)

is a Grobner basis for Im,s. In particular, we see that for i > s, fi,j,k is

divisible by the basis element g(t)s, and thus item 1 holds. For 2, assume

j > q. Then:

fs−1,j,k = g(t)s−1rjtk = g(t)s−1rj−qrqtk

= g(t)s−1rj−q(g(r) + r)tk

= g(t)s−1rj−(q−1)tk mod I2,s

A similar calculation is true for t. To prove the 3rd property, note that in

general, by 4.1, we can write fi,j,k = girjtk, in the form

fi,j,k =

∑
i1,i2
i2<q

αi1,i2g(t)i1ti2


∑
j1,j2
j2<q

βj1,j2g(r)j1rj2


where

gitk =
∑
i1,i2
i2<q

αi1,i2g(t)i1ti2

rj =
∑
j1,j2
j2<q

βj1,j2g(r)j1rj2 .

The reduced representation fi,j,k can now be computed by truncating the

products where i1 + j2 > s, i2 > q , j2 > q. From this, we see that the reduc-

tion can only reduce the local degree at t (since the part which is dependent

of t in the reduced form, comes only from the part which is dependent of t

in the original form). Thus, 3 holds.

25



5 Restriction to lines is a local characterisation when deg < q− 2

In the proof, we will make use of the following theorem, about the charac-

terization of the Reed-Muller code :

Theorem 5.1 ([FS95] ). Suppose q ≥ d + 2. f ∈ RMq(m, d) iff for every

a, b ∈ Fm f ◦ `a,b ∈ RS(1, d).

For a, b ∈ Fmq define φ(a,b) : Σm,s → Σ1,s by:

(
φ(a,b)(z)

)
j

=
∑

i,wt(i)=j

zi · bi. (5.1)

for 0 6 j < s.

Theorem 5.2. Let F be a field of size q, and let m, d, s be positive integers

such that q > s , qm >
(
m+s−1
s−1

)
and q > d+ 2. Then

P ∈MRMq(m, d, s) ⇐⇒ ∀a, b ∈ Fm P(a,b) ∈MRS(d, s).

where

Pa,b(t) = φa,b(EV ALm,s(P ; `a,b(t)))

Proof. We start with the easy direction. Assume P ∈ MRMq(m, d, s). Fix

a, b ∈ Fqm and define a univariate polynomial Qa,b ∈ F[t] by Qa,b(t) = P (a+

bt). Q ∈ F≤dq [X]. Then,

Pa,b(t) = φa,b(EV ALm,s(P ; `a,b(t)))

=

 ∑
i,wt(i)=j

P (i)(a+ bt) · bi

j

=
(
Q(j)(t)

)
j
∈ EV AL(RS(d, s)).

where in the last equality we have used Lemma 2.11.
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We now prove the other direction, i.e that every f which passes all the

local tests, must be a member of MRM(m, d, s) . Assume that we are given

as input f ∈ (Σm,s)
qm . As before let

fa,b(t) = φa,b(f(`a,b(t))).

Assume for every a, b ∈ Fm, fa,b ∈ MRS(d, s). This means that for every

a, b ∈ Fmq there exists a uni-variate polynomial Ma,b ∈ F≤dq [X] such that

EV AL(Ma,b) = fa,b. We need to show the existence of a polynomial P ∈
F≤dq [X] such that EV AL(P ) = f . We define P as follows. We let

P (x) = f0(x).

Claim 5.3. deg(P ) ≤ d and Ma,b = P|`a,b.

Proof. Fix a, b ∈ Fm. Then, P|`(t) = P (a + bt) = f0(a + bt) = Ma,b(t).

Thus, for every a, b ∈ Fmq , P|`a,b is a degree polynomial. By Theorem 5.1,

P ∈ F≤dq [X]. Since P|`a,b and M(a,b) are two univariate polynomials of degree

6 d , which agree on q > d points (the whole space Fq), they must be equal

as polynomials.

We are left to show,

Lemma 5.4. For every 0 ≤ j < s and every i with wt(i) = j we have

P (i) = fi.

Proof. Fix 0 6 j < s. For a, b ∈ Fm let ` = `a,b and

P|`(t) = P (a+ bt)

By Lemma 2.11

P
(j)
|` (t) =

∑
i,wt(i)=j

P (i)(a+ bt)bi

Also, by our assumption, EV AL(Ma,b) = φa,b(f(`a,b))) and so

M
(j)
a,b (t) =

∑
i,wt(i)=j

f(i)(a+ bt)bi
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As P|`a,b = Ma,b we conclude that

(bi)wt(i)=j ·
(
fi(a+ bt)− P (i)(a+ bt)

)
wt(i)=j

= 0, (5.2)

and for every a, b ∈ Fmq we have such an equation.

Fix 0 ≤ j < s and z ∈ Fmq . Define a vector Diff ∈ Fw(j) by

Diff(i) = fi(z)− P (i)(z)

Define a qm × w(j) matrix Bj by Bj(b, i) = bi.

In this terminology we see that BjDiff = 0.

Bj is the generating matrix of the code of degree j homogeneous polyno-

mials over Fmq . As the code has positive distance by 2.3, the matrix has full

rank. Thus, BjDiff = 0 implies Diff = 0. Thus, for every z and i we have

fi(z) = P (i)(z) and f = EV AL(P ).

6 Restriction to lines is a local characterisation for MRM(m, d, 2)

when deglocal < q

In this section we would like to prove that the line test stays sound for the

case s = 2, when considering polynomials of restricted local degree, even

when the total degree is greater than q. Formally :

Theorem 6.1. Assume d < 2q − 1. Let P ∈ F[X]loc6q−1 be a polynomial

which passes all the tests in 5.2. Then P ∈MRMq(m, d, 2).

Given some P which passes the line tests, we can write

P (X) =
∑
I:Ii<q

αIX
I . (6.1)

Notice that while this assumption implies P is reduced modulo Im,1, the total

degree of P might be as large as m(q − 1), and therefore restriction to lines

is not reduced modulo I1,2. We nevertheless show that the line test is still a

characterization. The restriction of P to the line `a,b (where a,b ∈ Fm) is

Pa,b(t) = P (at+ b) . We write Pa,b(t) explicitly as
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Pa,b(t) =
∑
I

Ii<q

αI(at+ b)I =
∑
I:Ii<q

αI
∑

Ia+Ib=I

(
I

Ia

)
aIabIbtwt(Ia).

Arranging by monomials of t we write Pa,b(t) =
∑

j Aj(a,b)tj where

Aj(a,b) =
∑
I:Ii<q

αI
∑

Ia+Ib=I
wt(Ia)=j

(
I

Ia

)
aIabIb . (6.2)

Notice that Aj(a,b) is reduced modolu I2m,1. We divide the proof to two

cases: in the first (simple) case we further assume deg(P ) < 2q, which in

particular implies Pa,b is reduced modulo I1,2. We then do the general case.

6.1 When deg(P ) < 2q

Let Imax be a term I in Eq (6.1) of maximal weight such that αImax 6= 0. Since

Imax is maximal, d < wt(Imax) = deg(P ) < 2q. The monomial aImax appears

in Adeg(P )(a,b) and therefore Adeg(P )(a,b) does not vanish on Fq2m (because

it is a non-zero polynomial and it is reduced modulo I2m,1). Fix a,b ∈ Fqm

such that Adeg(P )(a,b) 6= 0. Then Pa,b(t) is a degree deg(P ) > d uni-variate

polynomial (because Adeg(P )(a,b) 6= 0) reduced modulo I1,2, and therefore it

does not pass the line test by our criteria in Lemma 3.13. A contradiction.

6.2 The general case

As before, let Imax be a term I in Eq (6.1) of maximal weight such that

αImax 6= 0. Since Imax is maximal, d < wt(Imax) = deg(P ). However, unlike

before, it is possible that wt(Imax) is as large as m(q − 1) and that Pa,b(t) is

not reduced modulo I1,2. For f ∈ Fq(X) let f = f mod I1,2. Then:

Pa,b(t) =
∑
j

Aj(a,b)tj =

2q−1∑
j=0

Bj(a,b)tj (6.3)

Fix a partition Imax = Imax
a + Imax

b, with wt(Imax
a) = 2q − 1. The

monomial aImax
a
bImax

b
appears in A2q−1(a,b) and therefore A2q−1(a,b) is a
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non-zero polynomial. Furthermore, aImax
a
bImax

b
does not appear in Aj′(a,b),

for any other j′ 6= j (because the monomial is multiplied by twt(Imax
a) =

t2q−1). Hence B2q−1(a,b) is non-zero (because only A2q−1 contributes the

monomial aImax
a
bImax

b
, and therefore the monomial is not cancelled out, and

B2q−1 is a non-zero polynomial) and reduced modulo I1,2. Fix a,b ∈ Fqm

such that B2q−1(a,b) 6= 0. Then Pa,b(t) is a degree 2q − 1 > d uni-variate

polynomial reduced modulo I1,2, and therefore it does not pass the line test.

A contradiction.

7 Restriction to lines is not a local characterisation for MRM(m, d, s)

when the field size is small

In this section we consider the code Mult(m, d, s, q) in the case where q 6

d < sq. We would like to show that in this case, the line test fails. More

precisely

Theorem 7.1. Assume q 6 d < sq − 1, and assume m > 2. Then there

exists a table T ∈ Σq
m,s which passes the test in 5.2 . However, no polynomial

P ∈ Fq[X1, . . . , Xm]6d satisfies EV ALm,s(P ) = T .

Proof. We will construct the desired table as EV AL(Q) for some polynomial

Q ∈ F[X1, . . . , Xm], with deg(Q) = d+1 < sq . Note that by 3.7, there cannot

be a polynomial P with deg(P ) < deg(Q) having the same table. Thus, if

such Q passes the line test (for every line), we are done. Define

Q̂ = (Xq
1 −X1)X2 − (Xq

2 −X2)X1 = Xq
1X2 −Xq

2X1

and Q = Xd−q
1 · Q̂ . First note that Q̂ is a homogeneous polynomial of degree

q + 1, and thus Q is homogeneous of degree d′ = d+ 1 .Note that Q(α) = 0

for every α ∈ Fqm (since Q ∈ Im,1). Write

Q =
∑

i,wt(i)=d′

ciX
i
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and look at the restriction

Q|`a,b = Q(a+ bt) =
∑

i,wt(i)=d′

ci(a+ bt)i,

for a, b ∈ Fqm. note that the coefficient of td
′

in Q|`a,b is

∑
wt(i)=d′

cib
i = Q(b) = 0,

since Q vanishes on Fqm. Thus deg(Q|`a,b) 6 d′ − 1 = d. Of course, this

means that Q passes the test for the line `a,b. Since this is true for every line,

we are done.

8 Restriction to planes is a local characterisation for MRMq(m, d, 2)

when the field size is small

In this section we consider the case s = 2. We would like to show that

the multiplicity code MRMq(m, d, 2) can be characterized by restrictions to

planes,even when the field size is small. In this section we assume q is prime.

Let F be a field of size q, and let m be a positive integer. For a,b ∈ Fqm

define:

� `a,b,c : F2
q → Fmq by:

`a,b,c(t, r) = at+ br + c.

� φ(a,b) : Σm,2 → Σ2,2 by:

(
φ(a,b))(z)

)
j=(j1,j2)

=
∑
i∈Nm

zi ·
m∑
k=0

∑
S⊂[m]
|S|=k

wt(iS)=j1,wt(iS̄)=j2

aiSbiS̄ .

From Lemma 2.12 we see that:
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Theorem 8.1. (Completeness) Suppose q > 2, d < 2q − 1. Then if a table

T ∈ Σqm

m,s satisfies T ∈MRMq(m, d, 2) then for all a,b, c ∈ Fm,

φ(a,b) ◦ T ◦ `a,b,c ∈MRMq(2, d, 2).

The main challenge is proving the converse:

Theorem 8.2. (Soundness) Suppose q > 2, d < 2q − 1. If a table T ∈ Σqm

m,2

satisfies that for all a,b, c ∈ Fm, φ(a,b) ◦ T ◦ `a,b,c ∈ MRMq(2, d, 2) then

T ∈MRMq(m, d, 2).

In this section, when saying ”multidegree”, we mean with respect to the

total degree lexicographic order (see 2.2), unless stated otherwise. Note that

every polynomial has a unique monomial of maximal multidegree (as opposed

to standard total degree). We define vector space of tables which pass the

test:

Vm,d =
{
T ∈ Σqm

m,s | φ(a,b) ◦ T ◦ `a,b,c ∈MRMq(2, d, 2) for every a,b, c ∈ Fm
}

(8.1)

We denote by Cm,d = Vm,d \MRMq,d,2, the set of tables which cheat the test.

We would like to show that Cm,d = ∅. Assume towards contradiction that

we have some table T ∈ Cm,d. By 3.8, T can be realised (uniquely) as an

element of the quotient space P ∈ F[X]
/
Im,s .

let g ∈ F[X] be the univariate polynomial defined by g(X) = Xq − X,

and denote for J ∈ Nm, the polynomial gJ(X) =
∏m

i=1 g(Xi)
Ji . We use the

basis Bm,2 from 3.11 to write P in the form

P (X) =
∑

J,wt(J)<2
I,Ii<q

αI,JgJ(X)XI (8.2)

Since T ∈ Cm,d, we have deg(P ) > d by 3.13. This means that there must

be some J and I such that αI,j 6= 0 and

wt(J)q + wt(I) > d (8.3)

Note that we may assume that every I, J which for which αI,J 6= 0, satisfy
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8.3. This is since the test is linear, and any degree 6 d will have no effect

on whether P passes the test or not. Moreover, we may assume there exists

some J with wt(J) = 1, i.e, that some element of the form gi(X) = Xq
i −Xi

appears in P . Otherwise, P is of local degree < p, and in Section 6 we showed

that in this case even the line test is a good characterization. So, from now

on we assume there is atleast one J with wt(J) = 1. Let Imax be of maximal

total degree such that αImax,Jmax 6= 0 for some Jmax with wt(Jmax) = 1 (and

fix this Jmax).

For a,b, c ∈ Fm the restriction of P to the plane defined by a,b, c is

Pa,b,c(t, r) = P (at+ br + c). By Claim 4.1 we can write Pa,b,c as

Pa,b,c(t, r) =
∑
i,j∈N
k<q

Ai,j,k(a,b, c)g(t)irjtk

We view Ai,j,k(a,b, c) as a polynomial in the variables a,b, c.

Claim 8.3. For every partition Imax = Imax
b+Imax

c, the monomial aJmaxbImax
b
cImax

c

appears at A1,wt(Imax
b),0 and does not appear at any A1,j,0 for any j 6= wt(Imax

b).

Intuitively, terms of A1,j,0 come with t-degree q and wt(a) = 1. The only

way to achieve a q-ratio between the t-degree and the a-total degree, is to

take a terms only from gJ part. This, essentially, forces the lemma. We now

give a rigorous proof.

Proof. We expand Pa,b,c(t, r). First, P (X) =
∑

J :wt(J)<2
I:Ii<q

αI,JgJ(X)XI . Thus

Pa,b,c(t, r) =
∑

J :wt(J)<2
I:Ii<q

αI,JgJ(at+ br + c)(at+ br + c)I

=
∑

J :wt(J)<2
I:Ii<q

αI,J ·
m∏
i=1

(g(ait+ bir + ci))
Ji · Πm

i=1(ait+ bir + ci)
Ii

=
∑

J :wt(J)<2
I:Ii<q

αI,J
∑

Ja+Jb=J
Ia+Ib+Ic=I

(
I

IaIb

)(
J

Ja

)
aJa+IabJb+IbcIcg(t)wt(Ja)g(r)wt(Jb)twt(Ia)rwt(Ib),
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where we have used

gJ(at+ br + c) =
m∏
i=1

(g(ait+ bir + ci))
Ji =

m∏
i=1

(aig(t) + big(r))Ji .

By claim 4.1, every element of the form t`, can be expressed as

t` =
∑

i1,i2:i1q+i26`,i2<q

βi1,i2g(t)i1ti2 . (8.4)

Plugging into Eq (8.4) we get

Pa,b,c(t, r) =
∑

J :wt(J)<2
I:Ii<q

αI,J
∑

Ja+Jb=J
Ia+Ib+Ic=I

∑
i1,i2

i1q+i26wt(Ia)
i2<q

βi1,i2

(
I

IaIb

)(
J

Ja

)
aJa+IabJb+IbcIcg(t)wt(Ja)+i1ti2QJb,Ib(r)

(8.5)

where QJb,Ib(r) = g(r)wt(Jb)rwt(Ib). We now have a representation as in

the basis defined at claim 4.1.

We wish to see, for which choice of values Ia, Ib, Ic, Ja, Jb, i1, i2 in Eq (8.5),

aJmaxbImax
b
cImax

c
appears as a coefficient of A1,j,0. We must have

Jmax = Ja + Ia By comparing the powers of a ,

Imax
b = Jb + Ib By comparing the powers of b ,

Imax
c = Ic By comparing the powers of c ,

wt(Ja) + i1 = 1 By comparing the powers of g(t))

i2 = 0 By comparing the < q power of t

As wt(Jmax) = 1 we have wt(Ja) + wt(Ia) = 1. Together with the fourth

equation we get wt(Ia) = i1. However, wt(Ia) > i1q+i2 ≥ i1q, and so i1 > i1q

, which implies i1 = 0. Thus wt(Ia) = 0 and Ia = ∅. Thus Ja = Jmax.

However, 1 ≥ wt(J) = wt(Ja) + wt(Jb) = wt(Jmax) + wt(Jb) = 1 + wt(Jb).

Thus Jb = ∅. From the second equation Ib = Imax
b. Thus the only possible

solution is Ja = Jmax, Jb = ∅, Ia = ∅, Ib = Imax
b, Ic = Imax

c, i1 = i2 = 0.

This parameter setting gives the coefficient αImax,Jmax ·
(
Imax

Imax
b

)
which is non-

zero, since Imaxi < q for every 1 ≤ i ≤ m (here we use the fact that q

is prime). Thus, this setting is the unique solution giving the monomial
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aJmaxbImax
b
cImax

c
. Thus, it cannot cancel and the claim follows.

Next we would like to understand Pa,b,cmod I2,2. We adopt the notation

fi,j,k = g(t)irjtk and the notation mod from section 4, and we use the

properties in claim 4.2. For f ∈ Fq(X1, X2) let f = f mod I2,2. Denote the

expansion in the I2,2 basis in equation 4.4 by:

Pa,b,c(t, r) =
∑

i′≤1,j′<2q−i,k′<q

Bi′,j′,k′(a,b, c)(g(t))i
′
rj
′
tk
′

We have:

Pa,b,c(t, r) =
∑

i∈N,j∈N,k<q

Ai,j,k(a,b, c)fi,j,k

=
∑

i≤1,j∈N,k<q

Ai,j,k(a,b, c)fi,j,k, (8.6)

where the equality holds because it is taken modulo I2,2. Note that j may

be as large as q +m(q − 1).

Lemma 8.4. For any partition Imax = Imax
b + Imax

c, B1,wt(Imax
b) mod (q−1),0 ∈

F[a,b, c] is not the zero polynomial. Moreover, the monomial aJmaxbImax
a
cImax

b

appears in it.

Proof. We divide the expression in Eq (8.6) to:

Pa,b,c(t, r) =
∑

j∈N,k<q

A0,j,k(a,b, c)f0,j,k +
∑

j∈N,k<q

A1,j,k(a,b, c)f1,j mod (q−1),k.

B1,j,0(a,b, c) does not get any contribution from A0,j,k (where k < q)

because the power of t there is smaller than q. Similarly, B1,j,0 gets a con-

tribution from
∑

j∈N,k<q A1,j,k(a,b, c)f1,j mod (q−1),k only when k = 0. Thus

B1,j,0 may get a contribution only from A1,j′,0 for some j′. However, by

8.3 the only term that can contribute aJmaxbImax
b
cImax

c
is j′ = wt(Imax

b).

As this monomial is contributed exactly once, it is not cancelled out and

B1,wt(Imax
b) mod q−1,0 is not the zero polynomial.
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Lemma 8.4, tells us that there B1,wt(Imax
b) mod (q−1),0(a,b, c) is a non-zero

polynomial in a,b, c. We will need the stronger property thatB1,wt(Imax
b) mod (q−1),0(a,b, c)

is non-zero modulo I3m,1, i.e., has a non-zero evaluation on Fq3m. We prove

it using the maximality of Imax (notice that so far we have not used this

maximality).

Lemma 8.5. For every partition Imax = Imax
b+Imax

c, the monomial aJmaxbImax
b
cImax

c

appears at B1,wt(Imax
b) mod (q−1),0mod I3m,1.

Proof. By Lemma 8.4, B1,wt(Imax
b) mod (q−1),0 contains the monomial aJmaxbImax

b
cImax

c
.

We claim that Aa,b,c(t, r) in its entire (when we now look at it as a polyno-

mial in a,b, c), does not contain any monomial of the form M(a,b, c), such

that M 6= M0 but M = M0 mod I3m. Assume otherwise. Since wt(J0) = 1 ,

J0 = ~ej0 for some j0. In other words M0 = ajb
Ib0cI

c
0 . By 8.5, M is of the form

M = aJa+IabIb+JbcIc , where J = Ja + Jb satisfies wt(J) < 2, and I = Ia + Ib

satisfies Ii < q for i = 1, . . . ,m. We see that the cIc part is already reduced

mod I3m, and thus Ic = Ic0. Since wt(J) < 2, there are 3 possible cases

1. J = ∅.

2. There is some ja such that J = Ja = ~eja .

3. There is some jb such that J = Jb = ~ejb .

In the first case, M is already reduced, and thus M = M0, and we’re

done. In the second case, (Ja)i = 0 for every i 6= j, and so ai is reduced for

i 6= j. Also, Jb = ∅, and thus bIb is reduced. The only possible non reduced

element is a
1+(Ia)ja
ja

. However, if it is not reduced, we have

1 + (Ia)ja > (J0)ja + q − 1.

This gives wt(Ia) > q − 2 > 0. Thus wt(I) = wt(Ia) + wt(Ib0) + wt(Ic0) >

wt(I0). This contradicts the maximality of I0, among the monomials which

appear with J of weight 1. In the third case, Ia is reduced, and (Jb)i = 0

for every i 6= jb. Thus, bi is reduced for every i 6= jb. The only possible non

reduced element is b
1+(Ib)jb
jb

. If it is not reduced, we have
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1 + (Ib)jb > (J0)jb + q − 1.

As before, we get (Ib)jb > q − 2. Let Ĩb, Ĩb0 be the restrictions of Ib, I
b
0

to the coordinates j 6= jb (respectively). Then we know from before that

Ĩb = Ĩb0. We get

wt(I) = 1 + wt(Ib) + wt(Ic) > q − 1 + wt(Ĩb) + wt(Ic0) > wt(I0).

By maximality of I0 we have I = I0, and thus Ib = Ib0. However, since M

is equivalent to M0 , this means

Ib + Jb = Ib mod q − 1

(where the mod is in each coordinate). This gives 1 = (Jb)jb = 0 mod (q−1),

and thus q = 2, which is a contradiction.

Lemma 8.6. There is a partition of Imax = Imax
b+Imax

c, such that wt(Imax
b) mod (q−

1) > d− q.

Proof. If wt(Imax) < q choose Imax
b = Imax, Imax

c = ∅. Then wt(Imax
b) mod (q−

1) = wt(Imax
b) > d − q by Eq (8.3). If jmax = wt(Imax) ≥ q we choose any

partition Imax = Imax
b + Imax

c with wt(Imax
b) = q − 1 and we use the fact

that d < 2q − 1.

We are now ready to prove 8.2.

Proof of 8.2. by 8.6, and 8.5, we have a coefficient B1,jb,0 of a monomial in

Aa,b,c(t, r) of degree > d, which satisfies B1,jb,0 /∈ I3m.We look at EV AL3m,1 :

F[a,b, c]→ qq
3m

. It satisfiesKer(EV AL3m,1) = I3m. Thus, EV AL3m,1(B1,jb,0) 6=
0. In other words, there are a0,b0, c0 such that B1,jb,0(a0,b0, c0) 6= 0. This

means that Aa,b,c(t, r) is of degree > d, and thus, by 3.13, the bivariate poly-

nomial Pa0,b0,c0(t, r) cannot represent a table of a degree 6 d polynomial. In

other words, EV AL2,s(Pa0,b0,c0) /∈ MRMq(2, d, s). By the definition of φa,b,

and by 2.12, T fails the test for (a,b, c).

37



References

[Alo99] Noga Alon. Combinatorial nullstellensatz. Combinatorics, Prob-

ability and Computing, 8(1-2):7–29, 1999.

[BS09] Simeon Ball and Oriol Serra. Punctured combinatorial nullstel-

lensätze. Combinatorica, 29(5):511–522, 2009.

[CLO13] David Cox, John Little, and Donal OShea. Ideals, varieties, and

algorithms: an introduction to computational algebraic geometry

and commutative algebra. Springer Science & Business Media,

2013.

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total

degree tests. In Proceedings Third Israel Symposium on the

Theory of Computing and Systems, pages 190–198. IEEE, 1995.

[Ham50] Richard W Hamming. Error detecting and error correcting

codes. The Bell system technical journal, 29(2):147–160, 1950.

[KMRZS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi

Saraf. High-rate locally correctable and locally testable codes

with sub-polynomial query complexity. Journal of the ACM

(JACM), 64(2):1–42, 2017.

[Kop13] Swastik Kopparty. Some remarks on multiplicity codes. Discrete

Geometry and Algebraic Combinatorics, 625:155–176, 2013.

[KS08] Tali Kaufman and Madhu Sudan. Algebraic property testing:

the role of invariance. In Proceedings of the fortieth annual ACM

symposium on Theory of computing, pages 403–412, 2008.

38



[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin.

High-rate codes with sublinear-time decoding. Journal of the

ACM (JACM), 61(5):1–20, 2014.

[Sha01] Claude Elwood Shannon. A mathematical theory of communica-

tion. ACM SIGMOBILE mobile computing and communications

review, 5(1):3–55, 2001.

39



 תקציר 

 

זה,   מחקר  הלוקבמסגרת  התכונות  לתינחקרו  קודים  של  שגיאות  אליות  של המ קון  הערכה  על  בוססים 

והפרמטרים    מבחנים לוקאליים טבעיים  2ובי משתנים ונגזרותיהם. המחקר מכיל אנליזה של  רפולינומים מ

דיים, והשני על צום לישרים חד מימעל צמ  שבהם הם מהווים אפיון מלא לקודים אלה. מבחן אחד מבוסס

 דו מימדיים.  מישורים
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