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1 Introduction

1.1  Background and related work

An error correcting code, is a scheme which helps to detect and correct errors
in a given data. A (k,n) - linear error correcting code C = {C,,} is a family
of linear spaces, of dimension k, where each ), contains words of length n,
which we call the codewords. The two basic parameters of interest when

dealing with error correcting codes are

e The rate : The ratio %, which is an indicator of how much redundant

information is present in the codewords.

e The (relative) distance : The minimal ratio of coordinates, for which

two codewords of the same length differ.

It is easy to see that given a corrupt codeword, one could deduce the
original codeword from it (atleast information theoretically), as long as the
corruption does not reach half of the relative distance. It is known since
[Sha01] and [Hamb0] that optimal error correcting codes (in terms of rate and
distance) exist. L.e, codes with constant rate and constant relative distance.
However, optimality in terms of rate and distance is not the end of the road,
and since then there has been a lot of interest regarding the local properties
of error correcting codes. The notion of locality in codes, says that one can
look at a small fraction of symbols of a given word, and detect/correct errors

in it. Few notions of locality in codes are

e LOCAL CORRECTABILITY (LCC) : We say that a code C is locally
correctable if there is a randomized algorithm, which given a string w
which is close to a codeword ¢, and a coordinate i, computes ¢; (with

good probability) by making a small amount of queries to w.

e LocAL TESTABILITY (LTC) : We say that a code C is locally testable
if there is a randomized algorithm, which given a string w, decides
whether w is a codeword of C, or far from any codeword of C (usually
with probability which depends on the distance from C), by making a

a small amount of queries to w.



e LOwW DENSITY PARITY CHECK (LDPC) : We say that a code C is an
LDPC code, if there is a subset of the dual code B C C*, such that
sp(B) = C* , and each z € B has small weight (where weight is the
number of non-zero coordinates). We think about the set B as the set

of constraints which define the code.

Although the definition of an LDPC' code does not explicitly refer to
testing or locality, the concepts of LD PC' and LT'C' codes are closely related,
and one can think of an LDPC' code as having a "local characterization”.
More precisely, given such a set B as in the definition of LD PC'" above, one
could devise a test by choosing some z € B and check whether z - w = 0 (for
our input w). We see that by definition, a word w will pass the test for every
choice of z if and only if it is a codeword of C. Moreover, the fact that z has
small weight, means we only have to query a small number of coordinates
from w in order to compute z - w. While LD PC' codes provide a low-weight
characterization, the definition of LDPC' does not promise any robustness
for the test (L.e, it might so happen that a word is very far for C, but will
pass the test with a high probability).

In [KS08], Kaufman and Sudan showed that in some algebraic contexts,
when the characterization is generated as the orbit of the affine group, the ex-
istence of a local characterization is in fact a sufficient condition for obtaining
the robustness needed for local testing.

In this paper, we deal with the question of existence of local character-
izations for a special kind of error correcting code, called the multiplicity
code, which was first defined in [KSY14]. In [KSY14], multiplicity codes
were proved to be locally decodable, and in [KMRZS17], they served as a
building block for the construction of the state of the art locally decodable
codes. However, the question of local testability, was stated as an interest-
ing open question in [Kopl3], and for all we know, it remains open to this
day. Inspired by the result in [KS08] (about deriving local testing from local
characterization in some algebraic contexts), we hope that our results about
the local characterization of multiplicity codes, will serve as a stepping stone
towards proving their local testability, although unfortunately, the result in

[KS08] cannot be used directly as it is stated, mainly because the alphabet



of the code is not the underlying field over which it is linear.

1.2 Our results and techniques

In this paper, we analyse how well two of the natural tests for multiplicity
codes do, in terms of local characterization. For positive integers m,d, s, q
(where ¢ is a prime power), multiplicity codes are defined as the set of vec-
tors of evaluations of degree < d polynomials in m variables over the field F,,
and their derivatives of order < s (see Section 2.3). The standard and well
known local testing algorithm for Reed-Muller codes (see [FS95] for example)
tests a given function by restricting it to a random line in the m dimensional
space, and check if the restriction can be realised as a < d univariate poly-
nomial. One could naturally generelize this test for multiplicity codes, by
checking if the line restriction can be realised as a univariate polynomial and
its s derivatives (where the univariate derivatives can be computed using the
multivariate ones). We call this kind of test the "line test”. In the case of
Reed-Muller codes, the line test works for ¢ > d + 2, which is tight for these
kind of codes. We prove both an upper and a lower bound on the parameters
for which the line test is a local characterisation for multiplicity codes. Our
two main results regarding this test are stated formally in Theorems 5.2 and
7.1. Stated informally :

Theorem 1.1 (The line test for large ¢ (informal)). The line test is a local

characterization for multiplicity codes, when q > d + 2.

Theorem 1.2 (The line test for small g (Informal)). The line test is NOT a

local characterization for q < d.

We also devise a similar test, in which we consider restrictions to two
dimensional planes. We call this test the ”plane test”. In Section 8 we

analyse the plane test in the case s = 2 and prove:

Theorem 1.3 (The plane test for s = 2 (Informal)). The plane test is a local
characterization for s =2, ¢ > 2, and d < 2q — 1.

The characterization results in Theorems 1.1 and 1.3 can (in both cases)

be separated into two parts :



e Completeness : Every codeword of the multiplicity code passes all
the tests.

e Soundness : Every word which passes all the tests is a codeword of

the multiplicity code.

We refer to the words given as an input to the test as tables. The com-
pleteness part of Theorems 1.1 and 1.3 are the trivial parts of the proofs, and
follow directly from the construction of the tests. The soundness proof for
Theorem 1.1 is pretty straightforward and is done by elementary methods.
Given some "table” (allegedly the valuation vector of some function and its
derivatives) which passes every line test, we use the result in [FS95] for Reed-
Muller codes as a black-box, in order to obtain a low degree polynomial, P,
for which its evaluations match the 0 — th derivative part of the table. We
are then left to show that the rest of the table is consistent with the deriva-
tives of P. This is done by showing that the tests impose a sufficiently large
number of linear constraints on the table, such that the only way of passing
all of them is by being consistent with P. To see this, the main observation
will be that these constraints are closely related to the standard Reed-Muller
codes, where the number of variables is now s (the number of derivatives in
our context of the multiplicity code).

The proof of Theorem 1.3 uses heavier machinery. In Section 3, we de-
velop an understanding of the relation between tables of valuations and poly-
nomials which are consistent with them. This is done by relying on the theory
of Grobner bases [CLO13], and the combinatorial Nullstensatz [Alo99]. We
also use a generalization of the combinatorial Nullstensatz for multiplicities
higher than 1 [BS09]. In Lemma 3.13 we devise a purely algebraic criteria
(i.e, in terms of polynomials and ideals) for when a table represents a code-
word of the multiplicity code. In the proof of Theorem 1.3, this criteria is
constantly being used, in order to translate between questions of tables and
evaluations to the question of whether some specific polynomial is low de-
gree. This translation between the algebraic objects and evaluation tables,
also helps us construct a polynomial which cheats the line test in Theorem

1.2. This is essentially done by



1. Constructing a polynomial which vanishes (with multiplicity 1) on the

entire cube F,™.
2. "Homogenising” it (i.e, making the polynomial homogeneous).
3. Multiplying it by a suitable factor to make its degree equal d + 1.

The result is a degree > d polynomial, for which every restriction to a line is

of degree d.

2 Preliminaries

We denote vectors (tuples) by either bold letters. We sometimes use capital
letters when thinking treating the vector as a multi-index (an element of N").
For X = X;,..., X,, we denote by F[X] the set of multivariate polynomials
in the variables X1,...X,,. We denote by F[X]<? the set of polynomials
of total degree at most d , and by F[X]"*<? the set of polynomials of local
degree at most d (i.e degree in each variable). Given a vector i € N we use

the notation

m
X< T x7
i

j=1

For a vector i € N, and a set S C [m], we define the vector ig by

) i, j€S8
(15>j: ! j
0, j¢s

Recall The definition of the binomial and multinumial coeflicients for

natural numbers :



where Y k; = n. We extend this definition to I, J, Ji, ..., J; € N™ by

()= 1)

(117 ~I~a]€) déftli[l ((Jl)t It (Je)t)'

We also use the notations :

g(z) € X7~ X € F,[X]
¢ (X) = JJo(X0)" € F,[X

for b= (by,...,by) € N™.

2.1 Reed-Muller code

Definition 2.1. Let d, m be non-negative integer, and q a prime power. The
(m,d,q) - Reed-Muller code, is defined as the set of evaluation vectors, of m

- wariate polynomials of degree < d, over F,/™. Le

RM(m,d, q) = {( (@) er,m | £ € FylXu,.. ,Xm]<d}. (2.1)

Lemma 2.2 (Sweartz-Zippel). Let P € F[Xy,...,X,,] be a non-zero poly-
nomial of total degree d = 0 over a field F. Let S C F. Then
d

Procsn [P(a) = 0] < g7

Corollary 2.3. RM(m,d, q) has relative distance atleast 1—§ (when q > d).

Proof. Since the code is linear, the distance is the minimal weight of a non-
zero codeword. Let f # 0. By using Swearz-Zippel with S = F,, we conclude
that f vanishes on at most %l fraction of IF,”*. Thus, f has a relative weight
of atleast 1 — g. O



2.2  Hasse Derivatives

Definition 2.4. (Hasse derivative) For a multivariate P(X) € F[X] where
X = (Xy,...X,,) for some m € N and a non-negative vector i € N™ | the
i-th Hasse derivative of P, denoted by PY(X), is the coefficient of Z' in the
polynomial P(X,Z) = P(X+Z). Thus

P(X +Z) Z PO
Hasse derivatives are linear. Ie, for all P,@Q € F[X] and A € F |

(AP)D(X) = APD(X)

PY(X) +QW(X) = (P + Q)P (X)

Claim 2.5 (The product rule). For P,Q € F[X] we have

- Z PO(X) - QU (X). (2.2)

Proof. We calculate the coefficient of Z" in PQ(X + Z). By definition we

have

(PQ)(X+Z) = PX+Z)-QX+17Z)

= (Z PO(X) ZZ‘) : (Z Q(i)(X)Zi)

and the coefficient of Z" is indeed >_7_, PO (X) - QU~9(X). O

Definition 2.6 (Multiplicity). For P(X) € F[X] and a € F™, the multiplic-
ity of P at a, denoted by mult(P,a), is the largest integer M such that for
every non-negative vector i, with wt(i) < M, we have P9 (a) = 0. If M may

be taken arbitrarily large, we set mult(P,a) = oo .



Note that by definition mult(P,a) > 0 for every a . One important prop-
erty about multiplicities, is a generalization of the Schwartz-Zippel lemma

for multivariate polynomials.

Lemma 2.7 (3.3 in [KSY14]). Let P € F[X] be a nonzero polynomial of total
degree at most d. Then for any finite S € F |

> mult(Pa) <d-| S [

acsSm

In particular, for any integer s > 0,

d
Pracgm|[mult(P,a) > s| < SIS

Remark 2.8. In the univariate case, this gives us a generalization of the
“degree mantra” . A non-zero univariate polynomial P € F[X] of degree < d
satisfies

Z mult(P,a) < d

a€lFy

2.3  Multiplicity codes

Definition 2.9 (Multiplicity code). Let s,d, m be non-negative integers, and

let q be a prime power. Let

m+571)

Em,s — Fq{i:wt(i)<s} ~ IF( i

For P(X) € F,[Xy,...X,.], we define the order s evaluation of P at a
denote by P(<*)(a) to be the vector (P(i)(a))i;u,t(ikS € Xns - The multiplicity
code Mult(m,d,s,q) is defined as follows. The alphabet of the code is ¥, s,
and the length is ¢™. Every polynomial P(X) € F,[X1,...,X,] of deg(P) <
d defines a codeword by (P(<s)(a))a:a€]qu € (Sms)?"

Definition 2.10. We will use the notation M RM,(m,d, s) = Mult(m,d, s, q)
(" Reed-Muller multiplicity codes”) and M RS,(d, s) == Mult(1,d, s, q) (”Reed-

Solomon multiplicity codes”).

The following lemma states the relationship between the derivatives of a

polynomial to the derivatives of its restriction to a line. This lemma plays

10



an important role in the local decodability result in [KSY14], and it will also

play an essential role in our results.

Lemma 2.11 ([KSY14], Sec 4). Let P € F[X] be a multivariate polynomial
where X = (X1,...,Xn). Let a,b € F™, and define a univariate polynomial
by Q(t) = P(a+bt). Then

QU(t) = P9(a+bt) - b

iwt(i)=j

Proof. By the definition of Hasse derivatives, we get the following two iden-

tities:

Pla+b(t+R)=Q(t+R) =Y QUM

J

P(a+b(t+R)) =) PY(@a+bt)(bR)
and by comparing coefficients of R’ we get
QU(t) = PY(a+ bt)b!

]

We would also like to derive a formula for the derivatives of restrictions

to a 2 dimensional plane.

Lemma 2.12. Let P € F[X] be a multivariate polynomial where X =
(X1,...,Xm). Let a,b € F™, and define a bivariate polynomial by Q(t,r) =
P(at + br +c¢). Then forj € N? :

QU(t.r) =3 POt +bric) -3 3 abbis
ieNm k=0 SClm]
[S|=k
wt(is)=j1,wt(iz)=j2

where S is the complement of S (see the notation is in section 2).

11



Proof. Given Ry, Ry € F, we write the expression P(a(t+ Ry)+b(r+ Rs)+c)
in two different ways. Denote v = (¢,7) and R = (Ry, Ry). Then on one
hand

P(a(t+ Ry) + b(r+ R2) +¢)

Q(t+R1,T+RQ) = Q(V+R)
= > QU()RI'R}.

jEN2?

On the other hand

P(a(t+ Ry) +b(r+ Ry) +c) = P(at+br+c+ Ria+ Ryb)
= Y PWat+br+c)- (Ria+ Ryb)’

ieN™
m

= Y POt +br+c)- [[(arR + bRy)"

ieN™ (=1
= Z P(l) (at + br + C) . Z Z aisbigRilut(iS)R;Ut(ig).

ieNm k=0 SC[m]
|S|=k

By comparing coefficients of R} R} for every j = (j1,j2) € N? we get the
result.
]

2.4  Grobner bases and Nullstellensatz

We now look at the ring of m variate polynomials over a field R = F[ X7, ..., X,,]
. The theory of Grobner bases, describes the structure of ideals in this ring.
We briefly explain some of the essential concepts of this theory. We refer to
[CLO13] for a thorough treatment of this theory.

Definition 2.13. A monomial order = on R is a relation = on Z%,, or

equivalently a relation on the set of monomials x®, o € 2% satisfying:
1. > 1is a total ordering.

2. If a = B and v € Z, then a +~v = B+ .

12



3. = 1is a well-ordering. e, every non-emply A C Z%, has a minimal

element.

Example 2.1 (Lexicographic order). Let o, 8 € ZZ,. We say a =. B if

the minimal © which satisfies o; # By, also satisfies oy > f; .

Example 2.2 (Total degree lexicographic order). The total degree lexico-
graphic order is defined as follows: A monomial my is greater than meo if
it has higher total degree, where ties are broken lexicographically (i.e Xy >
Xy >+ > Xy, ). More formally , let o, 8 € ZZ,. Then o =00 3 if

wt(a) = Z a; > wt(p) = Z/B“ or wt(a) = wt(B) and a =jex B
Definition 2.14. Let f(X) =Y. ;X' and = a monomial order.
1. The multidegree of f is
multideg(f) = max {i | a; # 0}
(mazimum is taken w.r.t > )

2. The leading coefficient of f is

LC(f) = Qmultideg(f) el

3. The leading monomaial of f is

LM(f) — Xmultideg(f)
4. The leading term of f is

LT(f) = LC(f) - LM(f)
The following are very useful properties of multidegrees:

13



Lemma 2.15 ([CLO13] Chapter 2, lemma 8). Let f,g € F[Xy,..., X,,,] be

nonzero polynomaials. Then:

1. multideg(fg) = multideg(f) + multideg(g).

2. If f 4+ g # 0, then multideg(f + g) < max(multideg(f), multideg(g)).
If, in addition, multideg(f) # multideg(g), then equality occurs.

Definition 2.16 (Multivariate polynomial division). Let > be a monomial
order on ZZ,, and let F' = (f1,..., fs) be an ordered s tuple of polynomials
in F[X]. Then every f € F[X] can be written as

fZQ1f1+"'+Qst+Tu

where q;,r € F[X], and either r = 0 or r is a linear combination, with coeffi-
cients in F, of monomials, none of which is divisible by any of LT(f1), ..., LT(fs).
We call r a reminder of the division by F'. Moreover,

multideg(q; f;) < multideg(f)

for every i € [s]. The reminder r is not necessarily unique, and might be

dependent on the order of division.

Definition 2.17. Let I # {0} C F[X] be an ideal. Fiz a monomial ordering
on F[X]. Then

1. We denote by LT(I) the set of leading terms of non-zero elements of
I.

LT(I)={cX'|3f € I\ {0} .LT(f) = X'}
2. We denote by (LT(I)) the ideal generated by elements of LT (I).

Definition 2.18. Let I # {0} C F[X] be an ideal. Fiz a monomial ordering
on F[X]. A subset G = {g1,...,9:} C I is said to be a Grobner basis for

I, f

(LT(g1), -, LT(gr)) = (LT(I)).

14



Fact 2.1. Every ideal I C F[ Xy, ..., X,| is finitely generated, and moreover,

has a Grobner basis.

The importance of a Grobner basis, is that it gives us a natural way of

choosing representatives for the quotient space FIX1, .. X /T -

Theorem 2.19 (Sec 2 Prop 1 in [CLO13]). Let I C F[Xy,..., X, be an
ideal and G = {q1,...,9:} a Grobner basis. Then given f € F[Xq,..., X,,]
there is a unique r € F[ X1, ..., X,,] such that

1. No term of r is divisible by any of LT (q1), ..., LT(Gy) .

2. There is a g € I such that f =g+ .

In other words, the reminder of the polynomial division by G is unique.
We call this r, the reduced form of f (relative to I).

Note that the reduced form of any polynomial is equivalent to this poly-
nomial modulo /. Thus, as said above, this theorem gives us a natural way

of choosing representatives modulo 1.

Theorem 2.20. Let R = F[X] be the ring of polynomials, and I C R an
ideal. Let G be a Grobner basis for I. Then the set

B ={M(X)| M is a monomial which is not divisible by any of LT (g) for g € G },

is a basis for B/

Proof. To see that this set is a spanning set, just note that by 2.19, any f can
be reduced to some r € 12/ such that every monomial of 7 is in B. To see
that it is independent, note that a linear combination » | «; M; of elements in
B is already a polynomial in its reduced form, and thus, it is zero in R /1 if

and only if it is zero as a polynomial. In other words, o; = 0 for every i. [
The following criterion determines whether G is a Grobner basis.

Definition 2.21 (LC'M and S polynomials). Let f, g € F[X]| = F[Xq,..., X,,]
be nonzero polynomials. Let o = multideg(f) and = multideg(g).

15



1. The least common multiple of LM(f) and LM (g), denoted LCM(f,g),
is X7, where v = (71, ...,vm) and v; = max {ay, B;} for each i.

2. The S— polynomial of f and g is

_ LOM(f.9)
LT(f)

Theorem 2.22 (Buchberger’s Criterion (Sec 6 in [CLO13])). Let I C F[X]
be an ideal. Then a basis of G = {qg1,...,q:} of I is a Grobner basis of I

_ LOM(f,9) g
LT(g)

if and only if for all pairs i # j, the reminder on division of S(g;,g;) by G

(listed in any order) is zero .

Note that we always have S = S(g;, g;) € I by the definition of S. When

saying the reminder of the division by G is zero, we mean that there are { f;},

such that
S=>" fig

and multideg(f;g;) < multideg(S) for every i (as in definition 2.16).

Theorem 2.23 (Combinatorical Nullstellensatz [Alo99]). Let F be a field,
and Ay, ..., Ay CF . Let g;(X) = [[4en, (X — @) fori=1,...,m. Assume
a polynomial f € F[X] satisfies f(a) =0 for all« € Ay X -+ X Ay,. Then
there are hy,...,h; such that

and deg(h;) + deg(g;) < deg(f) for alli.

When A; = F, denote

Also, let I,,, denote the ideal
I,={feR|VaeF," f(a)=0}.

Corollary 2.24. [, = ((9(X1),...,9(Xn)))-

16



Proof. Let f € I,,,. By Theorem 2.23, taking S; = [F, for every 7, we get that
f =>"h;g; for some {h;} and so f € ((g;)7,). The other inclusion is trivial,

since g(X;) = X! — X; vanishes on F, for every i. O

Lemma 2.25. G = {¢(X;)} is a Grobner basis for I,, (relative to the total

degree lezicographic order).

Proof. We use Theorem 2.22. We start by computing the S- polynomial for

i, gj- For convenience we denote X = X;, Y = X;. We have

lem(X? YY) = X9Y1
Now,

Xy Xy
S(XT =X, YY) = S (X1 X) = e (YY)
= YIX9— XY?— XYY - YX?= (XY + XYY

= V(X7 X)— X(Y?—Y)=0mod IL,.

Thus, the reminder is indeed zero, and the criteria in Theorem 2.22 is satis-
fied. O

Let s € N and let I,,, ; denote the ideal
In,s = {feR|YaecF,™" Mult(f;a) > s}.

In this notation, I,,,; = I,,, defined before.
For every b € N™, such that wt(b) = s, define

Theorem 2.26 (Combinatorical Nullstellensatz with multiplicity, [BS09] Sec
3). s = <gb>wt(b):8. Furthermore, the set G, s = {gb}wt(b):s is a Grobner

basis for I, .

Proof. To see that I,,, s is indeed an ideal, fix f € I, ; and g € F[X]. Then for
r<s: (gf)" =" fD-gr=) =0andso gf € I, Also, clearly, g® € I,,

17



for every b with wt(b) = s. [BS09] Sec 3 shows that every f € I,, s can be
expressed as a combination of the ¢g® and, furthermore, f = Zb:wt(b):s g°hy,
for some hy, with deg(hy) < deg(f) — sdeg(g).

In particular, this is true for the S polynomials in Theorem 2.22. I.e,
every such S polynomial can be expressed as S = Y gPhy, where deg(gPhy) <
deg(S). Thus, Buchberger’s criterion holds, and {¢P} is a Grobner basis. [

3 Polynomials and tables

In the context of codes and local testing, it is important to distinguish be-
tween a (possibly multivariate) polynomial, which is an algebraic object, de-
termined only by its coefficients, and the function it represents by evaluating
it on tuples from the relevant field. For example, the univariate polynomials
P, =0 and P, = 29 — x are identical as a functions on F,, but different as
polynomials. In this section we would like to discuss polynomials and their
evaluations more formally.
Given parameters s, d, m ,recall from 2.3 the definition of X, :

'm+371)

S = FE00<s) r(™

Definition 3.1. A table T is an element of (X,,5)? . The multiplicity s,
evaluation function for m— variate polynomials, EV ALy, s : F,[X1,..., X\ —

(Sin.s)?" is defined by

EVAL,, = (PY(a))

wt(i)<s,acF,™

. We say that T € (X,,5)7" is a table for P € F,[X1,..., X,,] if EVAL(P) =
T.

Definition 3.2. (Table resrictions) Given a table T € (3,,4)? , we denote
its restriction to Xy, ¢ by Ty, for 8 < s (note that ¥, ¢ is naturally embedded
in X))

Remark 3.3. Note that every polynomial determines its table EV AL(P).
However, one table T might satisfy T = EVAL(Py) and T = EVAL(P,) for
PL#£P.

18



Definition 3.4. The multiplicity s evaluation function for m— variate poly-

nomials of (total) degree < d, EV ALy - Fg/ X1, ..., Xp] = (8ms)?" is
defined by

EV ALyms = EVALp d|psy,

Definition 3.5. The multiplicity s evaluation function for m— variate poly-
nomials of local degree < d, EVALYS, -
defined by

m

Floesd[X,, L Xpn] = (Sns)?” s

EV ALk

d,m,s

= EVALm7S‘Féoc<d[X

Lemma 3.6.

m

Ker(EV ALy, ) = ([ [(XF = X)")ui)=s-

=1

Proof. By definition, the kernel of EV AL,, , is
Lys={f€F[Xy,...,Xn| | mult(f,a)=sVa eF,},

and by 2.26,

]

Since 1, s clearly does not contain any non-zero polynomial of either local

or total degree less than sq, we conclude the following :
Corollary 3.7. For d < sq , both EV ALy, and EV ALY are injective.

d,m,s

By the first isomorphism theorem, EVAL naturally induces a mapping
EVAL,,, : F[X,.... X /[

Claim 3.8. EV AL, ; is an isomorphism when q > s.

Proof. We already know that EV AL, s is injective. Thus, it is sufficient to
show that

dim <IF (X1, X /_]m8> dim (Zp6)7") -
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Denote for b € N™ | the polynomial

m

g = [ J(x7 = x0)™.

i=1

Then [m,s = <gb>wt(b):s .
Counsider the set

A= {(HX{) Xb | wit(b) < 5,0 < j; < q}

i=1

We first claim, that the elements, as represented in the set, appear without

repetitions. More formally,

Claim 3.9. For b, 0%, 51, 72 € N™ with wt(b'), wt(b?) < s, 0< j1, j2 < q :

(foil) X! — <H Xﬁ) X" = pt =17 5! = 2

i=1 i=1

And indeed, let b*, b2, j1, 52 as above. By looking at the power of X; for

some 7 in the monomials above, we have
ji +biq =i +blq

Since ¢ > s > b},b?, both sides of the equation are representations of
the same natural number as a quotient and a reminder by ¢. Since such a
representation is unique, b} = b?,j!1 = j2. Since this is true for every i, we
have bt = 02, j1 = 52.

We conclude that the size of A is exactly

. m m ) m (m+s—1
A= {(b,)) € N" x N" |0 < ji < qwt(b) < s} |= g ( N )

We claim this set A , is independent in the quotient space Fq (X1, Xl / I,
. Indeed, note that every element of A is not divisible by any of the LT (g;) =
X% for wt(b) = s. Thus A is a subset of the basis from 2.20. In particular,
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it is an independent set. Thus
dim (Fq[Xl,...,Xm] /Im) > A= dim (S,

as desired.

Note that from the proof of 3.8, we get the following

Corollary 3.10. The set

A= {(HXf) Xb | wt(b) < 5,0 < j; < q}

i=1
is a basis for FIX] /_]mS for X = (Xy,...,X,).

This is since it is an independent set of size dim (F[X] /[m s).

We would also like to introduce another basis for the same quotient space.

Lemma 3.11. For b € N, define
g = [Ix7 = xa™.
i=1

Then
Bps = {g°X" | wt(b) < s,Vi.0 < I; < ¢}

1s a basis for the quotient space F[X] /[ms.

m

Proof. First note that | B, s |= ¢ - (m+s_1) = dim (F[X] /[m’s). Thus, it
is sufficient to show that B is an independent set, in the quotient space.By a
similar argument as in 3.9, we see that different elements in B have different
local degree at X; for some i. Thus, as polynomials, they are independent.
Note also that each element in B is already in its reduced form, since any
element of B is not divisible by any of the leading terms LT(¢P), in the
Grobner basis for I,,s. Thus, they are also independent in the quotient
space (since any vanishing linear combination in the quotient space Y a; f; =
Omod I,, s is already in its reduced form, and thus ) «; f; = 0 as polynomials,

but f; are independent as polynomials, and so a; = 0 for every i). O
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Next, we would like to give a purely algebraic criteria, which states when
exactly a table belongs to the code M RM,(m,d, s).

Definition 3.12. Let T € E?n”fs be a table. By 3.8, if ¢ > s, there is a unique
element Pr € F[X] /[m ., such that EV AL, ((P) =T. We think of Pr as a
polynomial in its unique reduced form, obtained by division with the Grobner

basis of I, s, and we call it the representing polynomual of T.

Lemma 3.13. Assume d < sq and ¢ > s. Let T € Eg;’; be a table, and Pr

its representing polynomaial. Then
T € MRM,(m,d,s) <= deg(Pr) <d.

Proof. First, assume deg(Pr) < d. Then, by definition, since EV AL,, ((P) =
T, we have T € MRM,(m,d,s). For the other direction, assume 7' €
MRM,(m,d,s). Then there is some ) € F[X] of total degree < d such
that EVAL,, ((Q) = T. In particular, the local degree of @) is less than
d < sq. Note that Pr also has local degree < sq (since by definition no

monomial in it is divisible by any term of the form X!* ) . By 3.7, we have
Q = P, and thus deg(P) = deg(Q) < d. O

Lemma 3.14. Let T € Z‘;,:S be a table, and let s < s. Assume the repre-

senting polynomial of T is :

P = Z ap1g” X!
1,J

wt(t;)<s
I;<q

Then the representing polynomial of T|s is

Proof. Note that P.y = P mod I,,, . Thus EVAL,, ¢(P<y) = EVAL,, ¢(P) =
T|s. We get that Py satisfies both

1. EVALy,(P) =Tl
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2. Pe Sp(Bm,s/).

We know from 3.8, that there is a unique polynomial which satisfies both

conditions, and it is the representing polynomial of T'|. O]

4 Bases and reductions

Consider the basis B, s of F[X]|mod ,, s from 3.11. We denote by f the
reduction of f € F[X] mod I, ;. We will now be interested in the case of
m = 2 (this will serve us in section 8). We would first like to introduce a
basis for the space of polynomials in two variables F[t,r], which interacts

"nicely” with the basis B,, ;.

Claim 4.1. Ewvery polynomial A(t,r) € F[t,r| can be expressed uniquely in
the form

Altr) = Y Aji(ab,c)g(t)rIth. (4.1)

ieN,jeN,k<q

In other words, D = {g(t)'rit* | k < q} is a basis for F[t,r]. Moreover, this
representation satisfies multideg(g(t)'rit*) < multideg(A(t,r)) both with re-
spect to the total degree lexicographic order where t > r, and the total degree

lexicographic order where r > t.

Proof. We start by showing that D is a spanning set, i.e, we show that an
arbitrary A(t,r) can be expressed as a linear combination of this set. We
prove the claim by induction on the local degree at t of A, deg;(A(t,r)). Of
course, if deg;(A(t,r)) < g, then A is simply of the form

Alt,r) =) Apith, (4.2)
J
k<q
For deg,(A(t,r)) > ¢, we use multivariate polynomial division, to write

Alt,r) = fl(t, rg(t)+ R (4.3)

where deg;(A) < degi(A) —q, and deg;(R) < ¢. By the induction hypothesis,

both R and A have a representation as above, which gives a representation
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for A. To see that the set D is also independent, note that each element
D(t,r) = g(t)'r’t* € D is uniquely determined by its local degree at ¢ and at

r.Indeed, any such element satisfies:
deg (D) = qi + k

which uniquely determines ¢, k, by uniqueness of division and reminder by ¢.
Also, deg,(D) = j. In other words, every two distinct elements in D have
a different local degree (either at r or at ¢).This property ensures both that
the set D is independent in F[t, r], and that the elements in D have distinct
multidegrees, both w.r.t the total degree lexicographic order where ¢t > r and
where r > t. It follows that any linear combination ) «;f; of such elements
{f;} € D, has a multidegree of max {«a; f;} by 2.15. O

We can also define a similar basis for F[X] mod I, which is slightly
different than B, ;. We define

5s = {g(t)britj |be{0,1},i+bg < sq,j < q} ) (4.4)

It is easy to see that its a basis, since every element in By s can be written as
a linear combination of elements in B3 ;, and no monomial which appears in
an element in Bj  is divisible by LT(g(t)’g(r)?) for i 4+ j = s, and thus they
are all reduced and independent mod Iy ;.

we use the notation 7 mod N to denote

J 0<j<N
jmod N=<¢ jmod N, j>N N¢{j
N, j>N,N1|j

Note that mod and mod are different only multiples of N.

Claim 4.2. For f € F[t,r], denote by f the unique representation of f mod I,
obtained by division by the Grobner basis Gy, 2. Denote f; ;1 = g(t)'ritk, for
1,7 € NJk < q. Then:

1. fijk =0 fori>= sk <q.
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2. fs—l,j,k = fs—l,j mod (qg—1),k mod (g—1)"

3. degi(fijr) < degi(fijx), fork <q.

Proof. By 2.26, we have that

Gmo = {9(t)*g(r)’ | a + B = s} (4.5)

is a Grobner basis for I, ;. In particular, we see that for ¢ > s, f;; is
divisible by the basis element ¢(¢)®, and thus item 1 holds. For 2, assume
7 = q. Then:

fS—l,j,k: - g(t)s_lrjtk — g(t)s—lrj—qrqtk
= g(t)s_lrj_q(g(r) —I—T)tk

Q

A similar calculation is true for ¢. To prove the 3rd property, note that in

general, by 4.1, we can write f;;; = g7/t  in the form

Fiar = | D @unag®)t= | | Y Bi (e
?171.2 .jlv.j2
12<q G2<q

where

gltk = Z ail,i2g<t>i1ti2
%

9= Byl
J1,J2
J2<q
The reduced representation f;;, can now be computed by truncating the
products where iy + js > s, i3 = q , jo = ¢q. From this, we see that the reduc-
tion can only reduce the local degree at ¢ (since the part which is dependent
of ¢t in the reduced form, comes only from the part which is dependent of ¢

in the original form). Thus, 3 holds.
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[]

5 Restriction to lines is a local characterisation when deg < q— 2

In the proof, we will make use of the following theorem, about the charac-
terization of the Reed-Muller code :

Theorem 5.1 ([F'S95] ). Suppose ¢ > d+2. f € RM,(m,d) iff for every
a,beF™ fol,, € RS(1,d).

For a,b € F" define ¢qp) @ Zims — 1,5 by:

(ban(), = D =0 (5.1)

for 0 < j <s.

Theorem 5.2. Let F be a field of size q, and let m,d, s be positive integers
such that q > s , ¢™ > (m+5_1) and ¢ = d+ 2. Then

s—1
P e MRMy(m,d,s) <= Ya,beF" P,y € MRS(d,s).
where

Pa7b(t) = Cba,b(EVALm,s(P;ga,b(t)))

Proof. We start with the easy direction. Assume P € MRM,(m,d,s). Fix
a,b € F,” and define a univariate polynomial @Q,; € F[t] by Q.s(t) = P(a+
bt). Q € F;9[X]. Then,

Pa,b(t) = ¢a,b(EVALm,s(P; ga,b@)))

= > PO(a+bt)- b

i,wt(i)=y j

= (QY(1)), € EVAL(RS(d,s)).

where in the last equality we have used Lemma 2.11.
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We now prove the other direction, i.e that every f which passes all the
local tests, must be a member of M RM (m,d,s) . Assume that we are given
as input f € (Z,,5)7 . As before let

Jap(t) = Gap(f(lap(t))).

Assume for every a,b € F™, f,, € MRS(d,s). This means that for every
a,b € F' there exists a uni-variate polynomial M, € IFqu[X | such that
EVAL(M,p) = fap. We need to show the existence of a polynomial P €
F54X] such that EVAL(P) = f. We define P as follows. We let

Claim 5.3. deg(P) < d and M,y = P, ,.

Proof. Fix a,b € F™. Then, Py(t) = P(a+ bt) = fola + bt) = M,u(2).
Thus, for every a,b € F', Py,, is a degree polynomial. By Theorem 5.1,
P e IFqu[X]. Since Py, , and M, are two univariate polynomials of degree
< d , which agree on ¢ > d points (the whole space F,), they must be equal

as polynomials. O

We are left to show,

Lemma 5.4. For every 0 < j < s and every i with wt(i) = j we have
PO = £

Proof. Fix 0 < j < s. Fora,be F" let { =/{,; and
Py(t) = P(a+ bt)
By Lemma 2.11

PP = Y POa+ot)

i,wt(i)=j
Also, by our assumption, EVAL(M,;) = ¢as(f(lap))) and so
M@ = > fwla+ol

i,wt(i)=j
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As Py, , = My we conclude that

(F)uriyms - (Fila+ 1) = PO (a4 1)) 0 =0, (5.2)

wt(i)=j
and for every a,b € ;" we have such an equation.
Fix 0 < j < s and z € F". Define a vector Dif f € F*U) by

Diff(i) = fi(z) — PO ()

Define a ¢™ x w(j) matrix B; by B;(b,i) = b'.

In this terminology we see that B;Dif f = 0.

B; is the generating matrix of the code of degree 7 homogeneous polyno-
mials over [F;". As the code has positive distance by 2.3, the matrix has full
rank. Thus, B;Dif f = 0 implies Dif f = 0. Thus, for every z and i we have
fi(z) = PU(2) and f = EVAL(P). O

O

6 Restriction to lines is a local characterisation for M RM (m,d, 2)

when deg;,... < ¢

In this section we would like to prove that the line test stays sound for the
case s = 2, when considering polynomials of restricted local degree, even

when the total degree is greater than ¢q. Formally :

Theorem 6.1. Assume d < 2q — 1. Let P € F[X]°<?=! pe a polynomial
which passes all the tests in 5.2. Then P € MRM,(m,d,2).

Given some P which passes the line tests, we can write
P(X) = > aX. (6.1)

Notice that while this assumption implies P is reduced modulo I,, ;, the total
degree of P might be as large as m(q — 1), and therefore restriction to lines
is not reduced modulo I; 5. We nevertheless show that the line test is still a
characterization. The restriction of P to the line ¢, (where a,b € F™) is
P,y(t) = P(at +b) . We write P, p(t) explicitly as
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Pa7b(t) = Z at—l—b ZO&[ Z ( ) Iablbtwt(la).

I I:I;<q Io+1y=
L;<q

Arranging by monomials of ¢ we write Pap(t) = >, A;(a, b)t/ where

=Y a Y ( > al*bl. (6.2)

IIi<q  Iot+Dy=
wt(Iq)=j

Notice that A;(a, b) is reduced modolu Is,, ;. We divide the proof to two
cases: in the first (simple) case we further assume deg(P) < 2¢, which in

particular implies P, is reduced modulo /; . We then do the general case.

6.1 When deg(P) < 2q

Let Inax be a term I in Eq (6.1) of maximal weight such that ag,_ # 0. Since
Loy is maximal, d < wt(I.y) = deg(P) < 2. The monomial al™= appears
in Ageg(p)(a, b) and therefore Aqeg(py(a, b) does not vanish on F,*" (because
it is a non-zero polynomial and it is reduced modulo I5,,;). Fix a,b € F,™
such that Agegpy(a,b) # 0. Then P,y (t) is a degree deg(P) > d uni-variate
polynomial (because Ageg(py(a, b) # 0) reduced modulo I, 5, and therefore it

does not pass the line test by our criteria in Lemma 3.13. A contradiction.

6.2 The general case

As before, let I, be a term [ in Eq (6.1) of maximal weight such that
ar,.. 7 0. Since Iy is maximal, d < wi(Iyay) = deg(P). However, unlike
before, it is possible that wt(I.x) is as large as m(q — 1) and that P, (1) is
not reduced modulo I, 5. For f € F(X) let f = f mod I, 5. Then:

Fix a partition Inae = Imax® 4 Imax’s with wt(Ina®) = 2¢ — 1. The

. a b . .
monomial almax"plmax" appears in Ay, 1(a,b) and therefore Ay, i(a,b) is a
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non-zero polynomial. Furthermore, a="b" does not appear in A, (a, b),
for any other j/ # j (because the monomial is multiplied by ¢w!Mme") —
t2¢71). Hence By, i(a,b) is non-zero (because only Ay, ; contributes the
monomial almex" b=’ and therefore the monomial is not cancelled out, and
By,—1 is a non-zero polynomial) and reduced modulo I;,. Fix a,b € F,”
such that By, 1(a,b) # 0. Then P,p(t) is a degree 2¢ — 1 > d uni-variate
polynomial reduced modulo I; 2, and therefore it does not pass the line test.

A contradiction.

7 Restriction to lines is not a local characterisation for M RM (m,d, s)

when the field size is small

In this section we consider the code Mult(m,d, s,q) in the case where ¢ <
d < sq. We would like to show that in this case, the line test fails. More

precisely

Theorem 7.1. Assume q < d < sq — 1, and assume m > 2. Then there
exists a table T' € L, - which passes the test in 5.2 . However, no polynomial

PeF,[Xy,..., X5 satisfies EVALy, (P)=T .

Proof. We will construct the desired table as EV AL(Q) for some polynomial
Q € F[Xy,...,X,,], with deg(Q) = d+1 < sq . Note that by 3.7, there cannot
be a polynomial P with deg(P) < deg(Q) having the same table. Thus, if

such @ passes the line test (for every line), we are done. Define

~

Q == (Xil - Xl)XQ - (Xg - XQ)Xl = X{]X2 - X2qX1

and Q = X f 1. Q . First note that Q is a homogeneous polynomial of degree
q + 1, and thus @ is homogeneous of degree d' = d + 1 .Note that Q(a) =0
for every av € F,"™ (since Q € I,,1). Write

Q: Z CiXi

iwit(i)=d’
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and look at the restriction

Qr., = Qla+bt)= Y ala+bt)

i,wt(i)=d’

for a,b € F,™. note that the coefficient of ¢* in Qle,, 18

> bt =Qb) =0,
wt(i)=d’
since @ vanishes on F,”". Thus deg(Qy,,) < d —1 = d. Of course, this
means that () passes the test for the line ¢, ;. Since this is true for every line,

we are done.

]

8 Restriction to planes is a local characterisation for M RM,(m,d, 2)

when the field size is small

In this section we consider the case s = 2. We would like to show that
the multiplicity code M RM,(m,d,2) can be characterized by restrictions to
planes,even when the field size is small. In this section we assume ¢ is prime.

Let IF be a field of size ¢, and let m be a positive integer. For a,b € F,™
define:

® labe: ]Fg — F;” by:

lapec(t,r) = at+br+c.

L ¢(a,b) . Zm,2 — E2,2 by

CESIE) D SETH SENED SISt
=0 Sc|

ieNm & m]
|S|=k
wt(is)=J1,wt(ig)=sz

From Lemma 2.12 we see that:
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Theorem 8.1. (Completeness) Suppose ¢ > 2, d < 2q — 1. Then if a table
T € 32" satisfies T € MRM,(m,d,?2) then for all a,b,c € F™,

m,s

Pap) 0T 0 lape € MRMy(2,d,2).

The main challenge is proving the converse:

Theorem 8.2. (Soundness) Suppose ¢ > 2, d <2q— 1. If a table T € EZ,ZLQ
satisfies that for all a,b,c € F", ¢@ap) 0T 0 lane € MRM,(2,d,2) then
T € MRM,(m,d,2).

In this section, when saying "multidegree”, we mean with respect to the
total degree lexicographic order (see 2.2), unless stated otherwise. Note that
every polynomial has a unique monomial of maximal multidegree (as opposed
to standard total degree). We define vector space of tables which pass the
test:

Vind = {T € Z?;:S | papy 0T 0 lape € MRM,y(2,d,2) for every a,b,c € Fm}
(8.1)

We denote by Cy,.g = Vina\ M RM, 42, the set of tables which cheat the test.
We would like to show that C, 4 = 0. Assume towards contradiction that
we have some table T' € (), 4. By 3.8, T' can be realised (uniquely) as an
element of the quotient space P € FX] / In.s-
let g € F[X] be the univariate polynomial defined by ¢g(X) = X7 — X,
and denote for J € N™, the polynomial g;(X) = [[", 9(X;)”". We use the

basis By, 2 from 3.11 to write P in the form

P(X) = Z ar9,(X)X! (8.2)
Jwt(J)<2
I,1;<q

Since T' € C,, 4, we have deg(P) > d by 3.13. This means that there must
be some J and I such that a;; # 0 and

wt(J)g+wt(I) > d (8.3)

Note that we may assume that every I, J which for which a; ; # 0, satisfy

32



8.3. This is since the test is linear, and any degree < d will have no effect
on whether P passes the test or not. Moreover, we may assume there exists
some J with wt(J) = 1, i.e, that some element of the form ¢;(X) = X! — X;
appears in P. Otherwise, P is of local degree < p, and in Section 6 we showed
that in this case even the line test is a good characterization. So, from now
on we assume there is atleast one J with wt(J) = 1. Let I, be of maximal
total degree such that o, # 0 for some Jpax with wt(Jpmax) = 1 (and
fix this Jpax)-

For a,b,c € F™ the restriction of P to the plane defined by a,b,c is

Pave(t,r) = P(at + br 4+ ¢). By Claim 4.1 we can write P, as

Jmax

Pape(t,r) = E Ai7]~,k(a,b,c)g(t)irjtk
1,7EN
k<q

We view A, ;;(a, b, c) as a polynomial in the variables a, b, c.

. .. . b c
Claim 8.3. For every partition Inayx = Imax’+Imax’, the monomial a’maxplmax’ clmax

appears at Ay ... v o and does not appear at any Ay ;o for any j # wt(ImaXb).

Imax

Intuitively, terms of A; ;o come with t-degree ¢ and wt(a) = 1. The only
way to achieve a ¢-ratio between the t-degree and the a-total degree, is to
take a terms only from g; part. This, essentially, forces the lemma. We now

give a rigorous proof.

Proof. We expand Py c(t,7). First, P(X) = 3" jut(s)<2 @1,79,(X)X!. Thus

I:I;,<q
Pape(t,r) = Z Oq,JgJ(at+br—i—c)(at—l—bfr’%—c)l
Jwt(J)<2
I:1;<q
= > arg- [T glat+ b + )’ T (ait + bir 4 )"
Jawt(J)<2 i=1
I:I;<q
I J
— Z ary Z aJa+Iabe+IbCIcg(t)wt(Ja)g<7,)wt(Jb)twt(Ia)rwt(lb)’
1.1, ) \J,
Jawt(J)<2 Ja+dp=J
I:1;<q Io+1p+1.=1

33



where we have used

m m

giat+br+c) = J](glait +bir + ;)" = [J(aig(t) + big(r))”.
i=1 i=1
By claim 4.1, every element of the form #*, can be expressed as

te = Z Bi1,i2g(t)ilti2' (84)

11,92:01q+i2<Li2<q

Plugging into Eq (8.4) we get

1 J o
Pa,b,c(t7 7‘) = Z ag,g Z Z 6731,1'2 <] Ib> (J )aJa+Iabe+IbcIcg<t>’Ll)t(Ja)+’Llt’LQ QJbe

Jaot(J)<2 Jatdy=1J i1ia
I:I;<q To+Ipy+1c=1 i1qg+io<wt(lq)
12<q

(8.5)

wille)pwtlh) - We now have a representation as in

where Q,.1,(r) = g(r)
the basis defined at claim 4.1.
We wish to see, for which choice of values 1, Iy, I., J,, Jy, i1, 92 in Eq (8.5),

b c .
atmaxplmax” clmax® appears as a coefficient of A; jo. We must have

Jinax = J,+1, By comparing the powers of a ,

| I = S+ 1 By comparing the powers of b |

Loax© = 1. By comparing the powers of c ,
wt(J,) +i1 = 1 By comparing the powers of g(t))
U9 = 0 By comparing the < g power of ¢

As wt(Jmax) = 1 we have wt(J,) + wt(I,) = 1. Together with the fourth
equation we get wt(I,) = i;. However, wt(I,) > i1q+is > i1q, and 80 i1 = i1q
, which implies iy = 0. Thus wt(l,) = 0 and I, = 0. Thus J, = Jpax.
However, 1 > wt(J) = wt(J,) + wt(Jy) = wt(Jmax) + wt(Jp) = 1+ wt(Jp).
Thus J, = 0. From the second equation I, = I..°. Thus the only possible
solution is J, = Jpaxs Jo = 0, 1o = 0,1y = Lna’ I = LoaC ip = i = 0.
This parameter setting gives the coefficient ag, . 3,... - (II;]“::,,) which is non-
zero, since Iy < ¢ for every 1 < ¢ < m (here we use the fact that ¢

is prime). Thus, this setting is the unique solution giving the monomial
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aTmaxplmax” cImax® Thus, it cannot cancel and the claim follows. O

Next we would like to understand P, p cmod I3 2. We adopt the notation
fiirx = g(t)'rit* and the notation mod from section 4, and we use the
properties in claim 4.2. For f € F (X1, X5) let f = f mod I 5. Denote the

expansion in the I, 5 basis in equation 4.4 by:

Panelt:r) = Y. Bugw(ab.e)(g(t) 1"

i'<1,j'<2q—i,k'<q

We have:

Pope(t,r) = Z A;jr(a,b,c)fijk

i€N,jeEN,k<q

- Z Ai,j,k(aa ba C)fi,j,k’v (86)

i<1,jeEN,k<q

where the equality holds because it is taken modulo I55. Note that j may
be as large as ¢ +m(q — 1).

Lemma 8.4. For any partition Iyay = Inax” 4 Inax®, By (L) 0d (=1),0 €
F[a, b, ¢] is not the zero polynomial. Moreover, the monomial a’msplmax" cImax"

appears 1n it.

Proof. We divide the expression in Eq (8.6) to:

Pa,b,c(t7 T) = Z A07j7k<a, b, C)f(],j,k + Z Al,j,k (a, b, C)fl,jm(qfl),k‘

JENk<q JENk<q

By jo(a,b,c) does not get any contribution from A ;j (where k& < q)
because the power of ¢ there is smaller than ¢. Similarly, B, ;o gets a con-
tribution from 3y, A1jk(a, b, ¢) f) moag1), only when k = 0. Thus
By jo may get a contribution only from Aj; ;o for some j'. However, by
8.3 the only term that can contribute a’mexblma’cImax® is j = wi(Lya’).
As this monomial is contributed exactly once, it is not cancelled out and

Bl ipt(1aety mod g—1,0 18 10t the zero polynomial. O

35



Lemma 8.4, tells us that there By 1, . »ymod (g—1),0(@ b, €) is a non-zero
polynomial in a, b, c. We will need the stronger property that B ot (Toax?) mod (g—1),0 (a,b,c)
is non-zero modulo I3, ;, i.e., has a non-zero evaluation on Fqgm. We prove
it using the maximality of I, (notice that so far we have not used this

maximality).

. . b c
Lemma 8.5. For every partition L. = Lo+ Lnax’, the monomial atmaxplmax” clmax

appears at By . x, . v yomod Jsm 1.

mod (g—1

Proof. By Lemma 8.4, By 1, #y5mod (4—1),0 CONtains the monomial altmex plmax’ clmax
We claim that Aapc(t,r) in its entire (when we now look at it as a polyno-

mial in a, b, ¢), does not contain any monomial of the form M(a, b, c), such

that M # My but M = My mod I3,,. Assume otherwise. Since wt(Jy) =1,

Jo = €5, for some jo. In other words My = ajblgcfg. By 8.5, M is of the form

M = alotleplothocle where J = J, + J, satisfies wt(J) < 2, and [ = I, + I,
satisfies I; < ¢ for i = 1,...,m. We see that the cc part is already reduced

mod I3,,, and thus I. = [§. Since wt(J) < 2, there are 3 possible cases

1. J=10.
2. There is some j, such that J = J, = ¢;,.

3. There is some j; such that J = J, = ¢j,.

In the first case, M is already reduced, and thus M = M,, and we're
done. In the second case, (J,); = 0 for every i # j, and so a; is reduced for

i # j. Also, J, = 0, and thus b’ is reduced. The only possible non reduced
1+(1a);

element is a;, *. However, if it is not reduced, we have

1+ (o), = (Jo)j, +q— 1.

This gives wt(I,) = ¢ —2 > 0. Thus wt(I) = wt(I,) + wt(1l) + wt(I§) >
wt(lp). This contradicts the maximality of Iy, among the monomials which
appear with J of weight 1. In the third case, I, is reduced, and (J;); = 0
for every i # j,. Thus, b; is reduced for every i # j,. The only possible non

Ib)jb

reduced element is bjl-j( . If it is not reduced, we have
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L+ (1), = (Jo)j, +q— 1.

As before, we get (Ip);, = g — 2. Let fb,fé’ be the restrictions of I, I§
to the coordinates j # j, (respectively). Then we know from before that
I, = I}. We get

wt(I) = 1+ wt(l,) + wt(l,) > q — 1+ wt(L) + wt(1§) = wt(Iy).

By maximality of Iy we have I = Iy, and thus [, = [3 . However, since M

is equivalent to M , this means
[b+Jb:[b modq—l

(where the mod is in each coordinate). This gives 1 = (.J;);, = 0 mod (¢—1),
and thus ¢ = 2, which is a contradiction.
[

Lemma 8.6. There is a partition of Inax = Inax'+Tmax’, such that wt(Imaxb) mod (q—
1) >d—q.

Proof. T wt(Imayx) < q choose Loy ” = Tinax, Tnax® = 0. Then wt(Iya,") mod (g—
1) = wt(ImaXb) > d—q by Eq (8.3). If jmax = wt(Inax) > ¢ we choose any
partition Ina = Lnax’ + Inax® with wt(ImaXb) = ¢ — 1 and we use the fact
that d < 2¢q — 1. O

We are now ready to prove 8.2.

Proof of 8.2. by 8.6, and 8.5, we have a coefficient B; j, o of a monomial in

Aapc(t,r) of degree > d, which satisfies By j, 0 & I3m.We look at EV ALs,, 5 :
Fla, b, c] — ¢*"". Tt satisfies Ker(EV ALsp1) = Isp. Thus, EV ALsy, 1 (B j,.0) #
0. In other words, there are ag, by, ¢y such that By j, o(ag, bo, co) # 0. This
means that m is of degree > d, and thus, by 3.13, the bivariate poly-
nomial Py, b, .c, (t,7) cannot represent a table of a degree < d polynomial. In
other words, EV ALy s(Pagby.co) ¢ MRM,(2,d,s). By the definition of ¢gp,
and by 2.12, T fails the test for (a, b, c).

m
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