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Abstract
The first part of this thesis (Chapter 1) is dedicated to error correcting codes in Shannon’s noise
model. We show that every binary linear error correcting code that can be reliably transmitted
over some Binary-Memoryless-Symmetric-Channel (BMSC), can be reliably transmitted over any
BMSC with sufficiently small Bhattacharyya parameter. Based on [KKM+17] we conclude that
every doubly-transitive code with moderate minimum distance can can be reliably transmitted over
any BMSC with sufficiently small Bhattacharyya parameter. An important corollary of our result
is that the Reed-Muller code, a fundamental error correcting code, can recover from a constant
fraction of random noise over every BMSC, which was a long standing open problem1.

The second part is dedicated to space-bounded derandomization. First, we focus on pseduoran-
domness giving an error reduction procedure for pseudorandom generators (PRGs) against space-
bounded computation. Our reduction has optimal dependence on the error parameter. Unfortu-
antely, the procedure does not produce a PRG, but rather a weighted PRG (WPRG). This result
was independently obtained by Pyne, and Vadhan [PV21].

Lastly, we discuss a problem which in some sense captures the problem of space-bounded deran-
domization. Ignoring technicalities, approximating the T -th power of 2S × 2S stochastic matrices
is equivalent to derandomizing algorithms that run in time T , and use S space. Saks and Zhou
[SZ99] gave an algorithm for this problem that runs in

O((S + logT )
√

logT )

space. We improve upon their algorithm, and achieve space complexity of O(S
√

logT ). Our
improvement only applies whenever S ≪ logT , and in particular only applies to algorithms that
their running time is much larger than the space they use. Such algorithms necessarily do not halt,
and so one has to consider the non-halting model in which the algorithm is allowed not to halt with
vanishing probability, and the running time is defined as the expected running time instead. What
about approximating the iterated product of stochastic matrices

A1, A2, · · · , An ∈ Rw×w?

The best algorithm that was known for this problem is due to the aforementioned work of Saks and
Zhou. However, in the case w ≪ n nothing better was known. We make progress on this natural
problem devising an algorithm that runs in roughly

O(
√

logn logw)

space. In order to illustrate the difference, consider the case

w = 2
√

logn,

namely we have n matrices of dimension 2
√

logn. For this setting of parameters, the Saks–Zhou
algorithm yields a space complexity of O(log3/2 n), and in fact, an O(log3/2 n) space algorithm can
be derived easily without the Saks–Zhou algorithm. In contrast, our algorithm achieves nearly-
optimal space complexity of O(logn log logn).

The first part is based on a joint work with Jan Hązła and Alex Samorodnitsky [HSS21], and
the second part on joint works with Gil Cohen, Dean Doron, Oren Renard, and Amnon Ta-Shma
[CDR+21, CDSTS22].

1In a later work [RP21], it was shown that the Reed-Muller code achieve capacity, namely are optimal, over every
BMSC.
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Chapter 1

On Codes Decoding Constant
Fraction of Random Errors

1.1 Introduction
In this work we study binary linear codes over binary memoryless symmetric channels and their
weight distribution.

A binary linear error correcting code is a linear subspace V ⊆ Fn
2 . The subspace V should have

the property that given an erroneous version of v ∈ V one can extract from it some information
on v (v is usually referred to as a codeword). This is possible because while v ∈ Fn

2 is an n-bit
vector, it belongs to a subspace smaller than the entire space, or equivalently because v contains
redundancies. The amount of redundancy in V is captured by the ratio R(V ) = dim(V )

n which is a
fundamental property of a code called the rate.

In order to make the above concrete one has to formally define the manner in which errors
are induced and what information on v ∈ V should be retrieved. One such simple model was
proposed by Hamming [Ham50] in which corruptions are adversarial and we seek to recover the
entire original codeword. The behaviour in this setting is completely determined by the minimum
distance which is the Hamming distance between the two closest codewords. Other interesting
models include list decoding, deletion channels, locally decodable codes and more. In this work
we shall focus on Shannon’s model in which corruptions are induced randomly and we seek to
recover the original codeword with high probability. Perhaps the simplest types of corruption are
the binary erasure channel (BEC) and the binary symmetric channel (BSC). In the BEC(p), every
bit is independently erased1 with fixed probability p ∈ [0, 1] and in the BSC(p) every bit is flipped
with probability p ∈ [0, 1/2]. These two channels belong to a larger family of binary memoryless
symmetric channels (BMS channels). Memoryless means that the noise is independent for every
coordinate and symmetric roughly means that the corruption of 1 and 0 is symmetric. For instance,
had we flipped 0 with probability p0 and flipped 1 with probability p1 for p0 ̸= p1 then this would
not have been a symmetric channel. Another important example of a BMS channel is the binary
additive Gaussian white noise channel BAWGN(σ) where we add a Gaussian noise z ∼ N (0, σ2)
to every coordinate independently.

In his seminal work [Sha48], Shannon provided an upper bound on the amount of noise a code
can tolerate over any BMS channel. He proved that a code V ⊆ Fn

2 can be decoded successfully
over a channel W only if its rate R(V ) does not exceed the channel capacity C(W). For instance,

1By erasing a coordinate we mean to replace it with ’?’. Do not confuse it with deletion in which the codeword
length varies.
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C(BEC(p)) = 1 − p and so codes with rate larger than 1 − p cannot recover from p fraction of
random erasures. Codes that achieve this bound are called capacity achieving (with respect to a
channel W). One may wonder if such codes even exist and indeed, random codes as well as random
linear codes are capacity achieving. There are also explicit constructions of capacity achieving
codes, most notably polar codes introduced by Arıkan [Ar�09] that achieve capacity for any BMS
channel with efficient encoding and decoding.

It is often the case that good error correcting codes come from algebraic structures. Exam-
ples include the Reed–Muller codes and the BCH codes which are among the oldest binary codes
(we shall soon discuss the Reed–Muller codes). Yet, none of these were known to achieve ca-
pacity even for the BEC. This was resolved by Kudekar, Kumar, Mondelli, Pfister, Şaşoğlu and
Urbanke [KKM+17] who proved that a binary linear code which satisfy some symmetry property
called double-transitivity (see Definition 1.3.8) achieves capacity for the BEC. In particular, the
aforementioned codes satisfy this symmetry property and hence are capacity achieving for the
BEC. Unfortunately, their technique seems less amenable to other channels such as the BSC or the
BAWGN. Our result extends theirs to arbitrary BMS channels, albeit not to the capacity limit, in
the following way.

Theorem 1.1.1 ([[HSS21]). (Informal)] Let V ⊆ Fn
2 be a doubly transitive code with rate R = R(V ),

and minimum distance d(V ) = Ω(nα). Then, V decodes errors on BSC(p(R,α)), BAWGN(σ(R,α))
where p(R,α), σ(R,α) are some explicit functions depending on α,R.

This can be extended, in an appropriate way, to arbitrary BMS channels.

For details see Section 1.3.2. This is achieved by going through the weight distribution of a code
which is the sequence enumerating how many codewords v ∈ V there are with a given number of
ones. For linear codes, this determines how far apart the codewords are and hence serves as a good
statistic to measure how much noise the code can tolerate. Indeed, sufficiently strong bounds on
the weight distribution of a linear code imply that it can decode errors on a given BMS channel.

Recently, bounds on the weight distribution of codes that achieve capacity for the BEC were
given in [Sam19]. By combining the two approaches of [KKM+17, Sam19] we derive slightly stronger
bounds on the weight distribution of such codes which in turn implies good performance for general
BMS channels.

In fact, we establish a general method that applies to any linear code that is good enough at re-
covering from random erasures. We give exact definitions later, but in the theorem below PB(W, V )
is the probability of failure in recovering a codeword using the optimal (so-called maximum a pos-
teriori, or block-MAP) decoder for a code V on a channel W. The Bhattacharyya parameter
Z(W) ∈ [0, 1] is a property of a channel, with a lower value of Z(W) intuitively corresponding to
a less noisy channel:

Theorem 1.1.2 ([HSS21]). Let V be a binary linear code with dimension dim(V ) = k, minimum
distance d and block-MAP error probability over BEC(λ) less than 1/k. Then, for any BMS channel
W,

PB(W, V ) < 2

(
Z(W)

2λ − 1

)d

.

Therefore, a linear code that recovers from random erasures also decodes errors on BMS channels
with small enough Bhattacharayya parameter. As discussed in Remark 1, our assumptions on the
minimum distance and error probability over the BEC are mild. While below we discuss a specific
application to Reed–Muller codes, we note that our result can be applied more generally, e.g., for
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BCH codes, LDPC codes or polar codes for the BEC. On the other hand, we stress that we are
only concerned with MAP decoding, and in general there is no reason to expect that it is efficient.

Our result applies to an important family of binary codes — the Reed–Muller codes. Reed–
Muller (RM) codes were introduced by Muller [Mul54] and rediscovered shortly after by Reed
[Ree54]. The RM code RM(m, r) is defined2 by all the evaluation vectors of multi-linear polynomials
over F2 with m variables and degree at most r. Due to [KKM+17], we know that constant rate RM
codes3 achieve capacity for the BEC. What about the BSC? BAWGN? It is considered plausible
that RM codes achieve capacity for those channels as well [ASY20]. However, prior to this work it
was unknown whether a constant rate RM code can correct even a tiny constant fraction of random
errors. In the regime of non-constant rate there are some strong results. For rates approaching
0, Abbe, Shpilka and Wigderson [ASW15] proved that RM(m, r) achieve capacity4 for the BSC if
r = o(m) which was later improved to r = m/70 in [SS20]. The latter also provides some results
on the BSC for any r < (1/2 − o(

√
logm/m))m. For rates approaching 1 the best result is again

due to [ASW15] who proved that the Reed–Muller code RM(m, r) achieves capacity for the BSC
if r > m−O(

√
m/ logm). For constant rates, [AHN20] shows that subcodes of constant rate RM

codes where an arbitrarily small constant fraction of basis elements was deleted correct a constant
fraction of random errors.

In contrast, applying Theorem 1.1.2 to the result from [KKM+17] we obtain an unconditional
result for constant rate RM codes, albeit falling short of the capacity threshold:

Theorem 1.1.3 ([HSS21]). For any 0 < R < 1, a family of RM codes with rates approaching R
decodes errors on any BMS channel with Z(W) < 21−R − 1.

In particular, it decodes errors on the channels BSC(p) with p < 1/2 −
√
2−R(1− 2−R) and

BAWGN(σ) with σ2 < − 1
2 ln(21−R−1)

.

There is also a broader consequence of our result. Throughout the literature there are (somewhat
varying) definitions of “asymptotically good” families of codes. In Hamming’s model, a family of
codes is usually considered good if it has both constant rate R = Ω(1) and linear minimum distance
d = Ω(n). Therefore, being good is a property of the code. On the other hand, in Shannon’s model,
it is sometimes said [Mac99] that a family of codes {Vn} is good for a given channel W if it has
constant rate R = Ω(1) and vanishing block-MAP error probability PB(W, Vn) = on(1). Our result
shows that for linear codes with moderate minimum distance the notion of a good code is in fact
independent of the channel. On the one hand, by a degradation argument (see Lemma 1.3.7), a
code which is good for a BMS channel is also good for BEC(λ) for some λ > 0. On the other hand,
by our results, a family of linear codes which is good for the BEC is also good for all BMS channels
up to a certain Bhattacharyya parameter (and also above a certain capacity, see Remark 2 and
Corollary 1.3.5).

1.2 Preliminaries
In this section we give definitions that are most relevant to our results. Throughout we take log(·)
to denote the binary logarithm and H(·) the Shannon entropy. We also let h2(x) = −x logx− (1−
x) log(1− x) for 0 ≤ x ≤ 1 be the binary entropy function.

2It is possible to generalize RM codes to arbitrary fields. This is sometimes referred to as generalized RM
codes [DGMW70].

3Constant rate RM codes means that limm→∞ R(RM(m, r)) ∈ (0, 1) where r = r(m) (e.g, r(m) = m/2).
4One should be careful about what “capacity-achieving” means in the regimes of rates approaching 0 or 1. See

[ASW15] for more details.
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1.2.1 Error Correcting Codes
Basic Definitions

Let V ⊆ Fn
2 be a binary linear code of block length n. Define the following:

• Rate: R(V ) = dim(V )
n .

• Weight: For v ∈ Fn
2 we define wt(v) = |{j | vj = 1}|.

• Minimum Distance: d(V ) = minv∈V \{0n} wt(v).

• Weight Distribution: The sequence
(|{v ∈ V | wt(v) = i}|)ni=0 is the weight distribution of V .

• Dual: Let V ⊥ = {u ∈ Fn
2 | ∀v ∈ V, uT v = 0} be the dual code of V which is a linear subspace

of dimension n− dim(V ).

• Restriction: Given S ⊆ [n] define VS ⊆ FS
2 as the restriction of V to the coordinates in S.

In the asymptotic setting, we consider families of codes {Vn} where n ∈ N ⊆ N comes from an
infinite set of block lengths. We define the rate of the family as R = limn→∞R(Vn) (if it exists).
When R = 0 we say that the family {Vn} has vanishing rate, and non-vanishing rate otherwise.
Also, when R ∈ (0, 1) we say that the family {Vn} has constant rate.

Reed–Muller Codes

Definition 1.2.1. The Reed–Muller code RM(m, r) ⊆ Fn
2 is a linear code with block length n = 2m

consisting of all evaluations of multilinear polynomials over F2 with m variables and degree at most
r. That is, for every such polynomial f there is a codeword (f(a))a∈Fm

2
.

It is known that RM(m, r) has minimum distance 2m−r and rate R(RM(m, r)) = 2−m
∑r

j=0

(
m
j

)
.

Moreover, usually r = r(m) is a function of m, and in this case the family {RM(m, r(m))}m has
non-vanishing rate smaller than 1 if and only if r(m) = m

2 ± O(
√
m). Therefore, a family of

Reed–Muller codes with constant rate R ∈ (0, 1) (i.e, R ̸= 0, 1) has minimum distance n1/2±on(1).

1.2.2 Shannon’s Model
Channels

Abstractly, a binary channel is defined by two conditional probability distributions pY |X where
X ∈ {0, 1} is binary and Y ∈ Y taken from some alphabet.

Definition 1.2.2 (Binary Erasure Channel). Define the BEC(λ) over Y = {0, 1, ?} by pY |X(? | 0) =
pY |X(? | 1) = λ, pY |X(0 | 0) = pY |X(1 | 1) = 1− λ.

Definition 1.2.3 (Binary Symmetric Channel). Define the BSC(p) over Y = {0, 1} by pY |X(1 | 0) =
pY |X(0 | 1) = p, pY |X(0 | 0) = pY |X(1 | 1) = 1− p.

Definition 1.2.4 (Binary Additive White Gaussian Noise Channel). In this case we interpret the
input as X ∈ {−1,+1} and take BAWGN(σ) over Y = R as

Y |X ∼ N (X,σ2) .

4



In this work we focus on the class of binary memoryless symmetric channels:

Definition 1.2.5 (BMS Channel). A BMS channel is a binary channel for which there exists an
involution π on Y such that the distribution pY |X=0 is equal to pπ(Y )|X=1.

We remark that BEC(λ),BSC(p),BAWGN(σ) are all BMS channels.
When we say that a codeword v ∈ Fn

2 is transmitted over a BMS channel W, we always assume
that the bits are transmitted over n independent instances of W (that is, in a memoryless fashion).

MAP Decoding

Let W be a BMS channel and n ∈ N. Assume we transmit a uniformly random codeword X ∈ V
and denote Y ∈ Yn the output of the channel. We define the maximum a posteriori (MAP) block
decoding by

x̂MAP(y) = arg max
v∈V

pX|Y (v | y) ,

breaking ties in an arbitrary way. For instance, for the BSC one can easily verify that x̂MAP(y)
is simply the codeword v ∈ V closest to y in the Hamming distance. Similarly, we can define the
bit-MAP decoding

x̂i
MAP(y) = arg max

xi∈{0,1}
pXi|Y (xi | y).

The error of block/bit-MAP decoding is the probability that these two decoders are incorrect.

Definition 1.2.6 (Block Error). The block-MAP error probability is defined by PB(W, V ) =
P[x̂MAP(Y ) ̸= X].

Definition 1.2.7 (Bit Error). For i ∈ [n] define the error of bit i via Pb,i(W, V ) = P[x̂iMAP(Y ) ̸=
Xi]. The bit-MAP error probability is defined by Pb(W, V ) = 1

n ·
∑n

i=1 Pb,i(W, V ).

Definition 1.2.8 (Decoding errors). For a family of linear codes {Vn}, we say that Vn decodes
errors on a BMS channel W if limn→∞ PB(W, Vn) = 0.

Decomposition of BMS Channels

We present a known characterization of BMS channels which is useful for our presentation. We
stick to a concise treatment very similar to Appendix A in [ACGP21] with a more complete one,
e.g., in Chapter 4 of [RU08].

Let X be uniform in {0, 1} and consider a BMS channel W : {0, 1} → [0, 1/2] × {0, 1} that
maps a bit X to a pair (P,X ′) satisfying two conditions: First, P is independent of X and second,
conditioned on P , X ′ is distributed according to BSC(P ). In other words, for every transmitted bit
the decoder sees its noisy copy together with information that the bit was flipped with probability
P .

It is known that any BMS channel is equivalent to a mixture of BSC channels as described
above. Accordingly, a BMS channel is fully characterized by the distribution of P . For example,
BSC(p) has deterministic P = p and BEC(λ) has P = 1/2 with probability λ and P = 0 otherwise.
With that characterization in mind, we define the following quantities:

Definition 1.2.9 (Channel properties). Let W be a BMS channel. We let its:

• Capacity to be C(W) = 1− Eh2(P ).

• Bhattacharyya parameter to be Z(W) = 2E
√
P (1− P ).

5



• (Single bit) error probability to be Pe(W) = EP .
Note that Pe(W) is the probability of error of the MAP decoder given a transmission of one

uniform bit over W (this is because such decoder decodes a pair (P,X) to X, which was flipped
with probability P ≤ 1/2). We also remark that our definition of capacity for BMS channels is
equivalent to the standard definition from information theory.

EXIT Functions

Extrinsic Information Transfer (EXIT) functions were originally introduced by ten Brink [TB99].
Based on his work, it was later observed that these EXIT functions are intimately related to the
question of achieving capacity. Indeed, they played a key role in the proof that doubly transitive
codes (see Definition 1.3.8) achieve capacity over the BEC under bit-MAP decoding [KKM+17].
Definition 1.2.10 (EXIT Function). Let V ⊆ Fn

2 be a binary linear code. Define the EXIT
function of V by

h(λ) =
1

n
·

n∑
i=1

H(Xi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn)),

where X = (X1, . . . , Xn) is a uniformly random codeword in V and Y = (Y1, . . . , Yn) is the result
of transmitting X over BEC(λ).

We now list several key properties of the EXIT function.
Lemma 1.2.11. Let V ⊆ Fn

2 be a binary code. Then,
• Monotonicity: h is increasing and h(0) = 0, h(1) = 1.

• Area Theorem:
∫ 1
0 h(λ)dλ = R(V ).

• Duality: Denote by h⊥(λ) the EXIT function of V ⊥ then
h⊥(λ) = 1− h(1− λ).

• n ·
∫ λ
0 h(λ) = H(X|Y ) where X is a random uniform codeword in V and Y is the result of

transmitting X over the BEC(λ) channel.

• For every λ ∈ (0, 1)

n ·
∫ λ

0
h(λ) = λ · n− E

S∼λ
[dim(V ⊥

S )]

= dim(V )− E
S∼λ

[dim(VSc)],

where S ∼ λ means that i ∈ S with probability λ independently for every i ∈ [n].
For proofs and further information please see chapter 3.14 in [RU08].

1.2.3 Boolean Analysis
We introduce basic notions from boolean analysis that we use in our proofs. Let f : {0, 1}n → R be
a function from the boolean hypercube to the reals. We will use the Walsh–Fourier decomposition
f(x) =

∑
S f̂(S)χS(x), where χS(x) =

∏
i∈S(−1)xi and f̂(S) = Ex f(x)χS(x).

Definition 1.2.12. ∥f∥2 =
√
Ex f(x)2.

Lemma 1.2.13 (Parseval’s Identity). For any f, g : {0, 1}n → R we have Ex f(x)g(x) =
∑

S f̂(S)ĝ(S).
In particular, ∥f∥2 =

∑
S f̂(S)

2.
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Noise Operator

For x ∈ {0, 1}n and −1 ≤ ρ ≤ 1, let y ∼ Nρ(x) be a random element of {0, 1}n with each coordinate
yi being i.i.d equal to xi with probability (1 + ρ)/2 and flipped with probability (1− ρ)/2.

Definition 1.2.14 (Noise Operator). Let f : {0, 1}n → R and ρ ∈ [−1, 1]. Define the function
Tρf : {0, 1}n → R by

Tρf(x) = E
y∼Nρ(x)

f(y).

Lemma 1.2.15. T̂ρf(S) = ρ|S| · f̂(S).

An Inequality on Noisy Functions

The following inequality is the main technical tool on which our results are based [Sam20]. In order
to state it, we need the notion of the conditional expectation of a function.

Definition 1.2.16. Let f : {0, 1}n → R and S ⊆ [n] be a subset of coordinates. We define another
function E(f |S)(x) = Ey:yS=xS f(y).

We shall only state the theorem for the ℓ2 norm as that is all we are going to use (for the general
statement see Theorem 1.1 in [Sam20]).

Theorem 1.2.17 ([Sam20]). Let f : {0, 1}n → R⩾0 be a non-negative function, and ρ ∈ (0, 1).
Then,

log∥Tρf∥2 ⩽ E
S∼λ(ρ)

log∥E(f | S)∥2,

where λ(ρ) = log(1 + ρ2) and S ∼ λ is a random subset S of [n] in which each element is included
independently with probability λ.

Theorem 1.2.17 can be compared to the classical hypercontractive inequality ∥Tρf∥2 ≤ ∥f∥1+ρ2 ,
see also [Sam19] for a more extensive discussion.

1.3 Our Results
Our main contribution is in realizing that one can combine [KKM+17] with [Sam20] as well as other
techniques from coding theory to obtain a rather general understanding about the performance of
a given binary linear code on various BMS channels.

1.3.1 Coding on BMS Channels
Our main technical result relates the weight distribution of a linear code to its decoding properties
on the BEC:

Theorem 1.3.1 ([HSS21]). Let V be a linear code, 0 ≤ λ ≤ 1 and (a0, . . . , an) be the weight
distribution of V . Then,

log
n∑

i=0

ai · (2λ − 1)i ≤ H(X|Y ) , (1.1)

Here X and Y are random variables such that X is a random uniform codeword in V and Y is the
result of transmitting X over the channel BEC(λ).
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Theorem 1.3.1 is a reformulation of Proposition 1.3 in [Sam19] using a well-known identity. The
proof of Theorem 1.3.1 appears in Section 1.4.1.

Corollary 1.3.2. Let V be a binary linear code with dimension k and weight distribution (a0, . . . , an)
then

n∑
i=0

ai(2
λ − 1)i ≤ 2k·PB(BEC(λ),V ) ,

n∑
i=0

ai(2
λ − 1)i ≤ 2n·Pb(BEC(λ),V ) .

In particular, if k ·PB(BEC(λ), V ) < 1 or n ·Pb(BEC(λ), V ) < 1, then ai < 2(2λ− 1)−i for every i.

Proof. Recall that for a linear code on the BEC if the codeword can be uniquely recovered depends
only on the erasure pattern. Therefore, if the block-MAP decoder fails on Y = y, then H(X|Y =
y) > 0. Since H(X|Y = y) ≤ k = dimV in any event, the right-hand side of (1.1) can be bounded
by

H(X|Y ) ≤ k · PB(BEC(λ), V ) . (1.2)

On the other hand, by the chain rule there also holds a bound in terms of the bit-error probability

H(X|Y ) ≤
n∑

i=1

H(Xi|Y ) (1.3)

=

n∑
i=1

Pb,i(BEC(λ), V ) = n · Pb(BEC(λ), V ).

The proof of Theorem 1.1.2 is based on the following well-known bound (see, e.g., Lemma 4.67
in [RU08] and also [GWW07] for the tighter version):

Theorem 1.3.3 (Bhattacharyya Bound). Let V be a linear code and (a0, a1 . . .) be its weight
distribution. Then for any BMS channel W,

PB(W, V ) ⩽
n∑

i=1

ai · Z(W)i.

In order to make our argument self-contained, we provide a proof for Theorem 1.3.3 in Sec-
tion 1.4.2.

Proof of Theorem 1.1.2. We use the Bhattacharyya bound, the minimum distance and Corol-
lary 1.3.2 to conclude that

PB(W, V ) ≤
n∑

i=1

aiZ(W)i =

n∑
i=d

aiZ(W)i

≤
(
Z(W)

2λ − 1

)d n∑
i=d

ai(2
λ − 1)i < 2

(
Z(W)

2λ − 1

)d

.

Recall that we say that a family of codes {Vn} decodes errors on channel W if its block-MAP
error probability is vanishing, i.e., limn→∞ PB(W, Vn) = 0.

Applying Theorem 1.1.2 to the BSC(p) and BAWGN(σ) yields the following:
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Corollary 1.3.4. Let {Vn} be a family of linear codes with dimensions dim(Vn) = kn → ∞ that
satisfies PB(BEC(λ), Vn) < 1/kn for large n. Then:

1. {Vn} decodes errors on any BMS channel W with Z(W) < 2λ − 1.

2. {Vn} decodes errors on BSC(p) as long as
p < 1

2 −
√

2λ−1(1− 2λ−1).

3. {Vn} decodes errors on BAWGN(σ) as long as
σ2 < − 1

2 ln(2λ−1)
.

Proof. The first point is immediate from Theorem 1.1.2, with the additional observation that
kn → ∞ together with

PB(BEC(λ), Vn) < 1/kn

imply that the minimum distance dn grows to infinity with n and therefore indeed PB < 2(Z(W)/(2λ−
1))dn vanishes. The other points now follow substituting known formulas Z(BSC(p)) = 2

√
p(1− p)

and Z(BAWGN(σ)) = exp(−1/2σ2) (see, e.g., Examples 4.128–4.130 in [RU08]).

A graphical illustration of the functions from Corollary 1.3.4 is provided in Figure 1.1. Theo-
rem 1.1.3 follows by Corollary 1.3.4 and the fact that constant rate RM codes achieve capacity on
the BEC [KKM+17].

Remark 1. We note that the requirement PB(BEC(λ), Vn) < 1/kn is not much stronger than
PB(BEC(λ), Vn) = o(1). In particular, by Theorem 5.2 in [TZ00], if the minimum distance of a
linear code satisfies dn = ω(logn), then PB(BEC(λ), Vn) = o(1) implies PB(BEC(λ′), Vn) = o(n−c)
for every λ′ < λ and c > 0.

Remark 2. Since among BMS channels with fixed capacity C(W) the Bhattacharyya coefficient is
maximized by the BSC (see Problem 4.60 in [RU08]), a family of linear codes that decodes errors on
BEC(λ) also decodes errors on all BMS channels with capacity C(W) > C(BSC(p)) = 1−h(p) where
p = p(λ) is given in Corollary 1.3.4. Similarly, a BMS channel W can be degraded to BSC(Pe(W)),
where Pe(W) is the (one-bit) error probability of W. Therefore, a family of linear codes that decodes
errors on BEC(λ) also decodes errors on all BMS channels with Pe(W) < Pe(BSC(p)) = p with
p = p(λ) as above.

Finally, we have that a family of linear codes that decodes errors well enough on any BMS
channel W also decodes errors on a range of other BMS channels:

Corollary 1.3.5. Let {Vn} be a family of linear codes with dimensions kn → ∞ satisfying
PB(W, Vn) < 1/kn for large n on some BMS channel W. Then, {Vn} decodes errors on any
BMS channel W ′ satisfying

Z(W ′) < 4Pe(W) − 1 .

To prove Corollary 1.3.5, we need the notion of channel degradation:

Definition 1.3.6. Let W : {0, 1} → Y and W ′ : {0, 1} → Y ′ be two BMS channels. We say that
W can be degraded to W ′ if there exists a channel V : Y → Y ′ such that W ′ is the composition of
W and V.

We now use the following folklore fact:
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Figure 1.1: An illustration of the results in Corollary 1.3.4. Assume we are given a family of linear
codes that decodes errors on the channel BEC(λ) with capacity C(BEC(λ)) = 1 − λ. Then, by
Corollary 1.3.4 it is also good for the BSC and the BAWGN exceeding certain capacities. These
capacities are plotted here as functions of C(BEC(λ)).
For reference, we also plot the identity function. The difference between identity and the BSC and
the BAWGN curves represents the “loss of capacity” resulting when Corollary 1.3.4 is applied.
As another reference point, the graph labeled “BEC” shows this loss of capacity if our argument is
applied to the BEC channel.

Lemma 1.3.7. If W is a BMS channel, then BEC(2 · Pe(W)) can be degraded to W.

The proof of Lemma 1.3.7 can be found, e.g., as Lemma 4.80 in [RU08]. In short, it follows from
the decomposition of BMS channels into BSC that we described in Section 1.2, an easily checked
fact that BEC(2p) can be degraded to BSC(p), and the fact that a convex combination of BEC
channels is itself a BEC channel.

Proof of Corollary 1.3.5. Let {Vn} be the family of linear codes from the statement and W a BMS
channel. By Lemma 1.3.7, BEC(2 · Pe(W)) can be degraded to W. Clearly, that gives

PB(BEC(2 · Pe(W)), Vn) ≤ PB(W, Vn) < 1/kn

(since a decoder for Vn on BEC(2 ·Pe(W)) can use the channel V from the definition of degradation
to simulate W and invoke the MAP decoder for W). The proof is concluded by an invocation of
Corollary 1.3.4.

1.3.2 Doubly Transitive Codes
In [KKM+17] it was proved that any doubly transitive binary linear code (see definition below)
achieves capacity for the BEC by proving that its corresponding EXIT function has a sharp threshold
(i.e., rises quickly from nearly 0 to nearly 1). Recall that h(λ) is a monotone function increasing
from 0 to 1 (see Lemma 1.2.11). Thus, if h(λ) has a sharp threshold then this transition has to
occur around λ = 1−R(C) by area considerations. In fact, h(λ) has a sharp threshold if and only
if V achieves capacity for the BEC. In order to prove that h(λ) has a sharp threshold they use tools
from boolean analysis which we shall soon cover.
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Definition 1.3.8. The permutation group of a binary linear code V ⊆ Fn
2 is the group of all

permutations that the code is invariant under. Namely,

G = {π ∈ Sn | ∀v ∈ V, π(v) ∈ V }.

We say that V is doubly transitive if G is, i.e for all i, j, k distinct there exists π ∈ G such that
π(i) = i, π(j) = k.

Throughout this section, V ⊆ Fn
2 is a doubly transitive code and h(p) denotes its EXIT function.

The main technical tool in proving that h(p) has a sharp threshold is the following general theorem
on monotone sets which are sufficiently symmetric.

Definition 1.3.9. Let Ω ⊆ {0, 1}n then:

• We say Ω is monotone if x ∈ Ω and x ⩽ y (i.e, ∀i, xi ⩽ yi) implies y ∈ Ω.

• We denote µp(Ω) =
∑

x∈Ω p
|{i:xi=1}|(1− p)|{i:xi=0}|.

Theorem 1.3.10 ([FK96] (Informal)). Let Ω ⊆ {0, 1}n be a monotone set which is sufficiently
symmetric. Then

dµp(Ω)
dp ⩾ (c(p)− on(1)) · ln(n) · µp(Ω)(1− µp(Ω)),

where c(p) = 1−2p

p(1−p) ln
(

1−p
p

)5.

Remark 3. In [FK96] the above was proved with a different constant. The bound above with c(p)
was obtained in [Ros05].

In the terminology of boolean analysis, the EXIT function of doubly transitive code h(p) is the
µp-measure of some monotone set Ω ⊆ {0, 1}n, and the sufficiently symmetric requirement in the
above theorem is fulfilled since V is doubly transitive. Thus, by applying Theorem 1.3.10 we obtain

h′(p) ⩾ c(p) · ln(n) · h(p)(1− h(p)). (1.4)

The following implications of Theorem 1.3.10 appeared in [KKM+17].

Lemma 1.3.11. Let h(λ) be the EXIT function of a doubly transitive linear code V ⊆ Fn
2 , and

pc = h−1(1/2) then
h(pc − ϵ) ⩽ n−k(pc)·ϵ, (1.5)

where k(p) =
{
c(p)− on(1) p < 1/2

c(1/2)− on(1) p ⩾ 1/2
.

Proof. The constant c(p) in Equation (1.4) is decreasing on the interval (0, 1/2) and attains its
global minimum on [0, 1] at p = 1/2. Thus, by Equation (1.4) we get

∀p ⩽ h−1(1/2), h′(p) ⩾ k(p) ln(n) · h(p)(1− h(p)).

It is known that for any monotone function h : [0, 1] → [0, 1] increasing from 0 to 1 the above
inequality implies that h(h−1(1/2) − ϵ) ⩽ exp(−k(p) ln(n)ϵ) (for more details see Lemma 34 in
[KKM+17]).

5At p = 1/2 the function c(p) has a removable discontinuity and so we define c(1/2) = limp→1/2 c(p) = 2.
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As a consequence of Lemma 1.3.11 and of the second bullet in Lemma 1.2.11 one gets the
following (Proposition 11 in [KKM+17]).

Lemma 1.3.12. Let hn(λ) be the EXIT function of a family of doubly transitive linear codes {Vn}
of rate R then limn→∞ h−1

n (1/2) = 1−R.

For more details see section III in [KKM+17].
Now we present another approach for bounding h(p).

Lemma 1.3.13. Let h(λ) be the EXIT function of a doubly transitive linear code V ⊆ Fn
2 . Then

for every p ∈ [0, 1] and t ⩾ 1 we have h(λt) ⩽ h(λ)t.

Proof. For a doubly transitive code we have h(p) = µp(Ω) for some monotone set Ω ⊆ {0, 1}n. By
Lemma 2.7 in [EKL19], for a monotone set Ω and t ⩾ 1 it holds that µpt(Ω) ⩽ µp(Ω)

t.

Theorem 1.3.14 ([[HSS21]). ] Let {Vn} be a family of doubly transitive binary linear codes of
rate R ∈ (0, 1), and W be a BMS channel. Denote by α = lim infn→∞

log d(Vn)
logn . Then, V can decode

errors on W if Z(W) < 2λ(R,α) − 1 where

λ(R,α) =

(1−R)− 1−α
k(1−R) if ψ(R,α) ⩾ 0(

(1−R)/e
−W−1(−(1−R)/e)

) 1−α
k(1−R)·(1−R) otherwise.

,

where ψ(R,α) = (1−R)+ 1−R
W−1(−(1−R)/e)−

1−α
k(1−R) and W−1(z) is the inverse of the function y = xex

at the interval x ∈ (−1/e, 0) for y ⩽ −1 (a.k.a the negative branch of the Lambert function).

Remark 4. It is not clear why the two cases of λ(R,α) coincide at ψ(R,α) = 0, but one can verify
this easily using simple identities of the Lambert function.

For instance, plugging α = 0.5 and R = 0.8 into Theorem 1.3.14 we get λ(R,α) ≈ 0.0331. This
implies that any family {Vn} of doubly transitive codes with rate R = 0.8 and minimum distance
d(Vn) = Ω(

√
n) can decode errors from BEC(0.023) under block-MAP decoding.

Proof. Let us denote (a0, a1, . . . , an) the weight distribution of Vn, d = d(Vn), and λ = λ(R,α). By
Theorem 1.3.3 we have

PB(W, Vn) ⩽
n∑

i=d

ai · Z(W)i

=

n∑
i=d

ai ·
(
Z(W)

2λ − 1

)i

· (2λ − 1)i

⩽
(
Z(W)

2λ − 1

)d

·
n∑

i=d

ai · (2λ − 1)i.

The last inequality follows because by assumption Z(W)
2λ−1

< 1. Using Theorem 1.3.1 we have

n∑
i=d

ai · (2λ − 1)i ⩽ 2H(X|Y ),
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where X and Y are random variables such that X is a random uniform codeword in V and Y is
the result of transmitting X over the channel BEC(λ). Then by Lemma 1.2.11 we get

PB(W, Vn) ⩽
(
Z(W)

2λ − 1

)d

· 2n·h(λ). (1.6)

Note that Z(W)
2λ−1

is some positive constant smaller than 1 by assumption. We conclude that it
suffices to show that n · h(λ) = o(d(Vn)). Moreover, in our notation d(Vn) = Ω(nα±on(1)), and so
a bound of n · h(λ) = O(nβ) with constant β < α suffices. This means that we want λ so that
h(λ) < n−β with β > 1− α. It remains to verify that our choice of λ = λ(R,α) satisfies this.

We have two ways in which we can bound h(λ): The additive bound of Lemma 1.3.11, and the
multiplicative bound of Lemma 1.3.13. It is easy to see that the additive bound is stronger for
values close to the critical value pc = h−1(1/2), and on the other hand the multiplicative bound
is better for values that are further away from pc. Moreover, the additive bound is limited to
ϵ < pc. Applying first the additive bound with parameter ϵ and then the multiplicative bound with
parameter t ⩾ 1 we get

h((pc − ϵ)t) ⩽ h(pc − ϵ)t ⩽ n−tϵk(pc).

We are going to choose λ of the form λ = (pc−ϵ)t for some valid choice of ϵ, t so that t·ϵ·k(pc) > 1−α.
Under this constraint, we want λ to be as large as possible. We are now going to cheat slightly.
Instead of solving the optimization problem for λ under the constraint t · ϵ · k(pc) > 1− α we will
solve it for t · ϵ · k(pc) = 1 − α. This suffices to prove the theorem, e.g by repeating the argument
with λ′ such that Z(W) < λ′ < λ(R,α) and applying Lemma 1.3.13. The optimal value of λ under
this constraint will be shown to be λ(R,α)− on(1).

The above yields the following optimization problem.

max
t⩾1,ϵ⩽pc

{(pc − ϵ)t}, tk(pc)ϵ = (1− α). (1.7)

The solution to this optimization problem is given by

popt =

pc −
1−α
k(pc)

1−α
k(pc)

⩽ pc +
pc

W−1(−pc/e)(
pc/e

−W−1(−pc/e)

) 1−α
k(pc)·pc otherwise.

See Section 1.4.4 for proof. Recall that by Lemma 1.3.12 we have pc = 1 − R − on(1) and hence
popt = λ(R,α)− on(1) as claimed.

Remark 5. It is was shown in [KKM+17] that any family of binary linear doubly transitive codes
{Vn} such that lim infn→∞

log d(V )
logn = 1 achieves capacity for the BEC under block-MAP decoding

(Theorem 21 in [KKM+17]). Combining this with Theorem 1.1.2 implies Theorem 1.3.14 for the
special case α = 1.

Discussion on Reed–Muller Codes

It is interesting to see that Theorem 1.3.14 is inferior to Theorem 1.1.3 in the case of Reed–
Muller codes. In fact, recall that Reed–Muller codes of constant rate have minimum distance of
roughly n1/2, are doubly transitive, and yet plugging α = 1/2 in Theorem 1.3.14 does not yield
the parameters of Theorem 1.1.3. Rather, the parameters of Theorem 1.1.3 correspond to the case
α = 1 in Theorem 1.3.14. This means that RM codes perform better on BMS channels than might
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be expected from their minimal distance as expected from Theorem 1.3.14. Let us try to explain
this phenomenon. We give two explanations. First, in [KKM+16] Kudekar, Kumar, Mondelli,
Pfister, and Urbanke proved that for any constants z, β ∈ (0, 1) it holds that

n1−β∑
i=1

ai · zi = on(1),

where (a0, a1, . . . , an) is the weight distribution of the Reed–Muller code (Lemma 4 in [KKM+16]).
Hence, we can discard the first n1−on(1) terms in Equation (1.6) and continue the argument as in
Theorem 1.3.14 but with α = 1. This means, in a well-defined sense, that the Reed–Muller codes
effectively have distance n1−o(1). An alternative explanation, which in fact follows the original
approach in [KKM+17], is to use stronger results on sharp thresholds since RM codes are more
than just doubly transitive. Specifically, the bound of Lemma 1.3.12 can be improved to n−Ω(log logn)

in the case of the Reed–Muller codes [BK97]. Using this improved bound and following the same
approach as in Theorem 1.3.14 also leads to Theorem 1.1.3.

1.3.3 Weight Distribution of Codes
Coming back to weight distributions, and using the argument from [Sam19], Theorem 1.3.1 can be
applied to the dual code V ⊥, resulting in a different bound on the weight distribution:
Proposition 1.3.15. Let V ⊆ Fn

2 be linear code, (a0, . . . , an) its weight distribution and λ ∈ (0, 1).
For 0 ≤ i ≤ n, let i∗ = min{i, n− i}. Then,

ai ≤ 2H(X|Y ) ·

{ |V |
(1−θ)i∗ (1+θ)n−i∗ 0 ≤ i∗ ≤ 1−θ

2 · n
|V |
2n · 2h2(i/n)·n otherwise

where X is a random uniform codeword in V ⊥, Y is the result of transmitting X over BEC(λ) and
θ = 2λ − 1.

The proof of Proposition 1.3.15 uses simple Fourier analysis and is very similar to the proof
of Proposition 1.6 in [Sam19]. We include a sketch to make the argument self-contained in Sec-
tion 1.4.3.
Remark 6. Since 2h2(i/n)n ≤ O(

√
n)
(
n
i

)
, whenever H(X|Y ) = o(n) for the dual code V ⊥, the

weight distribution of the primal code V in a band of weights of width θ around n
2 is essentially

upper-bounded by that of a random code of the same rate. This occurs even if V ⊥ does not achieve
capacity: It is enough that V ⊥ decodes errors on BEC(λ) for some constant λ < 1 (cf. [KL97],
where similar behavior was inferred for codes with large dual distance).

In particular, consider a family of doubly transitive binary linear codes of constant rate R. Since
by [KKM+17] such a family achieves capacity under bit-MAP decoding, due to (1.3) it will have
the bound from Proposition 1.3.15 holding with H(X|Y ) = o(n). Such bound holds for both primal
and dual codes, since the dual of a doubly transitive code is also doubly transitive.

Similarly, again building on [Sam19], we improve the bounds on the weight distribution of
doubly transitive codes with distance Ω(nα).
Proposition 1.3.16. Let {Vn} be a family of doubly transitive binary linear codes of rate R and
set α = lim infn→∞

log d(V )
logn . Also, let (a0, a1, . . .) denote the weight distribution of Vn. Then

ai ⩽ (2λ(R,α)−on(1) − 1)−i,

where λ(R,α) is as in Theorem 1.3.14.
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One should compare the above with Proposition 1.6 in [Sam19]. The main difference is that
Proposition 1.6 in [Sam19] applies only to codes that achieve capacity for the BEC under block-
MAP decoding, and it is not known whether a doubly transitive code with minimum distance Ω(nα)
for α < 1 achieves capacity for the BEC under block-MAP decoding. Yet, Proposition 1.3.16 holds
for any doubly transitive code with minimum distance nΩ(1). Moreover, Proposition 1.6 in [Sam19]
had an error term that dominated the estimate for weights i = o(n).

For the weight distribution of Reed–Muller codes we obtain the following bound.

Proposition 1.3.17. Let (a0, a1, . . . , ) denote the weight distribution of Reed–Muller codes with
rate R ∈ (0, 1). Then

ai ⩽ O
(
(21−R−on(1) − 1)−i

)
.

Again, the above estimate improves over [Sam19] by losing the error term that dominated the
estimate for weights i = o(n). However, for Reed–Muller codes there are stronger bounds for
weights i = n1−δ for every fixed constant δ ∈ (0, 1) (e.g, see [KLP12, ASW15, KKM+16, SS20]).
Hence, the improvement lies in the narrow region of weights n1−on(1) for some on(1).

The proofs of Proposition 1.3.17 and Proposition 1.3.16 are omitted as those can be easily
derived by the arguments of Theorem 1.3.14.

1.4 Appendix
1.4.1 Norms of Noisy Functions
In this section we prove Theorem 1.3.1. We start with the following lemma which is simply the
formula for the rank of the dual matroid, but we state it as a separate claim because of its importance
to us.

Lemma 1.4.1 (Proposition 2.1.9 in [Oxl06]). Let V be a linear code of dimension k. Then,
dimV ⊥

S = |S| −
(
k − dimVSc

)
.

We now prove Theorem 1.3.1 by following the argument in [Sam19].

Proof of Theorem 1.3.1. Let V be a linear code of dimension k and 0 ≤ λ ≤ 1. We shall prove that

log
n∑

i=0

ai(2
λ − 1)i ≤ λn− E

S∼λ
dimV ⊥

S (1.8)

= k − E
S∼1−λ

dimVS = H(X|Y ) ,

where X is a random uniform codeword in V and Y is the result of transmitting X over the
channel BEC(λ). Define f = 2k1C⊥ and ρ =

√
2λ − 1 and recall that the Walsh–Fourier transform

of f satisfies f̂ = 1C . Since T̂ρf(y) = ρ|y|f̂(y), using Parseval’s identity this means log ∥Tρf∥22 =
log
∑n

i=0 ai(2
λ − 1)i. On the other hand, by properties of linear codes it can be checked that

E(f |S)(x) =

{
2|S|−dimV ⊥

S ∃y ∈ V ⊥ s.t. xS = yS

0 otherwise
,

and that Prx[∃y ∈ C⊥ s.t. xS = yS ] = 2dimV ⊥
S −|S|. Accordingly, log ∥E(f |S)∥22 = |S|−dimV ⊥

S . The
inequality in (1.8) follows by substituting on both sides of Theorem 1.2.17. We still need to justify
the two equalities in (1.8). The first one follows immediately from Lemma 1.4.1. For the second

15



equality, observe that S ∼ 1 − λ has the same distribution as the set of non-erased coordinates
over BEC(λ). Then, note that given Y = y with non-erased coordinates in S, there are 2k−dimVS

equally likely possibilities for decoding, and therefore H(X|Y = y) = k − dimVS .

1.4.2 The Bhattacharyya Bound
In this section we prove the well-known Bhattacharyya bound.

Proof of Theorem 1.3.3. We are analyzing the error probability of the block-MAP decoder for code
V on the BMS channel W. Since the code is linear and the channel symmetric, this is equal to the
probability that the MAP decoder fails conditioned on the transmitted all-zeros codeword 0n. Let
Y be the output of the channel assuming the all-zeros codeword was transmitted.

We analyze the likelihood ratio between 0n and another fixed codeword x ∈ C. Without loss of
generality assume that x = 1i0n−i for some 0 < i ≤ n. Assuming the decoder observes y ∈ Yn, the
respective likelihood ratio is then6

W(x|y)
W(0n|y)

=
W(y|x)
W(y|0n)

=
i∏

j=1

W(yj |1)
W(yj |0)

.

Let 1 ≤ j ≤ i and define a random variable Lj equal to the likelihood ratio W(Yj |1)/W(Yj |0)
conditioned on all-zeros codeword. Recall the characterization of W as a mixture of BSC channels
from Section 1.2, and let Yj = (Pj , X

′
j). Observe that, conditioned on Pj , the likelihood ratio Lj is

equal to (1− Pj)/Pj with probability Pj and Pj/(1− Pj) with probability 1− Pj . Accordingly,

E
[√

Lj | Pj

]
= 2
√
Pj(1− Pj) , E

√
Lj = Z(W) .

Let E(x) for x ∈ C \ {0n} denote the event W(x|y)
W(0n|y) ≥ 1 and let PB(x) be the probability of this

event. Note that if the MAP decoder fails, then E(x) must have occurred for some x. By the
considerations above and independence of Lj ,

PB(x) ≤ Pr

 i∏
j=1

Lj ≥ 1

 = Pr

 i∏
j=1

√
Lj ≥ 1


≤ E

[√
Lj

]i
= Z(W)|x| .

Finally, applying the union bound,

PB(W, V ) ≤
∑

x∈C,x ̸=0n

PB(x) ≤
n∑

i=1

aiZ(W)i .

1.4.3 An Upper Bound on the Weight Distribution
Proof of Proposition 1.3.15. For this proof, let f = 1V ⊥ . In that case one checks that f̂ = 1

|V | · 1V .
Furthermore, let g(x) = θ|x| and verify that ĝ(y) = 1

2n (1− θ)|y|(1 + θ)n−|y|.
6 We are abusing notation here, but the meaning of W(y|x)/W(y|0n) should be clear, at least for discrete channels

and channels with distributions that have densities.
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Let (a0, . . . , an), (b0, . . . , bn) be the weight distributions of V, V ⊥ respectively. We calculate,

1

2n

n∑
i=0

biθ
i = Exf(x)g(x) =

∑
y

f̂(y)ĝ(y)

=
1

|V |
· 1

2n

n∑
i=0

ai(1− θ)i(1 + θ)n−i

and consequently
n∑

i=0

biθ
i =

1

|V |
·

n∑
i=0

ai(1− θ)i(1 + θ)n−i . (1.9)

Substituting (1.9) into Theorem 1.3.1, we have for every 0 ≤ i ≤ n

ai ≤ 2H(X|Y ) |V |
(1− θ)i(1 + θ)n−i

.

This already establishes the result for 0 ≤ i < 1−θ
2 n. In fact, since the left-hand side of (1.1) is

monotone in θ = 2λ − 1, we also have

ai ≤ 2H(X|Y ) |V |
(1− α)i(1 + α)n−i

for any 0 ≤ α ≤ θ. If 1−θ
2 n ≤ i ≤ n

2 , then we take α = 1− 2i
n ≤ θ and check that

1

(1− α)i(1 + α)n−i
=

2h2(i/n)n

2n
,

therefore we have proved our statement for 0 ≤ i ≤ n
2 . To deal with the case n

2 < i ≤ n, we invoke
the calculation at the end of the proof of Proposition 1.6 in [Sam19] to see that

n∑
i=0

an−i(1− θ)i(1 + θ)n−i ≤
n∑

i=0

ai(1− θ)i(1 + θ)n−i

and apply the argument above to an−i with i ≤ n
2 .

1.4.4 An Optimization Problem
We are interested in the following simple optimization problem for fixed p, β ∈ (0, 1),

max
1⩽t⩽β

p

(p− β/t)t

Let f(t) = (p− β/t)t = eln(p−β/t)t. Then we are looking for the global maximum of f(t) in [1,∞).
Differentiating f(t) we get

f ′(t) = et ln(p−β/t) ·
(

ln(p− β/t) +
β/t

p− β/t

)
(1.10)

The first term is positive so we focus on the term inside the parenthesis. Setting s = p − β/t
and equating the left term to zero we get the equation ln(s)s + p − s = 0. The solution to this
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equation is sopt = eW−1(−p/e)+1 = − p
W−1(−p/e) where W−1(z) is the Lambert function. Note that

the requirement s ⩾ 0, or equivalently t ⩽ β
p , is implicit if we take the real solution if this equation.

Thus, f(t) obtains its unique maximum, i.e topt = β
p−sopt

. Note that t ln(s) = −β/s and so in fact
f(t) = e−β/s hence

f(topt) = e−β·e−W−1(−p/e)−1

=

(
p/e

−W−1(p/e)

)β/p

It remains to check when topt ⩾ 1 which happens precisely when β ⩾ p + p
W−1(−p/e) . If topt < 1

then the solution to our optimization problem is simply attained at t = 1.
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Chapter 2

Introduction to Space Bounded
Derandomization

2.1 Computational Complexity
Computational complexity is the formal study of how resources affect computation. Most widely
studied resources are time and space though there are many other well studied resources such as
randomness, communication, proof complexity etc.

In theoretical computer science computation is often modeled using the celebrated model of a
Turing machine (TM). Loosely speaking, a TM is an infinite tape on which it can read or write,
and an algorithm is a finite sequence instructions for the TM. We should mention that there other
models of computation, and indeed we shall define such later on (See Section 2.4).

2.2 Space Bounded Computation
The space complexity of an algorithm is the amount of memory it consumes, namely the length of
tape needed for the Turing machine to execute the algorithm. We do not account for the input and
output in the space complexity, hence the space complexity captures the amount of memory needed
for the actual computation. This distinction is especially important when considering algorithms
that use less space than their input or output length.

Formally, a deterministic space-bounded algorithm is a Turing machine which has three tapes:
an input tape (that is read-only); a work tape (that is read-write) and an output tape (that is
write-only and uni-directional). The output of the TM is the content of its output tape once the
machine terminates. The space used by a TM M on input x is the rightmost work tape cell that
M visits upon its execution on x. Denoting this quantity by sM (x), the space complexity of M is
thus the function s(n) = maxx:|x|=n sM (x). For further details, see [AB09b, Chapter 4] and [Gol08,
Chapter 5].

Definition 2.2.1. We define DSPACE(S) as the class of problems that can be solved via an
algorithm that uses O(S) space, and set L def

= DSPACE(logn).

The class L is arguably the lowest studied complexity class of Turing machines. For instance,
L ⊆ P contained in the class of problems that can be solved in polynomial time. Still, it is a major

open problem whether L
?
̸= P, and in fact we do not know to separate it from stronger classes e.g
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if L ?
= PH1. Unfortunately, proving such statements is out of reach.
In order to “get the feel” of space-bounded algorithms, we review some of the basic operations

that can be carried out efficiently in terms of space. It is easy to see, that computing x+ y, where
x, y are two n-digit integers can be done logn space via the elementary long addition. Less obvious,
but also not too difficult, is that computing the iterated addition

x1 + x2 + · · ·+ xn

where x1, . . . , xn are all k-digit integers requires O(logn+ log k) space. This also uses long addition,
and hinges on the observation that the carry never exceeds n (and so can be stored via logn bits).
As a consequence, we get that computing the product

x · y

where x, y are two n-digit integers can be doneO(logn) space via the elementary long multiplication,
which reduces to iterated addition. Lastly, we remark that the iterated product

x1 · · ·xn,

and division ⌊xy ⌋ can also be computed in logarithmic space, but this is highly non-trivial [CDL99,
HAB02]. In the Boolean world, it is possible to evaluate Boolean Formulas in logarithmic space. To
put it briefly, a Boolean formula over the variables {x1, . . . , xn} is a directed a-cyclic graph in which
every vertex has at most one outgoing edge, and every vertex is either labeled with a variable xi
or an elementary Boolean {∧,∨,¬} (AND/OR/NEGATION). The evaluation over a specific input
(a1, . . . , an) ∈ {True, False}n is obtained by placing the Boolean value of ai on vertices labeled by
xi, and propagating Boolean values according to the labels written on the vertices. The output is
then written on the vertices that has no out-going edge. For further details see [Gol08, Chapter
1.2.4].

What about complex operations such as matrix multiplication? It is tempting to suggest that
using the building blocks of addition, and multiplication one can derive a space-efficient algorithm
for computing matrix products - this is correct, but in a very subtle way. The algorithmic principle
behind this, often taken as granted, is that computational building blocks can be assembled at
the cost of their total cost. While this is trivial in the context of time-bounded algorithms, it
is much less obvious for space-bounded algorithms since intermediate computations cannot
be stored for free. Nonetheless, the following theorem suggests that one can space-efficiently
compose algorithms.

Claim 2.2.2 (Composition of Space-Bounded Algorithms (e.g., [Gol08, Lemma 5.2])). Let

f1, f2 : {0, 1}⋆ → {0, 1}⋆

be two functions that are computable in space s1, s2 : N → N, where s1(n), s2(n) ≥ logn. Then,
f1 ◦ f2 : {0, 1}⋆ → {0, 1}⋆ can be computed in space

O(s1(ℓ2(n)) + s2(n) + log(n+ ℓ1(n))),

where ℓ1(n), ℓ2(n) are bounds on the output length of f1, f2 on inputs of length n.
1The class PH contains NP and its complement coNP. It can be defined using oracle TMs as follows. Define

recursively Σ0 = P, Σi = NPΣi−1 then PH = ∪N
i=0Σi. For more information see Chapter 3 in [Gol08].
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Corollary 2.2.3. Let f : {0, 1}⋆ → {0, 1}⋆ be computable in space s : N → N, where s(n) ≥ logn.
Then, g(x, k) = f (k)(x), where k ∈ N, can be computed in space

O

(
k−1∑
i=0

s(ℓi(n)) + log(n+ ℓi(n))

)

where ℓi(n) is a bound on the output length of f (i) on inputs of length n.

For more information on space efficient algorithmic composition the reader may consult [Gol08,
Chapter 5.1]. While Claim 2.2.2 is not a triviality both result-wise and proof-wise, one should keep
in mind that it is by no mean the optimal approach. For instance, computing the n-th power of
an n-digit integer by composing the squaring function f(x) = x2 logarithmically many times yields
the sub-optimal space complexity of O(log2 n).

Using the space composition theorem (Claim 2.2.2) we can now give a space-efficient algorithm
for computing matrix products.

Definition 2.2.4 (matrix bit complexity). Given a matrix A ∈ Rw×w, we denote its bit complexity,
i.e., the number of bits required to represent all its entries, by |A|. In particular, if we use k bits
of precision for every entry in A then |A| = Θ(kw2).

Claim 2.2.5. The function f(A,B) = AB can be computed in space O(log |A|+ log |B|).

Proof. First, consider the function g(A,B, i, j) = (A[i, ℓ] · B[ℓ, j])wℓ=1, which can be computed in
logarithmic space by iterating over ℓ, and computing the product. Composing g with the iterated
function yields the matrix product function h(A,B, i, j) = AB[i, j].

Claim 2.2.6. The matrix powering function f(A,n) = An can be computed in space O(log2 n +
logn · log |A|).

Proof. Composing g(A,A) for k times, we can compute A2k in space

O

(
k∑

i=1

log
(
2i|A|

))
= O

(
log2 n+ k log |A|

)
,

following corollary 2.2.3, and Claim 2.2.5. (Note that the number of bits needed to represent each
entry doubles at every iteration). Write n =

∑⌈logn⌉
i=0 bi2

i for bi ∈ {0, 1}. Then,

An =
∏

i:bi=1

A2i .

Accounting for the logn additional space needed to compute the product, the proof is concluded.

Claim 2.2.7. The iterated matrix product function f(A1, A2, . . . , An) = A1 · · ·An can be computed
in space O(log2 n+ logn · log max |Ai|).

Proof. Similarly, compose the function

f((Aj , Bj)
s
j=1) = (Aj ·Bj)

s
j=1

logn times.
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There is also an approximated version of matrix products, in which we output an approximation
to the matrix product. The idea is very simple - always truncate all but the log n

ε most significant
digits.

Claim 2.2.8. There exists an algorithm that takes as input A ∈ Rw×w and output a matrix A such
that

∀i, j ∈ [w] A[i, j]−An[i, j] ⩽ ε,

and runs in O(logn log log n
ε + logn log max |Ai|) space.

What about approximating the iterated product

A1 · · ·An ?

The same holds, but there is a subtlety, and it seems that the standard approach using the com-
position theorem Claim 2.2.2 induces an extra log2 n in the space complexity. In a nutshell, if one
define function

f((Aj , Bj)
s
j=1) = ⌊(Aj ·Bj)

s
j=1⌋log n

ε

2

analogously to the exact iterated product, then indeed

|f ◦ f ◦ · · · ◦ f(A1, . . . , An)[i, j]− (A1 · · ·An)[i, j]| ⩽ ε.

The problem is that in most invocations of f the output length is Ω(n), and there are logn
compositions, hence Claim 2.2.2 yields an extra term of log2 n. The solution follows from a natural
generalization of the space-bounded composition (Claim 2.2.2) outlined in Section 5.7.

2.3 Randomized Computation
Randomized algorithms are algorithms that use randomness, usually independent unbiased coin
flips, as part of their execution. A randomized algorithm is allowed to be incorrect with some
probability over its internal coins as long as its failure probability is not too large. We emphasize
that randomized algorithms are required to be correct on every input with high probability (w.h.p).

To the uninitiated, randomized algorithms might seem a little bit dubious. Nonetheless, evi-
dently randomness is a very powerful tool in designing algorithms. Randomized algorithms tend
to be extremely simple and efficient, and are widely used both in practice and in theory. We give
two instructive examples:

• Primality Testing: Primality testing is the problem of deciding whether a given integer (in
binary representation) is prime or not. While polynomial time randomized algorithms were
known since the 70’s [SS77, Rab80], the goal of designing a deterministic algorithm remained
elusive. It took thirty years until Agrawal, Kayal, and Saxena [AKS04] gave a determin-
istic algorithm for primality testing which is more complicated than previous randomized
algorithms both in terms of implementation and running time.

• Polynomial Identity Testing (PIT): The problem of deciding whether a given polynomial is
identically zero3. This problem has a very simple randomized algorithm though no determin-
istic algorithm is known.

2The notation ⌊·⌋t means the entry-wise truncation of all but the first t bits.
3Obviously, we are not given their coefficients. The standard definition is that the input is an arithmetic circuit

which allows us to efficiently compute values of the polynomial but its coefficients. For further details see [SY10].
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By design, randomized algorithms come at the expense of being occasionally wrong. We distin-
guish between three different types of error:

1. Two-Sided Error: The algorithm is allowed to be incorrect in cases that the answer is “Yes”
and also in cases that the answer is “No”.

2. One-Sided Error: In cases that the answer is “No” the algorithm has to be correct (i.e, with
probability 1), and in cases the answer is “Yes” the algorithm may be incorrect with small
probability. There is an analogous definition with the roles of “Yes” and “No” reversed.

3. Zero-Sided Error: The algorithm outputs the correct answer with large probability, but it is
allowed to say “Don’t Know” (it never outputs an incorrect answer).

Definition 2.3.1. Let S,R : N → N increasing, and let n denote the input length for the algorithm.

• Define BPL to be the class of problems that can be solved via a randomized two-sided error
algorithm that uses O(logn).

• Define RL to be the class of problems that can be solved via a randomized one-sided error
algorithm that uses O(logn).

• Define ZPL to be the class of problems that can be solved via a randomized zero-sided error
algorithm that uses O(logn).

We emphasize that random coins are not exempted from the space complexity. That is, if we
wish to store previous coin tosses we have to store these as part of the computation. Formally, the
coin tosses are written on a unidirectional tape which means that we can only have access to the
the current coin toss (and not previous ones).

There is subtlety that arises in the context of randomized space-bounded computation: does
the algorithm is allowed not to halt? The above definitions refer to algorithms that always halt. A
more elaborated discussion regarding the halting issue is addressed in Chapter 4.

2.4 Branching Programs
It is standard to replace the computational model of space bounded TMs with the model of Read-
Once Branching Programs (ROPBs). A regular, labeled, layered graph over alphabet Σ is a directed
graph in which every vertex has |Σ| out-going edges each labeled by a distinct symbol from Σ. We
shall use the following terminology.

• The number of layers minus one is called the length, and is denoted by n.

• The maximum number of vertices in every layer is called the width, and is denoted by w.
Hence, every vertex is identified by its layer and an index i ∈ [w] called state.

• Every vertex has |Σ| outgoing edges each labeled with a distinct symbol from Σ.

See Figure 2.1 for illustration.
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Figure 2.1: An (n = 5, w = 4,Σ = {0, 1}) ROBP

It is more convenient a regular, labeled, layered graph via its neighbor function: Let B =
(B1, . . . , Bn) ∈ ([w]× Σ → [w])n be a sequence of functions

Bi : [w]× Σ → [w],

then the regular, labeled, layered graph GB = ([n+ 1]× [w], EB)

EB
def
= {((i, w), (i+ 1, Bi(w, σ))) | σ ∈ Σ, i ∈ {1, . . . , n}} (2.1)

defines a layered graph of length n, width w over alphabet Σ. Conversely, every regular, labeled,
layered graph defines such sequence of functions. Also, for 1 ⩽ i < j ⩽ n we define the sub-graph
of B ∈ ([w]× Σ → [w]) by

Bi,j = (Bi, Bi+1, . . . , Bj).

Definition 2.4.1. An ROBP of length n, width w, over alphabet Σ is a triplet comprising a regular,
labeled, layered graph B, a start state v0, and a subset of accepting states Vacc ⊆ [w]

(B, v0, Vacc) ∈ ([w]× Σ → [w])n × [w]× P([w]).

We shall say that n is the length of the ROBP, w its length, and Σ is its alphabet.

2.4.1 Computation
Given an ROBP (B, v0, Vacc) we define the computation of an ROBP as follows: Given a sequence
of symbols σ = (σ1, . . . , σn) ∈ Σn we set

B(v0, σ)
def
= Bn(· · ·B3(B2(B1(v0, σ1), σ2)σ3) · · · , σn) ∈ [w].

In words, the ROBP starts at state v0, moves to state v1 = B1(v0, σ1), moves to state v2 = B2(v1, σ2)
etc. Pictorially, interpreting the ROBP as a layered graph, the computation follows the labels
σ1, σ2, . . . , σn starting from v0 at the first layer, and outputs the state it reaches in the last layer.

Furthermore, given a subset of the vertices Vacc we can define the notion of acceptance: if
B(v0, σ) ∈ Vacc then we say that the ROBP B accepts σ (with respect to the starting state v0, and
accept states Vacc). We remark that usually ROBPs are defined with a fixed initial state v0, and
accept states Vacc but we shall not use this terminology.

For example, consider the above layered graph in Figure 2.1, and take v0 the upper vertex in
the first layer (i.e., state 1), and accepting states Vacc = {1, 2, 4}. Then, the computation over
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this ROBP with input σ = (1, 0, 0, 1, 1) reaches state 1 - which is an accepting state so the ROBP
accept.
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Figure 2.2: An (n = 5, w = 4,Σ = {0, 1}) ROBP

2.4.2 Correspondence To Randomized Space Bounded Algorithms
We now explain why ROBPs are a good substitute for the computational model of randomized
space bounded TMs. A configuration of an algorithm is a snapshot consisting of the algorithm’s
current storage and state. The configuration graph is the digraph of all configurations with edges
going between consecutive configurations namely, the edges are all pairs (C1, C2) where C2 is the
configuration obtained by running the algorithm a single step from configuration C1. Note that a
randomized algorithm essentially takes two inputs: The “true” input, and the random coins. If we
take an algorithm A, and an input x then its execution is a function of the random coins which
can be computed by a ROBP. We give the precise analogy: Given a randomized algorithm A(x, y)
with “true” input x and random coins y ∈ Σn.

• The ROBP is the layered graph, where in each layer we have all possible configurations and
edges going between consecutive configurations, v0 is the starting configuration, and Vacc the
accepting configurations of the algorithm.

• The input for the ROBP are the random coins for the algorithm.

• The space of the algorithm is then roughly log(w) since w vertices corresponds to log(w) bits
of information4.

• The probability that the ROBP accept a random input equals the acceptance probability of
x by the algorithm.

2.4.3 The Transition Matrix
Let B ∈ ([w]×Σ → [w])n. Each Bi where Bℓ(σ) corresponds to |Σ| Boolean matrices of dimension
w × w

Bℓ(σ)[i, j] =

{
1 Bℓ(i, σ) = j

0 otherwise
, (2.2)

and a single w × w matrix
M(Bℓ)

def
= Eσ[Bℓ(σ)]. (2.3)

4Here we say roughly because one should also account for the states of the algorithm etc.
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Alternatively, the i, j-th entry of M(Bℓ) is the probability of moving from state i to state j upon
reading a random symbol from Σ. The definitions of Bℓ(σ) and M(Bℓ) naturally extends to B by
matrix multiplication

B(σ)
def
= B1(σ1) · · ·B1(σn), M(B)

def
= M(B1) · · ·M(Bn). (2.4)

Observe that B(σ), M(B) still carry the same semantics: the i, j-th entry of B(σ) is 1 iff starting
from state i moves to state j upon reading σ, and the i, j-th entry of M(B) is the probability of
moving from state i to j upon reading a random input. Therefore, each row of the transition matrix
has nonnegative entries which sum to one - such matrices are called stochastic matrices.

Definition 2.4.2. We say a real matrix is stochastic if it is row-stochastic, i.e., if its entries are
nonnegative and every row sums to 1, and sub-stochastic if its entries are nonnegative and every
row sums to at most 1.

An immediate implication of the above observation is that the existence of an algorithm that
approximates powers of stochastic matrices that runs in logarithmic space implies

BPL = L.

To some extent, the problem of approximating stochastic matrices captures the class BPL (See
Section 4.1.

Remark 7. There is a well known unfortunate notional issue of transition matrices. We chose to
denote A[i, j] for the transition from state i to j, and so the matrix multiplication goes right to left
in Equation (2.4). It is very common that the initial state is a distribution π ∈ Rw, rather than a
fixed state, and so by applying the ROBP to that distribution we get another distribution over the
states which equals

πA.

For the uninitiated, it might be slightly annoying, or inconvenient to multiply by a vector from the
left. The alternative, which is very common and respectable, it to define A[i, j] for the transition
from state j to i, and then we have Aπ instead of the above. Since the notation πA will not appear
in this work, we chose to use the first option.

Recall from our perspective, an ROBP stands for simulating a randomized algorithm on a spe-
cific input, and the inputs for the ROBP are the random coins. In this setting, the transition
matrix encompasses all the “computational information” as it accounts for the acceptance proba-
bility. Therefore it is natural to measure closeness between two ROBPs by measuring the distance
between their transition matrices (i.e., with respect to some norm).

There are numerous norms in the literature for measuring matrices in the context of ROBP,
but this work features the two most basic ones: the maximum norm, and the induced ℓ∞ norm.

Definition 2.4.3. For a matrix A ∈ Rw×w:

1. Maximum Norm: ∥A∥max = maxi,j∈[w] |A[i, j]|.

2. Infinity Norm: ∥A∥∞ = maxi∈[w]

∑
j∈[w]|A[i, j]|, .

There is a very natural interpretation of the induced ℓ∞ norm ∥·∥∞. Suppose that M1,M2 ∈
Rw×w are the transition matrices of B(2), B(1) ∈ ([w]× Σ → [w])n. By standard arguments

∥M1 −M2∥∞ = 2 · max
v0∈[w],S⊆[w]

∣∣∣Pr
σ
[B(1)(v0, σ) ∈ S]− Pr

σ
[B(2)(v0, σ) ∈ S]

∣∣∣.
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In fact, by convexity this is the same as taking the maximum over any initial distribution π
supported on [w]. Thus, the induced infinity norm between two transition matrices of two ROBPs
equals the largest difference in acceptance probability going over all possible initial states v0, and
possible accepting states Vacc.

Remark 8. Generally, for two discrete distributions π1, π2 supported on Ω the quantity

max
S⊆Ω

∣∣∣∣ Pr
X∼π1

[X ∈ S]− Pr
X∼π2

[X ∈ S]

∣∣∣∣
is known as the statistical distance between π1, π2 or total variation distance. It is well-known that
the statistical distance between two distributions also equals their ℓ1 distance (as vectors).

We finish with two useful and simple inequalities. The first inequality, relates the maximum
norm, and the induced ℓ∞ norm.

Claim 2.4.4. For any matrix M ∈ Rw×w we have that

∥M∥max ⩽ ∥M∥∞ ⩽ w∥M∥max.

The following claim follows by a simple induction and the triangle inequality.

Claim 2.4.5. Let for any A1, . . . , Ak, B1, . . . , Bk satisfying ∥Ai∥∞, ∥Bi∥∞ ⩽ 1

∥A1 · · ·Ak −B1 · · ·Bk∥ ⩽
∑
i

∥Ai −Bi∥.

In particular, if ∥A∥, ∥B∥ ⩽ 1 then
∥∥Ak −Bk

∥∥ ⩽ k · ∥A−B∥.

2.5 Pseudorandomness and Derandomization
Understanding the power of randomness as a computational resource is a major problem in com-
plexity. In particular, whether randomness can be eliminated or reduced in some cases. This
process of taking a randomized algorithm and reducing the amount of randomness it uses, ideally
converting it into a deterministic algorithm, is called derandomization. Perhaps the most famous
open problem in this context is whether any polynomial time randomized algorithm can be de-
randomized. This is often referred to as the BPP ?

= P problem. An amazing line of work showed
that this problem is intimately related to circuit lower bounds. Specifically, sufficiently strong
circuit lower bounds will settle the BPP ?

= P conjecture [NW94, IW94, BFNW93], and conversely
the BPP ?

= P conjecture implies circuit lowers bounds [KI04] (though slightly weaker bounds).
Unfortunately, proving circuit lower bounds is considered to be notoriously difficult which puts the
lid on efforts to resolve the BPP ?

= P conjecture any time soon. Still, dernadomiztion of specific
problems such as the PIT problem is an active and flourish area of research.

There are a few concrete methods to derandomize algorithms, which are applicable in certain
situation, though we are interested in derandomizing all space bounded algorithms. This means that
we are looking for a more methodological derandomization technique. We shall roughly distinguish
between two types of derandomization:

• Black-Box: Derandomization which depends only on the algorithm’s functionality (i.e., whether
it accepts or rejects certain inputs).
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• White-Box: Derandomization which depends on the algorithm’s instructions.

The simplest example of white-Box derandomization for space bounded computation is to com-
pute the exact acceptance probability using matrix multiplication which takes O(log2(n)) space
(See Section 2.4 for the relation to matrix multiplication). A less naive example is a result by
Reingold-Trevisan-Vadhan [RTV06] who showed that any randomized space bounded algorithm
with one-sided error can be transformed to a connectivity problem of a digraph with a certain
property. Therefore, solving the connectivity problem on digraphs with that property in log-space
yields RL = L.

The following subsection deals with pseudorandom generators (PRGs), which are the ultimate
means of black-box derandomization.

2.5.1 Pseudorandom Generators
Intuitively speaking, a pseudorandom generator uses few truly random coins and outputs a sequence
of pseudorandom coins. The hope is that these pseudorandom coins can be used of truly random
coins in a given algorithm with the hope that it works roughly the same. Thus, the algorithm works
just the same, but with fewer random coins hence dernadomizing the algorithm.

A typical way of getting a deterministic algorithm from PRGs is by running the algorithm on
all possible inputs for the PRG and taking the majority vote. It is ludicrous to suggest that such
an object can possibly work for all algorithms, so it is necessary to restrict the class of algorithms
that the PRG is useful against. Note that this derandomization technique is oblivious to the
functionality of the algorithm we want to derandomize. Traditionally, a PRG against a class of
Boolean functions C ⊆ Σn → {0, 1} is a function G : {0, 1}s → Σn satisfying

∀f ∈ C |Eσ[f(σ)]− Ez[G(z)]| ⩽ ε. (2.5)

The parameter s is called the seed length, z is called the seed, and ε is called the accuracy or
error of the PRG. It is common to say that G ε-fools the class C (though we will not be using this
terminology).

In our setting, the class C is the class of ROBPs of length n, width w, over alphabet Σ, namely
C = ([w]×Σ → [w])n. There is a technical issue: Equation (2.5) does not compile as Eσ[B(σ)] is a
matrix, rather than a number (see Section 2.4 for definitions). Instead we require that

∀B ∈ [w]× Σ → [w] ∥Eσ[B(σ)]− Ez[G(z)]∥∞ ⩽ ε. (2.6)

Following the remark at the end of Section 2.4.3, one can verify that this the above is actually
equivalent had we included the starting and accepting states in the definition of ROBPs so that
B(σ) ∈ {0, 1}, and used the definition in Equation (2.5) instead. Regardless of how ROBPs are
defined, all the PRGs against ROBPs that appear in the literature are analyzed are analyzed by
showing that Equation (2.6) holds. Moreover, Equation (2.6) may be relaxed to allowing arbitrary
matrix norms yielding a much richer definition. E.g., [HPV21] constructed a PRG against a certain
class of ROBPs in the induced ℓ2 norm (a.k.a spectral norm or operator norm).

It is well known that (non-explicit) pseudorandom generators exists with essentially optimal seed
length. In fact, a random function is with high probability a PRG against any class of functions
which is not too large.

Claim 2.5.1. Let C ⊆ {0, 1}n → {0, 1} and ε > 0 then there exists a function G : {0, 1}s such that
Equation (2.5) holds with s = log log |C|+ log 1

ε +O(1).
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Noting that |([w]× Σ → [w])n| = wnw|Σ| we get the following corollary5.

Corollary 2.5.2. Let ε > 0 then there exists a function G : {0, 1}s such that Equation (2.6) holds
with s = O

(
log nw

ε

)
.

We now define PRGs against the model of ROBP.

Definition 2.5.3. An (n,w,Σ, ϵ) PRG with seed length s is a function G : {0, 1}s → Σn such that
for every (n,w,Σ) ROBP B ∣∣Ex∼Σn [B(x)]− Ez∼{0,1}s

∣∣B(G(z)) ⩽ ϵ

In the above definition we considered the Accept/Reject definition, though we can analogously
define PRGs against ROBPs in the matrix formulation.

Definition 2.5.4. Let ∥·∥ be a matrix norm6. An (n,w,Σ, ϵ, ∥·∥) PRG with seed length s is a
function G : {0, 1}s → Σn such that for every (n,w,Σ) ROBP B∥∥Ex∼Σn [B(x)]− Ez∼{0,1}s [B(G(z))]

∥∥ ⩽ ϵ (2.7)

Note that in this setting B(x) is a matrix.

Proposition 2.5.5. There exists a non-explicit (n,w,Σ, ϵ) PRG with seed length s = O(log(nw|Σ|/ϵ)).

Proposition 2.5.6. If there exists an (n,w,Σ, ϵ) PRG with seed length s = O(log(nw|Σ|/ϵ)) that
runs in space O(s) then BPL = L.

2.6 Brief Account of Space Bounded Derandomization
Understanding the role that randomness plays in computation is of central importance in com-
plexity theory. While randomness is provably necessary in many computational settings such as
cryptography, PCPs and distributed computing, it is widely believed that randomness adds no sig-
nificant computational power to neither time- nor space-bounded algorithms. Remarkably, proving
such a statement for time-bounded algorithms implies circuit lower bounds which seem to be out
of reach of current proof techniques [NW94, IKW02, KI04].

On the other hand, there is no known barrier for proving such a statement in the space-bounded
setting. Indeed, while we cannot even rule out a scenario in which randomness “buys” exponential
time, the space-bounded setting is much better understood. Savitch’s theorem [Sav70] already
implies that any one-sided error randomized algorithm can be simulated deterministically with
only a quadratic overhead in space, namely RL ⊆ L2. The (possibly) stronger inclusion BPL ⊆
L2 can be proven easily through a variant of Savitch’s theorem and also follows from [BCP83].
Using pseudorandom generators, Nisan [Nis92, Nis94] devised a time-efficient derandomization
with quadratic overhead in space, concretely, BPL ⊆ DTISP(poly(n), log2 n). Focusing solely on
space, the state of the art result was obtained by Saks and Zhou [SZ99] that build on Nisan’s work
to deterministically simulate two-sided error space s randomized algorithms in space O(s3/2), thus,
establishing that BPL ⊆ L3/2.

5Here it is actually useful to consider the setting in which an ROBP is defined with an initial vertex and accepting
states so that the function B(σ) is Boolean.

6One may also consider notions of distance which are not a norm.
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2.7 Efficient Implementations of PRGs Against ROBPs
We now discuss two fundamental constructions of PRGs against the model of ROBP: the INW
([INW94]) and Nisan ([Nis92]) generators, and present specific space-efficient implementations for
those. The constructions and their analysis are well known, except for the space complexity which
is implicit in those works and also depends on the specific implementation (the variant of INW we
use was explored by [HV06]).

2.7.1 Nisan’s Generator
Nisan, in his seminal work [Nis92], constructed a family of pseudorandom generators against the
class of ROBPs of length n, width w over alphabet Σ with accuracy ε using seed of length

s = O

(
logn · log nw|Σ|

ε

)
.

We briefly recall the construction and its properties. Without the loss of generality, |Σ| = Θ
(
nw
ε

)7,
and let

H ⊆ Σ → Σ

with be a two-universal family of hash functions of size |H| = |Σ|2. The seed for

N def
= Glogn : {0, 1}d → Σn

comprises logn hash functions h = (h1, . . . , hlogn), each hi ∈ H, and a symbol σ ∈ Σ, noticing that
indeed s = O(logn · log |Σ|). We define Gi : Σ× {0, 1}i·2 log |Σ| → Σ(2i) recursively as follows

G0(σ) = σ|[1,...,log |Σ|],

Gi(σ;h1, . . . , hi) = Gi−1(σ;h1, . . . , hi−1) ◦Gi−1(hi(σ);h1, . . . , hi−1).

It turns out to be incredibly useful to divide the seed into an “offline” part h ∈ {0, 1}dN which we
can fix and is good with high probability, and an “online” one σ ∈ Σ which we average over. We
can summarize the properties of the Nisan generator below, where we explicitly distinguish between
accuracy and confidence (as was also done in [Nis94] and in more recent works).

Theorem 2.7.1 ([Nis92]). Given n,w ∈ N, an accuracy parameter ε > 0, a confidence parameter
δ > 0, and an alphabet Σ, let N : {0, 1}dN × Σ → Σn be the above Nisan generator, where |Σ| =
O
(
nw|Σ|
εδ

)
and dN = O(logn · log |Σ|). Let B ∈ ([w]×Σ → [w])n be an ROBP. Then, with probability

at least 1− δ over h ∈ {0, 1}dN, it holds that

∥M(B)− Eσ∈Σ [B(N(h, σ))]∥∞ ≤ ε,

recalling that M(B) = Ez∈Σn [B(z)]. Moreover, N can be computed in

min{O
(

logn · log log nw|Σ|
ε

)
, O

(
log nw|Σ|

ε

)
}

space.
7If the alphabet is small then we can enlarge it by collapsing layers into a single one hence increasing the alphabet.
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The analysis can be found at [Nis92], though the space complexity is glossed over so we give a
rough sketch. In order to analyze the space complexity one has to consider a specific implementation
of the hashing family H. A possible choice is

H = {ha,b(x) = ax+ b | a, b ∈ F2k},

where |Σ| = 2k. This calls for a space-efficient implementation of arithmetic over the finite field
F2k which can be found in e.g. [HAB02, HV06]. Given σ ∈ Σ ,h = (h1, . . . , hlogn) ∈ Hlogn, and
an index j = (b1, . . . , blogn) ∈ {0, 1}logn we can compute the j-th output symbol of N(σ, h) in the
following two alternative ways:

• We can successively compute hbjj ◦ hbj−1

j−1 ◦ · · ·hblog n

logn (σ) for j = 1, . . . , logn, each time keeping
the current symbol. This takes

O

(
log nw|Σ|

ε
+ log logn

)
= O

(
log nw|Σ|

ε

)
space.

• Alternatively, we can do the above computation using composition of space bounded functions
(Claim 2.2.2), resulting in space complexity

O

(
logn · log log nw|Σ|

ε

)
.

2.7.2 The INW Generator
We consider the INW generator [INW94] instantiated with seeded-extractors (as, e.g., in [RR99])8.
Again, as we are not going to discuss the correctness of the construction, the definition of seeded-
extractors, and for that matter other primitives as well are irrelevant for this part.

We are given parameters n,Σ, w, and ε. Given functions

Exti : {0, 1}m+id × {0, 1}d → {0, 1}m+id

we define recursively
Gi(x ◦ y) = Gi−1(x) ◦Gi−1(Ext(x, y)),

where G0(x)
def
= x, and we set the INW generator INW def

= Glogn.

Theorem 2.7.2 ([INW94, RR99]). Suppose that Exti : {0, 1}m+id × {0, 1}d → {0, 1}m+id is a
(m+ id−∆, εExt) seeded-extractor then for every ROBP B ∈ ([w]× {0, 1}m → [w])n

∥E[B(σ)]− E[B(INW(z)]∥∞ ⩽ n(εExt + w2−∆).

Setting, εExt =
ε
2n , and ∆ = log 2nw

ε we get accuracy ε, and the seed length is given by m+ d logn.
Moreover, in the setting εExt =

ε
2n , and ∆ = log 2nw

ε we can implement the generator in

O

(
logn log log nw|Σ|

ε

)
space where Σ = {0, 1}m.

8The connection between randomness extractors and derandomization of space bounded computation originated
in [NZ96].
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For further details the reader may consult [AB09a, Chapter 16]. It follows that to implement
the INW generator we need a space-efficient seeded extractor with a small entropy loss in the high
min-entropy regime. Goldreich and Wigderson [GW97] gave such a construction utilizing a regular
expander H = (V,E) with a small normalized second eigenvalue. For our expander, we choose a
Cayley graph over the commutative group Zn

2 with a generator set S ⊆ {0, 1}n that is λ-biased. It
is well known that Cay(Zn

2 , S) has normalized second largest eigenvalue at most λ. For the λ-biased
set we choose a construction from [AGHP92]. Altogether, this unfolds for the following.

• For the λ-biased set S, first pick q to be the first power of two larger than n
λ . The set S is

of cardinality q2. For every α, β ∈ Fq there is an elements sα,β ∈ Zn
2 where (sα,β)i = ⟨αi, β⟩,

such that multiplication is in Fq and the inner product is over Z2. [AGHP92] showed the set
is λ-biased.

• We let H = (V,E) with V = Zn
2 and (x, y) ∈ E iff x+ y ∈ S. H is a λ-expander.

The extractor GW : {0, 1}n × [D] → {0, 1}n is defined by letting H(x, i) be the i-th neighbour
of x in the graph H.

Claim 2.7.3. Let 0 < ∆ < n and set H and GW as above. Then, GW : {0, 1}n × [D] → {0, 1}n is
a (k = n−∆, ε) extractor with seed length d = O(∆+ log n

ε ) and space complexity O(logn · log(∆+
log(n/ε))).

The expander mixing lemma basically shows that GW is an (n −∆, ε = O(2∆/2λ)) extractor,
and the seed length of this extractor is

log |S| = O(log n
λ
) = O(log n2

∆

ε
) = O(∆ + log n

ε
).

Again, the uninitiated reader is referred to [AB09a, Chapter 16]. The space complexity of computing
GW(x, y) given x and y, is the space needed to compute sy ∈ S from y = (α, β) ∈ F2

q , plus the
space needed to compute x+ sy. The dominating step in computing sy is computing αi (for i ≤ n)
which can be done in O(logn+ log log q) using space-efficient arithmetic over F2k (e.g., [HAB02]).
Altogether, the space needed is

O(logn+ log log n
λ
) = O

(
logn+ log∆+ log log 1

ε

)
.

We note that Healy and Viola [HV06] gave an extremely efficient implementation of the above
AGHP generator, yielding a better space complexity of O(log(n+ log q)) to compute ⟨αi, β⟩. How-
ever, in our overall setting of parameters it will make negligible difference. We remark that by
using expanders with better dependence between D and λ, one can get d = O(∆+ log 1

ε ), but here
we care more about the space complexity, and logn factors are negligible for us.

The previous passage concludes the implementation of the seeded extractor needed for the INW
generator, which we can now implement. Given a seed x ∈ {0, 1}s we view the computation of
INW(z) as a full binary tree of depth logn. Given an index j ∈ [n], computing INW(x)j ∈ {0, 1}m
can be done by walking down the computation tree, and each time either truncating a string
or invoking an extractor. By composition of space-bounded functions (Claim 2.2.2) the space
complexity of the construction is logn times the space complexity of the worst extractor used.
That is,

O

(
logn log log nw|Σ|

ε

)
.
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Chapter 3

Error Reduction For Weighted PRGs
Against ROBPs

3.1 Background
3.1.1 Pseudorandom Pseudo-Distributions for ROBPs
In [BCG20] Braverman, Cohen and Garg introduced the notion of a pseudorandom pseudo-distribution
(PRPD) generalizing pseudorandom distributions. A PRPD is a distribution

D̃ = ((ρ1, σ1), . . . , (ρ2s , σ2s))

where ρ1, . . . , ρ2s ∈ R and σ1, . . . , σ2s ∈ Σn. They constructed a PRPD with the property that for
every ROBP B ∈ ([w]× Σ → [w])n∥∥∥∥∥

∣∣∣∣∣∑
i

ρiB(σi)

∣∣∣∣∣− Eσ[B(σ)]

∥∥∥∥∥
∞

⩽ ε.

Note that the definition of a PRPD allows the weights ρi to take both positive and negative
values. These values are not necessarily bounded by 1 in absolute value, nor by any constant for
that matter, and they do not necessarily sum up to 1. Nevertheless, the definition requires that the
numbers cancel out nicely so that summing the weights of the respective paths and, in particular,
the sum is a number in [−ε, 1 + ε]. Analogous to a PRG, a weighted pseudorandom generator
(WRPG) is a function

G× µ : {0, 1}s → (Σ× R)n

whose output, when fed with a uniform seed, is a PRPD. Similarly to a PRG, we say that GR × µ
is WPRG against the class B[n,w,Σ] with accuracy ε if for every B ∈ ([w]× Σ → [w])n

∥|Ez[µ(z)B(G(z))|]− Eσ[B(σ)]∥∞ ⩽ ε.

Observe that if µ ≡ 1 then the notion of a WPRG coincides with that of a PRG.
A WPRG that can be computed in bounded space suffices to derandomize two-sided error ran-

domized algorithms. Indeed, the straightforward derandomization using a pseudorandom (proper)
distribution, which sums the probability mass of the relevant paths. Of course, the space require-
ment now depends on the bit complexity of the weights as well.
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3.1.2 The Error Parameter
Braverman et al. [BCG20] constructed a WPRG that has seed length with an improved, in fact
near-optimal, dependence on the error parameter ε. Their WPRG has seed length

O(log2 n · log log w
ε
+ logn · logw + log w

ε
· log log w

ε
).

For the purpose of derandomization, the error parameter is anyhow taken to be constant, and so
the necessity of such an improvement may seem moot. However, by inspecting Nisan’s recursive
construction one can see that the log2 n term in the seed length appears due to the way the error
evolves throughout the recursion. Hence, a construction which allows for a more delicate error
analysis is called for. Furthermore, the Saks–Zhou construction applies Nisan’s PRG in a setting
in which ε≪ 1/n for obtaining their result. It was observed [BCG20] that improving upon [SZ99]
can be obtained by constructing a PRG having seed length with better dependence on both w, ε,
even when retaining the log2 n dependence.

Interestingly (and unfortunately), the log2 n term in the BCG construction appears for a com-
pletely different reason. In short, unlike prior works [Nis92, INW94] that maintain a list of instruc-
tions throughout the recursion, BCG maintains a more involved structure consisting of several lists
of lists. Maintaining the invariant on this complex structure is the reason for the log2 n term in
the seed of BCG’s construction.

As hinted above, the BCG construction is quite involved. In a subsequent work Chattopadhyay
and Liao [CL20] somewhat simplified the BCG construction also obtaining slight improvement in
parameters. In particular, the seed length obtained by [CL20] is(

logn · lognw · log lognw + log 1

ε

)
.

Additionally, Hoza and Zuckerman [HZ20] obtained a significantly simpler construction of hitting
sets against ROBPs. Their construction has seed length

O

(
1

max(1, log logw − log logn) · logn · lognw + log 1

ε

)
.

Although hitting sets are weaker objects than PRPDs that are aimed for the derandomization of
one sided error randomized algorithms, a subsequent work by Cheng and Hoza [CH20] showed how
to derandomize two sided error randomized algorithms using hitting sets.

3.2 Our Result
This work further focuses on the error parameter. As our main result, we obtain an error reduction
procedure. That is, we devise an algorithm that transforms, in a black-box manner, a PRG with a
modest error parameter εG to a WPRG with a desired error parameter ε, having comparable seed
length and with a near optimal dependence on ε.

Theorem 3.2.1 ([CDR+21]). Let G : {0, 1}sG → Σ a PRG against B[n,w,Σ] with accuracy

∥Ex[B(G(x))]− Eσ[B(σ)]∥∞ ⩽ εG,

where we assume that εG ⩽ 1
4(n+1) . Then, there exists a WPRG GR × µ : {0, 1}sR → Σ against

B[n,w,Σ] with accuracy
∥Ex[µ(x)B(GR(x))]− Eσ[B(σ)]∥∞ ⩽ ε.
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Moreover,
sR = sG + log |Σ|+O(log w

ε
log log 1

ε
),

and if G requires S space then GR takes O(S + log log w
ε log log2 1

ε ) space.

When instantiated with Nisan’s PRG [Nis92] our error reduction procedure yields WPRGs with
a seed that is slightly shorter than [BCG20] and is incomparable to [CL20].

Corollary 3.2.2. There exists a WPRG against B[n,w,Σ] with accuracy ε, and seed length

O

(
logn · log(nw|Σ|) + log w

ε
· log logn

1

ε

)
computable in space O

(
log(nw|Σ|) + log log 1

ε log log w
ε

)
.

Note that for ε which is not tiny the space complexity is dominated by the first term. Specifically,
for

ε > 2−2log1/3 n
, w < 22

log1/3 n

the space complexity is indeed O(log(nw|Σ|)). Had we used INW instead [INW94] (Theorem 2.7.2,
the space complexity would deteriorate to

O

(
logn · log log nw|Σ|

ε
+ log w

ε
· log logn

1

ε

)
.

Our error reduction procedure as well as the resulting WPRG are significantly simpler than
that of [BCG20, CL20]. Moreover, the underlying ideas are different and conceptually cleaner.
More generally, it is much preferred to have a black-box error reduction procedure rather than
a specific explicit construction. On top of the insights obtained, such a modularization has the
potential of being instantiated in different settings such as for regular and permutation ROBPs or
for bounded-width ROBPs.

Our error reduction procedure borrows ideas from the line of work concerning deterministic
space-efficient graph algorithms, in particular a recent work by Ahmadinejad, Kelner, Murtagh,
Peebles, Sidford and Vadhan [AKM+20] (which, in turn, is based on an exciting line of work
on nearly-linear time graph algorithms, deterministic or otherwise. See [CKP+16, CKP+17] and
references therein).

Independently, Pyne and Vadhan [PV21] also used the Richardson iteration to obtain a WPRG
for polynomial-width branching programs, and furthermore used that to obtain new results for
permutation ROBPs.

3.3 Overview
Let B ∈ ([w]× Σ → [w])n with transition matrices

M1,M2, . . . ,Mn

that is, Mi = Eσ[Bi(σ)], and let G : {0, 1}sG → {0, 1}n be a PRG against B[n,w,Σ] with accuracy
εG which we wish to increase. Following [AKM+20] we observe that by denoting

L[i, j]
def
=


−Mi j = i+ 1

I i = j

0 otherwise
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one has that,

L−1[i, j]
def
=

{
Mi,j−1 i ⩽ j

0 otherwise
.

In words, L is a block-matrix in which the main diagonal is the identity matrix, the diagonal
above it has −Mi on it, and the remaining blocks are zero. Its inverse L−1, is an upper-triangular
block-matrix such that the a, b-th block is the product

Ma ·Ma+1 · · ·Mb−1.

Richardson iteration is a method for improving a given approximation to an inverse of a matrix
that is frequently used to construct a preconditioner to a Laplacian system. To describe this
method, let L be a matrix and suppose that B is an approximation for L−1. For k ⩾ 1 define the
matrix

R =

k∑
i=0

(I −BL)iB. (3.1)

It can be shown that ∥∥R − L−1
∥∥ ≤

∥∥L−1
∥∥ · (∥L∥ · ∥∥B − L−1

∥∥)k+1.

In our setting, the matrix L can be approximated via the PRG G as follows. Define the (n+1)w×
(n+ 1)w lower triangular block matrix M̃ as follows. For a, b ∈ [n+ 1], a < b, and σ ∈ {0, 1}s, let

M̃ [a, b] = Ex[B(G(x)[i,j])].

Further, M̃ [a, a] = Iw. Since G has error εG, one can easily verify that∥∥∥M̃ [a, b]−Ma · · ·Mb

∥∥∥
∞

⩽ (n+ 1)εG.

Equivalently, the PRG G can be used to mildly approximate L−1 by applying it to all sub-programs
of the original ROBP. Roughly, by taking

B = M̃, εG = n−2, k = O(logn
1

ε
),

one obtains the approximation ∥∥R − L−1
∥∥
∞ ⩽ ε. (3.2)

In particular, the upper-right block of R approximates of the desired product M1 · · ·Mn within
accuracy ε.

We further develop Equation (3.1). Let ∆ = I −BL. It is possible to show that

∆[a, b] =

{
M̃ [a, b− 1] ·Mb−1 − M̃ [a, b] a < b,

0 a ⩾ b.
(3.3)

Substituting this back to R, for a < b we have that

R[a, b] =
k∑

m=0

∑
a<r1<···<ri⩽b

∆[a, r1] ·∆[r1, r2] · · ·∆[ri−1, ri] · M̃ [r1, b].
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If we further let C0[a, b] = M̃ [a, b− 1] ·Mb and C1[a, b] = M̃ [a, b] then

R[a, b] =
k−1∑
m=0

∑
a<r1<···<rm⩽b
t1,...,tm∈{0,1}

(−1)t1+···+tmCt1 [a, r1]Ct2 [r1, r2] · · ·Ctm [rm−1, rm]C1[rm, b]. (3.4)

Recall that each block in M̃ [a, b] corresponds to simulating B over the segment [a, b] using
the generator G : {0, 1}s → Σn (truncated to its first b − a symbols). Hence, every summand
in Equation (3.4)

Ct1 [a, r1] · · ·Cti [ri−1, ri] · M̃ [ri, b]

can be realized as the transition matrix of an ROBP of length naux = i+ 1, of the same width w,
and over a larger alphabet. Specifically, the alert reader can see that this alphabet can be taken to
be

Σaux = {0, 1}s × Σ.

Our construction thus uses an auxiliary PRG against B[naux, w,Σaux] with accuracy εaux and hence
approximates each summand to accuracy εaux. Therefore, replacing the seeds for G by the output
of the auxiliary PRG approximates R to within accuracy

εauxn
O(k) ≈ εaux · ε−Ω(1),

which in turn approximates L−1 to accuracy ε (see Equation (3.2)) yielding an overall approximation
of accuracy O(ε). As the ROBP that correspond to each summand is short, recall

i ⩽ k = O

(
logn

1

ε

)
≪ n,

a short seed is required even for the high accuracy εaux = εO(1) that we require. We invoke [INW94]
as our auxiliary PRG as it has good dependence on the alphabet size which, in our case, is com-
parable to the seed of the crude PRG that we started with. We remark that the weights in our
WPRG GR × µ are used to realize Equation (3.4) as the expectation

(3.4) ≈ Ez[µ(z)B(GR(z))].

Indeed, on top of the sign, one has to account for this averaging by taking the weights to be large
as the number of summands in Equation (3.4), so that the expectation becomes a sum.

3.3.1 Comparison with [BCG20]
It is worthwhile to explore the differences between the BCG construction [BCG20] (and the followup
work of Chattopadhyay and Liao [CL20] which uses similar ideas) and ours and to point out the
aspects of our work that we find similar to the work of Cheng and Hoza [CH20], and of Hoza and
Zuckerman [HZ20]. We start by giving a brief overview of the BCG construction.

A brief overview of BCG

In constructions prior to [BCG20] (e.g., [Nis92, INW94]), a list of instructions is maintained with
the property that given a ROBP A1, . . . , An, averaging over the products corresponding to the
instructions yields the desired approximation to the product An · · ·A1. The key idea suggested
in [BCG20] is to maintain not a single list whose average yields the desired approximation but rather
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several lists of instructions L0, L1, . . . , Lk such that averaging according to the instructions in L0

yields a modest approximation; averaging according to L0∪L1 yields a more refined approximation,
and so forth. Averaging according to the instructions given by L0 ∪ · · · ∪ Lk gives the desired
approximation. Thus, L0 can be thought of as a crude approximation, L1 a first order correction
term, L2 a second order correction term, etc.

To implement this idea, weights were introduced and, moreover, each list but for L0 was in itself
a list of lists, or bundles. The different instructions in a bundle did not carry useful information by
themselves and it is the bundle which has the desired properties. Lists that correspond to higher
error terms requires the expensive use of bigger bundles and larger weights, and so a delicate use
of balanced and unbalanced samplers is employed in [BCG20] in order to maintain the desired
invariant throughout the recursion and assuring that the bundles and weights do not get too large.

Comparison with [BCG20]

Our work, in comparison, goes back to the use of a single list as in [Nis92, INW94]. We do not
need to maintain several lists, let alone lists of bundles. This makes our construction significantly
simpler and, in particular, spares us from the delicate application of different types of samplers.
The only component we do need are weights, both positive and negative that are unbounded in
absolute value. However, it is straightforward to pinpoint the weights used by our construction
whereas in [BCG20] the weights are computed via a recursive algorithm. As a result, it is difficult
to argue about them. We believe that the simpler and more explicit structure of our construction
would enable future works to combine our construction with other ideas for the purpose of obtaining
improved constructions and derandomization results.

The common theme to both our construction and BCG is working with cancellations. We “read
of” Richardson iteration what cancellations to consider. As we discussed in the end of Section 3.3,
we interpret Richardson iteration as comparing a PRG with the PRG obtained by replacing the first
bit by a fresh truly random bit. The BCG construction, on the other hand, “plant” cancellations
by considering two samplers–one more refined than the other–and encode their difference in their
lists (this requires the introduction of bundles). So, in a sense, BCG’s cancellations are obtained
by comparing one approximation to another where both approximations are obtained via samplers
whereas we make use of one approximation coming from a PRG and another that is obtained
by replacing the first bit by a fresh truly uniform bit. The way we combine these is dictated by
Richardson iteration.

Common aspects with [HZ20, CH20]

For their derandomization result, Cheng and Hoza [CH20] introduce the notion of local consistency.
Informally, the authors consider the difference between applying a generated sequence of instruc-
tions (via a hitting set) to that obtained by the generated sequence when replacing the last bit with
a fresh truly random bit. This is somewhat reminisce to the way we read the cancellations of the
Richardson iteration. However, while local consistency is used for making decisions once a ROBP
is given, we combine the analog sequences using the Richardson iterator in a block-box matter.

The construction of Hoza and Zuckerman [HZ20] also shares similar aspects with ours. There,
they start with a modest-error PRG to get an ε-error hitting set by running the PRG for k =
logn(1/ε) times according to partitions of [n] to k segments, resembling what we do. Instead of
drawing the PRG’s seeds uniformly at random, they derandomize the construction using a hitter.
We note however, that their analysis is very different from ours, and uses a progress measure
concerning reaching an accepting state.

38



3.4 Preliminaries
We will often work with block matrices. For instance, we may interpret A ∈ Rnm×nm as an n× n
matrix with entries which are m×m matrices. Whenever this interpretation is clear, we let A[i, j]
be the (i, j)-th block. In this example, A[i, j] ∈ Rm×m.

Definition 3.4.1 (WPRG). We say G×µ : {0, 1}s → (Σ×R)n is a WPRG against B[n,w,Σ] with
accuracy ε if for every ROBP B ∈ ([w]× Σ → [w])n

∥Ez[µ(z)B(G(z))]− E[B(σ)]∥∞ ⩽ ε.

Also, s is called the seed length of G× µ.

3.5 The Richardson Iteration
Let A be an invertible n× n real matrix, and assume that B approximates A−1, concretely,∥∥B −A−1

∥∥ ⩽ ε0

for some sub-multiplicative norm. Richardson iteration is a method for obtaining a more refined
approximation of A−1 given access to the crude B as well as to the original matrix A.

Lemma 3.5.1. Let L ∈ Rm×m be an invertible matrix and A ∈ Rm×m such that
∥∥L−1 −A

∥∥ ≤ ε0.
For any nonnegative integer k, define

R(A,L, k) =
k∑

i=0

(I −AL)iA.

Then,
∥∥L−1 − R(A,L, k)

∥∥ ≤
∥∥L−1

∥∥ · ∥L∥k+1 · εk+1
0 .

Proof. For any matrix Z, the matrices I and Z commute, and so by a straightforward induction,

I −
k∑

i=0

(I − Z)iZ = (I − Z)k+1.

In particular, for Z = AL,
I − R(A,L, k) · L = (I −AL)k+1.

Thus, ∥∥L−1 − R(A,L, k)
∥∥ =

∥∥(I − R(A,L, k) · L) · L−1
∥∥

≤
∥∥L−1

∥∥ · ∥I − R(A,L, k) · L∥
≤
∥∥L−1

∥∥ · ∥I −AL∥k+1

=
∥∥L−1

∥∥ · ∥∥(L−1 −A) · L
∥∥k+1

≤
∥∥L−1

∥∥ · ∥L∥k+1 · εk+1
0 .
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Following [AKM+20] we will be interested in the following instantiation of the Richardson
iteration. Let M = (M1, . . . ,Mn) be a sequence of w × w matrices. Following [AKM+20] we
consider the (n+ 1)w × (n+ 1)w matrix

M =


0 M1 . . . 0 0
0 0 M2 0 0

0 0 0
. . . 0

... . . . Mn

0 0 . . . . . . 0

 . (3.5)

The Laplacian of M is L = I(n+1)w −M , and we treat L as an (n+1)× (n+1) block matrix. The
following claim follows by a simple calculation.

Lemma 3.5.2. For i, j ∈ [n+ 1], the (i, j)-th block of L−1 is given by

L−1[a, b] =


Ma · · ·Mb−1 a < b,

Iw a = b,

0 b > b.

Let B = (B1, . . . , Bn) ∈ ([w] × Σ → [w])n, and let Mi = Eσ∈Σ[Bi(σ)] be the corresponding
transition matrices. Thus, approximating the transition probabilities of B,

M(B)
def
= M1 · · ·Mn,

amounts to approximating the upper rightmost entry L−1[1, n+ 1].

Lemma 3.5.3. Let B = (B1, . . . , Bn) ∈ ([w] × Σ → [w])n. Set Mi = Eσ∈Σ[Bi(σ)] and L as in
Equation (3.5). Also, let G : {0, 1}s → Σn be a PRG against B[n,w,Σ] with accuracy εG, and
consider

M̃ [a, b]
def
=

{
Ex∈{0,1}s

[
B[a,b−1]

(
G(x)[a,b]

)]
a ⩽ b

0 a > b
1 (3.6)

Then, ∥∥∥L−1 − R(M̃, L, k)
∥∥∥ ≤ (n+ 1) · ((2n+ 2))εG)

k+1.

3.6 Richardson Iteration Is a WPRG
So far, we have seen that the Richardson iteration can be used to increase the accuracy of any given
approximation to the iterated product

R(M̃, L, k)[1, n+ 1] ≈M1 · · ·Mn.

From an algorithmic standpoint, using efficient matrix multiplication and addition, one can effi-
ciently compute the matrix R(M̃, L, k). However, we further claim that the Richardson iteration
can be written as a WPRG.

Lemma 3.6.1. Let L, M̃ as in Section 3.5. Then, there exists an explicit function G′×µR : {0, 1}s
′ →

Σn × R such that
R(M̃, L, k) = Ez

[
µR(z)G

′(z)
]
.

1The convention is that M̃i,i = I.
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Proof. Let M̃ as in Equation (3.6) and write

R(M̃, L, k) =

k∑
i=0

∆iM̃

where
∆

def
= I − M̃(I −M) = M̃M − (M̃ − I).

Note that L def
= I −M is zero except on the diagonal above the main diagonal, namely L[a, b] = 0

for b ̸= a+ 1. Also, L[a, a+ 1] = −M̃ [a, a+ 1]2 so it is not hard to verify that

∆[a, b] =

{
M̃ [a, b− 1]Mb−1 − M̃ [a, b] a < b

0 a ⩾ b
.

In this notation ∆[a, b] is a matrix where a, b ∈ {1, . . . , n}, and so ∆ vanishes below the main
diagonal. We shall denote the two matrices in ∆ by C0 and C1

C0[a, b] = M̃ [a, b− 1]Mb−1 , C1[a, b] = M̃ [a, b]. (3.7)

Plugging everything back to the Richardson iteration we get the following formula

R[a, b] =
k−1∑
m=0

∑
a<r1<···<rm⩽b
t1,...,tm∈{0,1}

(−1)t1+···+tmCt1 [a, r1]Ct2 [r1, r2] · · ·Ctm [rm−1, rm]C1[rm, b], (3.8)

with the convention that the single term corresponding to m = 0 is M̃ [a, b]. Again, the above is a
sum of matrices, and so R[a, b] denotes a matrix. It is time to try interpret the above sum in terms
of the PRG G. Recall that for a < b

M [a, a+ 1] = Eσ[Ba(σ)], M̃ [a, b] = −Ex[Ba(G(x)[a,b−1])]

and so substituting this into C0 and C1 yields

C0[a, b] = Ex,σ[B[a,b−1](G(x)[a,b−2] ◦ σ)], (3.9)
C1[a, b] = Ex[B[a,b−1](G(x)[a,b−1])]. (3.10)

In other words, C1 simulates the PRG G on B, and C0 does the same but the last symbol is “fresh”,
i.e. drawn uniformly and independently. Also, C0[a, b], C1[a, b] are by themselves a sum over all
x, σ. Denote

C0[a, b](x, σ)
def
= B[a,b−1](G(x)[a,b−2] ◦ σ), (3.11)

C1[a, b](x, σ)
def
= B[a,b−1](G(x)[a,b−1])] (3.12)

so that

C0[a, b](x, σ) = Ex,σ[C0[a, b](x, σ)], (3.13)
C1[a, b](x, σ) = Ex,σ[C1[a, b](x, σ)] (3.14)

2Assuming that the PRG is marginally uniform which is always the case.

41



Note that C1[a, b] does not depend on σ but we include it anyway. Also note that C0[a, b](x, σ),
and C1[a, b](x, σ) are sequence of symbols of the appropriate length namely

C0[a, b](x, σ), C1[a, b](x, σ) ∈ Σ∗

in contrast to C0[a, b], C1[a, b] which are matrices. For concreteness, let us focus on the entry
R[1, n + 1], which approximates the transition matrix of B and so we can re-write Equation (3.8)
as

R[1, n+ 1] = Em,t,r,x,σ

[
µ(m, t)B(G′(m, t, r, x, σ))

]
, (3.15)

where

(m, t, r, x, σ) = (m, (t1, . . . , tm), (r1, . . . , rm), (x1, . . . , xm+1), (σ1, . . . , σm)) (3.16)
G′(m, t, r, x, σ) = Ct1 [1, r1](x1, σ1) · · ·Ctm [rm−1, rm](xm, σi)M̃ [rm, n](xm+1),

(3.17)

How should we define µ? First, µ has to account for the signs

(−1)t1+···+tm ,

but that is not all. The problem is that Equation (3.15) is written as a sum, while a PRG is the
expectation (or average) over its seeds. To correct that, one has to account for this averaging by
taking the weights to be large which cancel out and become a sum. Specifically, we simply set the
magnitude of µ to be the number of summands in Equation (3.15)

µ(m, t) =

(
k−1∑
m=0

(
n− 1

m

)
2m

)
· (−1)t1+···+tm . (3.18)

The reason that x-s, and σ-s are not taken into account in µ is that we already take the
expectation over those, so their weights do not need correction. In conclusion, Equation (3.15)
shows that the Richardson iteration is in fact WPRG.

3.7 The Construction
The problem with the Richardson iteration as a WPRG is that it is too costly in terms of ran-
domness. Let us now account for the seed length s′, namely the amount of randomness needed to
simulate the Richardson iteration as a WPRG:

i. Choose a partition of the interval 1, 2, . . . , n into i sub-intervals [1, r1], [r1, r2], . . . , [rm, n]. It
is not hard to see that there are

k−1∑
m=0

(
n− 1

m

)
such partitions.

ii. Simulate the execution of B over each interval using the PRG G independently, namely
with independent seeds.

iii. Refresh Symbols: For every interval [rm, rm+1] choose whether to add a “refresh” symbol in
which the replace the last symbol of the PRG, with a uniform random symbol from Σ.
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iv. Signs: If the number of non-refreshed intervals (excluding the last interval) is odd then we
add a minus sign (excluding the last interval which is always without a refresh symbol).

In total, if we also include the refresh symbols, the signs, the seeds required to simulate the
PRG on every interval then this amounts to at most

k(log |Σ|+ sG) + log
(

k−1∑
m=0

(
n− 1

m

)
2m

)
many bits. The reason for the “at most” is that we should include a refresh symbol only if tm = 0,
though it will not make much of a difference. Also, we could try to use a shorter seed when simu-
lating G on short intervals, but again this does not lead to better parameters. Still, Equation (3.15)
falls short of proving Theorem 3.2.1 because it is inefficient in terms of the randomness complexity.
To see that, note that in order to get an error ε, one has to take k to be roughly

k = log 1

ε
,

though this results in a seed length which is around sG · log 1
ε . In contrast, Theorem 3.2.1 gives an

additive term of log 1
ε . In order to improve upon the seed length, we do not choose the seeds for

every application of G independently, but rather pseudorandomly using an auxiliary PRG. Fix a
specific summand in Equation (3.15)

B(Ct1 [1, r1](x1, σ1) · · ·Ctm [rm−1, rm](xm, σi)M̃ [rm, n](xm+1)).

and let (x1, σ1), . . . , (xm+1, σm+1) be free variables (σi+1 is not used). The above summand can be
viewed as an ROBP

B
(m,t,r)
j (xj , σj)

def
=


B[rj ,b](xj) j = m

B[rj ,rj+1−2](xj) ◦Brj+1−1(σj) tj = 0, j < m

B[rj ,rj+1]−1(xj+1) tj = 1, j < m

.

It follows that
B(m,t,r) def

= (B
(m,t,r)
1 , . . . , B

(m,t,r)
k )

has length naux = k, width waux = w (same as B), over the alphabet Σaux = {0, 1}sG × Σ. Hence,
it is fooled by any PRG against the corresponding class of ROBPs. Let

Gaux : {0, 1}saux → Σk
aux

be the INW generator of Theorem 2.7.2 with accuracy εaux, and seed length

saux = sG + log |Σ|+O

(
log2 k + log kw

εaux

)
.

The reason for using the INW generator is its additive dependence on log |Σ|. Had we used Nisan’s
PRG from Theorem 2.7.1 instead of INW then the seed length of the original PRG G would
deteriorate by a factor of log log 1

ε .
We are ready to define the generator, and prove Theorem 3.2.1. Define

GR(z, (m, t, r))
def
= G′(m, t, r,Gaux(z)), (3.19)

where 0 ⩽ m ⩽ k − 1, Gaux(z) = (x1 ◦ σ1, . . . , xm+1 ◦ σm+1) (unused values of Gaux are ignored).
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3.8 Proof of Correctness
Proof of Theorem 3.2.1. We shall prove that GR as in Equation (3.19) satisfies the requirements of
Theorem 3.2.1, with

k =
log 2(n+1)

ε

log 1
2(n+1)εG

, and εaux =
ε3

4(n+ 1)2
.

Let B ∈ ([w] × Σ → [w])n, and εG ⩽ 1
4(n+1) . For every fixed i ∈ {0, 1, . . . , k − 1}, partition

r = (r1, . . . , rm), and signs t = (t1, . . . , tm) we have that∥∥∥Ez[B
(m,t,r)(Gaux(z))]− Eα[B

(m,t,r)(α)]
∥∥∥
∞

⩽ εaux,

and so by Equation (3.15)

∥∥E[µ(m, t)G′(m, t, r,Gaux(z))
]
− R[1, n+ 1]

∥∥
∞ ⩽

(
k−1∑
m=0

(
n− 1

m

)
2m

)
· εaux.

By Lemma 3.5.3
∥Eσ[B(σ)]− R[1, n+ 1]∥∞ ⩽ (n+ 1)(2εG)

k,

and so

∥∥E[µ(m, t)G′(m, t, r,Gaux(z))
]
− R[1, n+ 1]

∥∥
∞ ⩽

(
k−1∑
m=0

(
n− 1

m

)
2m

)
·εaux+(n+1) ·(2(n+1)εG)

k.

By our choice of k we have that

(n+ 1) · (2(n+ 1)εG)
k = ε/2.

As for the other term, we have the trivial bound

k−1∑
m=0

(
n− 1

m

)
2m ⩽ n2k =

4(n+ 1)2

ε2
.

By our choice of εaux we have that 4(n+1)2

ε2
· εaux ⩽ ε which establishes

∥E[µ(m, t)B(GR(z, (m, t, r)))]− Eσ[B(σ)]∥∞ ⩽ ε.

We are left with the space complexity which follows from the space complexity required to compute
the INW generator Theorem 2.7.2, and space composition theorem (Claim 2.2.2).

In order to derive Corollary 3.2.2 we instantiate Theorem 3.2.1 with G being the Nisan’s PRG
from Theorem 2.7.1.
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Chapter 4

Approximating Powers of Stochastic
Matrices in Small Space

4.1 Background
4.1.1 The Landscape of Randomized Space-Bounded Algorithms
In his survey on space-bounded derandomization [Sak96], Michael Saks proposed a notional system
for classifying space-bounded randomized algorithms. Inspired by [BCD+89], he identified three
important characteristics:

i. Zero/One/Two-Sided Error (See Section 2.3).

ii. Bounded/Unbounded Error: We require that if the answer is “Yes” then the algorithm is
correct with probability strictly greater than 1/2. If the answer is “No” then in the bounded
error setting the algorithm is correct with probability at most 1/3, and in the unbounded
setting at most 1/21.

iii. Halting/Non-Halting: It is senseless to consider algorithms that do not halt with some nonzero
probability. Still, we may consider algorithms that halt almost surely i.e., for every input the
algorithm halts with probability 1. For example, suppose that our TM reads a random bit
and stops if it sees a ’1’ then it does not always halts, but rather halts with probability 1.

We thus have the following four prefixes

Pr, BP, R, ZP,

respectively referring to unbounded error, bounded two-sided error, (bounded) one-sided error, and
(bounded) zero-sided error. For each, we add a sub-script of H indicating that the algorithm always
halts, and omission of it means that the machine is allowed not to halt with probability zero. These
conditions give rise to the following eight types of algorithms that use O(S) space,

ZPHSPACE(S) ⊆ RHSPACE(S) ⊆ BPHSPACE(S) ⊆ PrHSPACE(S)

⊇ ⊇ ⊇ ⊇

ZPSPACE(S) ⊆ RSPACE(S) ⊆ BPSPACE(S) ⊆ PrSPACE(S)
1The numbers 1/3, 1/2 could be chosen to be any two quantities that are bounded from each other by a constant.
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In terms of the classes defined in Section 2.3

BPL = BPHSPACE(logn), RL = RHSPACE(logn), ZPL = ZPHSPACE(logn).

Similarly to the suffix SPACE(S), we write TISP(T, S) for algorithms that run O(T ) steps in expec-
tation, and space O(S). Adding the above prefixes, and the prefix D for deterministic computation,
we obtain five more classes

DTISP(T, S), ZPTISP(T, S), RTISP(T, S), BPTISP(T, S), PrTISP(T, S).

Note that in the time-bounded setting there is no need to distinguish between the halting and non-
halting models (as the time bound is given). Also, for probabilistic classes we add an additional
parameter R for algorithms that use O(R) random bits in expectation, e.g.,

BPSPACE(S,R)

is the class of bounded two-sided error randomized algorithms that use O(S) space, and O(R)
random bits2. Again, there is no need to distinguish the halting and non-halting models. Obviously,

XSPACE(S,R) ⊆ XTISP(R,S)

for any X ∈ {Pr, . . .}.
Due to a counting argument any algorithm that always halts and run in space S, necessarily

runs in at most 2O(S) time. Conversely, algorithms that run more than 2O(S) time necessarily do
not halt for some setting of the randomness tape. Therefore, the value of

T = 2O(S)

exhibits a boundary behaviour where T , S are the time and space complexities respectively. First,
the former observation suggests that

XHSPACE(S) = XTISP(2O(S), S)

for any X ∈ {Pr, BP, R, ZP}. Similarly, for R ⩾ 2O(S)

XSPACE(S,R) = XTISP(R,S)

as after exhausting all randomness the machine will necessarily stop after 2O(S) steps. Despite
technically unnecessary, it is perhaps more aesthetic to add the sub-script H to BPTISP(T, S),
and BPSPACE(S,R) whenever T,R < 2O(S) indicating that, without the loss of generality, the
algorithm always halts.

The following figure is taken from [Sak96] and illustrates the “landscape of randomized space
bounded algorithms” as it is known to date. Observe that there is a collapse in the one/zero-sided,
non-halting model

RSPACE(S) = coRSPACE(S) = ZPSPACE(S) = NSPACE(S),

which is due to Gill [Gil77]. Also, we have left out the unbounded error in the non-halting model
since Jung showed in [Jun81] that

PrHSPACE(S) = PrSPACE(S).
2In Saks’s survey [Sak96] he uses the notation XRSPACE.
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DSPACE(S) = BPHSPACE(S, SO(1))

[NZ96]

ZPHSPACE(S) RHSPACE(S)coRHSPACE(S)

RSPACE(S)coRSPACE(S) NSPACE(S)NSPACE(S) ==

[Gil77]
BPHSPACE(S)

BPSPACE(S)

PrSPACE(S)

DSPACE(S2)

DSPACE(S3/2/
√

logS) DTISP(2O(S), S2)

[Jun81, BCP83]

[SZ99, Hoz21] [Nis94]

Figure 4.1: The landscape of randomized space bounded algorithms (Figure 3 in [Sak96]). Arrows
indicate inclusion.

4.1.2 The Matrix Multiplication Problem
As already indicated in Section 2.4, derandomizing space-bounded algorithms can be reduced to
approximating powers of stochastic matrices. Let us now put the problem of matrix multiplication
in a broader context, and try to paint an analogous landscape similar to that in Figure 4.1.

The computational complexity of matrix multiplication is arguably one of the most studied
problems in the theory of computation, and its importance cannot be overstated. In the time
bounded regime, the matrix multiplication problem was granted a special constant, also known as
the matrix multiplication constant: the smallest constant ω for which any n × n matrix can be
multiplied via

O(nω+o(1))

arithmetic operations. The constant ω frequently appears in the running time complexity of al-
gorithms stressing that a better matrix multiplication algorithm yields improved performance. In
the space-bounded regime it is possible to multiply matrices in logarithmic space (See Section 2.2),
which is essentially optimal, and so one is mainly interested in matrix powering instead. Similarly
to the matrix multiplication constant, the complexity of matrix powering has its own complexity
class - DET. As the name suggests, DET is the class of all problems that reduce3 to computing
the determinant of a given integer matrix, which can be shown to be equivalent to powering in-
teger matrices (and many other linear-algebraic problems such as inversion). In terms of space
complexity, it is known that [Ber84, Csa76]

DET ⊆ DSPACE(S2),

3The reduction is required to run in logarithmic space.
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which is believed to be tight. For more details on the class DET the reader is referred to [Coo85].
The matrix multiplication problem has many natural variants. While many of these often come

up in various applications, the universality of matrix multiplication makes them interesting on their
own right. We list some of these variants:

i. Assuming that the matrices are of a certain type. For example, many important graph
algorithms work with the transition matrix of a graph - a stochastic matrix. Other natu-
ral matrix classes include unitary matrices, doubly-stochastic matrices, matrices of bounded
norm, M -matrices, Z-matrices etc.

ii. Different notion of approximation: exact computation, or approximation with respect to some
notion (e.g., matrix norms).

iii. Powering and Iterated Products: Given n compute the n-th power of a matrix, or more
generally, given n matrices A1, . . . , An compute their iterated products. It is also useful to
compute a polynomial in a given matrix (e.g., see [CCL+15])

p(A) = c0I + c1A+ c2A
2 + · · ·+ cdA

d,

where p(x) =
∑d

i=0 aix
i, or even functions4, e.g., matrix exponential eA.

iv. Large/Small Matrices: Compute or approximate the iterated product of n matrices which are
w × w where n,w are not necessarily comparable, i.e., w ≪ n, or w ≫ n.

Focusing on space-bounded algorithms, matrix multiplication is not merely an important com-
putational problem, but rather captures computation itself. In high level, the execution of an
algorithm can be understood as a local operator on the space of configurations (See Section 2.4).
Here, locality refers to the fact that at any moment a TM can only access one bit of storage, and
it can only decide based on that information and its internal memory (which is constant). While
in most settings locality is crucial, for low-space algorithms the work-tape is extremely short so
locality is usually (if not always) neglected. Assuming this negligence, a low-space algorithm is a
successive application of an arbitrary operator on the space of configurations. Such operator can
easily be described via a matrix. Deterministic computation corresponds to Boolean stochastic ma-
trices, randomized computation corresponds to stochastic matrices, and even quantum computation
(roughly) corresponds to matrices of bounded-norm [FR21].

Going back to the landscape illustrated in Figure 4.1, the problem of approximating the n-th
power of a w × w stochastic matrix is “complete” for the class

BPSPACE(logw, n),

namely randomized algorithms that use logw space, and n random bits. Consequently, whenever
n,w are polynomially related then this problem is “complete” for BPL. For the non-halting model
of

BPSPACE(logw)

it is tempting to consider the problem computing the infinite power series of a stochastic operator
A ∈ Rw×w

I +A+A2 +A3 + · · · ,
4Assume f : R → R has a power series f =

∑∞
n=0 anx

n then we can define f(A)
def
=

∑∞
n=0 anA

n.
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as it encodes all possible powers, and hence accounts for all possible halting times. Assuming the
above series converges, then by the formula for the sum of geometric series

(I −A)−1 = I +A+A2 +A3 + · · · .

Unfortuantely, the series does not necessarily converge, though we may consider instead what is
called the pseudoinverse of I −A

(I −A)†
def
= lim

δ→0+
(I − (1− δ)A)−1.5

For classes of type Pr, R, ZP it is possible to consider similar variants. To be exact, the above
computational problems are not complete in the traditional sense as they are not a decision problem.
The completeness of such problems can be formalized and formulated using the concept of promise
problems, though we will not do it here (see [RTV06, Appendix A.2]). Nonetheless, any algorithm
for the matrix powering problem yields an upper bound for the corresponding class. E.g., an
algorithm of type X for approximating the n-th power of a w×w stochastic operator using T (n,w)
time, and S(n,w) space gives

BPHTISP(n, logw) ⊆ XTISP(T (n,w), S(n,w)).

Conversely, the aforementioned problems can be solved via a randomized algorithm of the appro-
priate type that interprets the matrix as a Markov chain (or a graph), and estimates its transition
matrix by sampling random walks on it. Again, the reader is referred to Saks’s survey for more
details ([Sak96, Section 2.4]).

4.2 Our Result
4.2.1 Previous Works
We study the problem of approximating powers of stochastic matrices. Apart from the naive
algorithm presented in Section 2.2, there are two non-trivial algorithms for this problem. The first
algorithm is based on the celebrated Cayley–Hamilton theorem.

Theorem 4.2.1 ([MP00]). For any n,w ∈ N there exists a deterministic algorithm that on input
a w × w matrix A, represented by k bits, outputs An using space O(logn+ log2 kw).

For completeness, we give the formal details in Section 4.9.1. It is also worth noting that the
algorithm in Theorem 4.2.1 is exact, and works for any matrix.

For stochastic matrices, introducing ε > 0 approximation error, Saks and Zhou devised an
algorithm [SZ99] that runs in space

O
(√

logn · log nw
ε

)
.

The dependence on ε was recently improved by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford,
and Vadhan [AKM+20] using the Richardson iteration (see Section 3.5), obtaining

O

(√
logn · log(nw) + log log 1

ε
· log(nw)

)
5This definition is only valid whenever A is stochastic. There is a general way of defining a pseudoinverse but we

will not go into that.
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space.
Another result that pertains approximating powers of stochastic matrices is due to the afore-

mentioned work of [AKM+20] who showed that the powers of doubly-stochastic matrices can be
computed in nearly-optimal space complexity.

Theorem 4.2.2 ([AKM+20]). For any n,w ∈ N there exists a deterministic algorithm that given
a w × w doubly-stochastic matrix A, represented by k bits, outputs An using

O

(
log(nkw) log log nkw

ε

)
.

space.

A doubly-stochastic matrix, is a matrix whose entries are non-negative, and all its rows and
columns sum to 1. Hence, doubly-stochastic matrices form a sub-class of stochastic matrices.
Furthermore, for matrix powering their algorithm essentially applies to any stochastic matrix with
known stationary distribution6, e.g., regular graphs (a.k.a. Eulerian graphs). Their result is an
accumulation of a long line of works [RVW02, Rei08, RV05, RTV06, CKP+16, CKP+17, MRSV17,
MRSV19].

4.2.2 Our Result
The main result of this work is an algorithm that builds and improves upon the classical Saks–Zhou
algorithm (as well as [AKM+20]) in the regime n≫ w.

Theorem 4.2.3 ([CDSTS22]). For any w, n ∈ N, and ε > 0, there exists a deterministic algorithm
that given stochastic matrix A ∈ Rw×w approximates the power An to within accuracy ε = n− logn

in space
Õ
(

logn+
√

logn · logw
)
,

where the Õ notation hides doubly-logarithmic factors in n and w. More precisely, our algorithm
requires

O

((
logn+

√
logn · logw

)
· log log(nw) + log log 1

ε
· log(nw) +

(
log log 1

ε

)2
)
.

space.

The algorithm of Theorem 4.2.3 outperforms previous results whenever

w ≪ n.

For concreteness, let us take w = 2logα n for some constant α ∈ (0, 1). Assuming w ⩽ n, the
Saks–Zhou algorithm requires O(log3/2 n) space, and the algorithm that is given by theorem 4.2.1
requires O(log1+2α n) space. We can then conclude a slight improvement to the landscape depicted
in Figure 4.1 proving

BPSPACE(S,R) ⊆ DSPACE(logR+ S
√

logR),

which improves upon the Saks–Zhou result in the regime of R > logS. Recall that in this regime,
the algorithm necessarily does not halt, and also this is the same as

BPTISP(T, S) ⊆ DSPACE(logT + S
√

logT ).
6Suppose that G is a strongly connected graph, with transition matrix A then by the Perron–Frobenius theorem

there exists a unique distribution π such that Aπ = π. The distribution π is called the stationary distribution of G.
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4.3 Overview
We explain why the Saks–Zhou algorithm fails to provide better parameters in the regime w ≪ n,
and proceed to describe how to adjust it in order to get the improved parameters of Lemma 5.4.1.

4.3.1 The Saks–Zhou Framework
The Saks–Zhou algorithm consists of two ingredients:

1. The celebrated Nisan generator (see Section 2.7.1), which is used as a randomized matrix
exponentiation algorithm.

2. Canonization using the shift and truncate technique (see Section 4.5). By the latter, we mean
subtracting a small quantity from intermediate calculations (i.e., shift), and keeping only
some of the most significant digits (i.e., truncate).

Roughly speaking, the Saks–Zhou algorithm works as follows. The algorithm gets as input a
stochastic matrix A ∈ Rw×w, auxiliary randomness for the Nisan generator as well as for the shifts,
and proceeds as follows.

1. Set M̃0 = A.

2. For i = 1, . . . ,
√

logn,

(a) Approximate the 2
√

logn-th power of M̃i−1 within accuracy ρ1 using the Nisan generator.
(b) Shift that approximation by a random shift of magnitude ζ · ρ2, where ζ is chosen

uniformly from {0, 1, . . . , L}, and truncate it to a precision of ρ2.
(c) Set M̃i to be the result of that shift and truncation.

3. Output M̃i for i =
√

logn.

The crucial point in the above procedure is that the canonicalization step (to be discussed later)
enables the reuse of the randomness needed for the different applications of the Nisan generator.
Specifically:

• Applying the Nisan generator to approximate A2
√

log n , for an w × w matrix A, requires seed
length of

O

(
log n

ρ1
·
√

logn
)

bits that are fixed and reused throughout the different applications of the Nisan generator.

• Drawing the shifts requires
logL ·

√
logn

bits.

• Each of the
√

logn steps requires O(log n
ρ1
) space.

For simplicity, let us first consider the case w = n. It turns out that ρ1, ρ2, and L all have to be
polynomial in n namely,

ρ1 = n−Θ(1), and ρ2 = n−Θ(1), and L = nΘ(1).
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The reason why ρ1 and ρ2 have to be polynomially small is because errors accumulate additively,
and if we raise to a power of n, the final error contains a term of order

n(ρ1 + ρ2).

Also, L has to be polynomially large because for each of the w2 entries of A, the shift has probability
at least 1/L to be “bad”, and therefore the final error term contains a term of order

w2

L
.

Altogether, the space complexity becomes O(log3/2 n).
Let us now check what changes when we separate the dimension parameter w from the exponent

parameter n, and when w ≪ n. Suppose our input is a w × w stochastic matrix A, and we want
to approximate An. For simplicity, we employ the same approach as before: i.e., we have

√
logn

steps, each raising to a power of 2
√

logn. Then:

• As before, the parameters ρ1, ρ2 have to be n−Θ(1), because the errors accumulate additively
in the exponent parameter n.

• However, L may be smaller now, as there are only w2 entries in the matrix A, and we only
need to take a union bound over w2

√
logn events (w2 events for each of the

√
logn steps).

Indeed, our algorithm invests roughly logw random bits for choosing the shifts7.

Doing the calculation of the overall space complexity we see that we have gained nothing since
the space complexity of a single application of the Nisan generator is still

O(
√

logn+ logw + log 1

ρ1
) = O(logn).

In fact, any approximation of precision ρ1 that comes from using a PRG must have space complexity
Ω(log 1

ρ1
). The crux of the problem lies in the fact that we have to work with accuracy n−Ω(1), and

then it seems inevitable that each step of the
√

logn steps should have space complexity O(logn),
yielding the same space complexity of O(log3/2 n) as before.

In order to avoid the aforementioned loss of parameters in the case w ≪ n we employ the
following approximation scheme: Throughout the computation our matrices will be kept with
n−Θ(1) accuracy. However, we purposely decrease the precision of the input matrix to the Nisan
generator by truncating its entries to a precision of w−Ω(1). The output of the generator then gives
us a “mild” approximation to the 2

√
logn-th power. Then, to restore the (required) high precision

approximation of n−Ω(1), we invoke the Richardson iteration (See Section 3.5). It is crucial to note
that although we decrease the precision, this precision is not lost because we keep the untruncated
matrix as an anchor for the correct result: The Richardson iteration combines the untruncated
matrix with the mild approximation of its 2

√
logn-th power, to get a high-precision approximation

of that power.
We are now ready to give a rough outline of our algorithm (see also Figure 4.2). The precise

description is given in Section 4.6. The algorithm gets as input a stochastic matrix A ∈ Rw×w,
auxiliary randomness for the Nisan generator as well as for the shifts, and proceeds as follows.

1. Set M̃0 = A.
7Note, however, that each shift has magnitude at most L · ρ1 = n−Θ(1).
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2. For i = 1, . . . ,
√

logn,

(a) Truncate M̃i−1 to a precision of w−Ω(1) and denote this by ⌊M̃i−1⌋.
(b) Set the Nisan generator to work with accuracy w−Ω(1) and use it to approximate

⌊M̃i−1⌋2
√

log n

.

Note that since M̃i−1 ≈ ⌊M̃i−1⌋, we get M̃2
√

log n

i−1 ≈ ⌊M̃i−1⌋2
√

log n .
(c) Use the mild approximation obtained above to compute a high precision approximation

Ri ≈ M̃2
√

log n

i−1

by applying the Richardson iteration. We stress that the Richardson iteration improves
our approximation with respect to the previous high precision approximation M̃i−1 and
not its truncation.

(d) Shift Ri by a random shift of magnitude n−Ω(1), and truncate it to a precision of n−Ω(1).
We set M̃i to be the result of that shift and truncation.

3. Output M̃i for i =
√

logn.
Figure 4.2 illustrates the alternating nature of the algorithm, zig-zagging between a mild ap-

proximation of w−Ω(1) and a high precision approximation of n−Ω(1). Setting the parameters ap-
propriately, we get that with high probability over the auxiliary randomness, i.e., the seed for the
Nisan generator and the shifts, the algorithm outputs a good approximation for An using

Õ(logn+
√

logn · logw)

space.

M̃0

⌊M̃0⌋ ≈ ⌊M̃0⌋2
√

log n

R0 M̃1

⌊M̃1⌋ ≈ ⌊M̃1⌋2
√

log n

R1 M̃2

. . .
Truncate

Nisan

R
ich

ar
ds

on

Richardson
S&T

Truncate

Nisan

R
ich

ar
ds

on
Richardson

S&T

Figure 4.2: Our Improved SZ Algorithm. “S & T” refers to “shift and truncate”.

Averaging over the auxiliary randomness, as done in [SZ99], would yield a space-efficient de-
terministic algorithm, albeit with accuracy of w−Ω(1). It is thus tempting to try and apply an
additional layer of the Richardson iteration in order to improve the accuracy to an arbitrary ε > 0
(similar to [AKM+20] for the standard Saks–Zhou algorithm when w = n). However, to apply the
Richardson iteration, the initial accuracy needs to be at least n−Ω(1) ≪ w−Ω(1). To overcome this
issue, we observe that while the average does not give us a good enough guarantee, the median
does. Applying the Richardson iteration after taking the median over the auxiliary randomness,
we get our final high-precision approximation.
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4.4 Preliminaries
4.4.1 Matrix Sequences
We shall denote a sequence of matrices by (M) namely

(M) = ((M)1, (M)2, . . . , (M)m),

and m is the length of (M). We caution that the notation (Mi) means a matrix sequence named
Mi, and so (Mi)j is the j-th matrix in the sequence named Mi. Given B = (b1, b2, . . .) define

(M)B
def
= ((M)b1 , (M)b2 , . . .).

We extend operations to sequences element-wise, in the natural way. E.g., if T is some operator
on matrices then T ((M)) is the sequence defined by T ((M))j

def
= T ((M)j). Similarly, we define the

following shorthand ∏
B

(M)
def
=
∏
j

(M)bj .

4.4.2 The Richardson Iteration
Recall the Richardson iteration from Section 3.5. Previously, we have used it in Chapter 3 to
derive a WPRG against the model ROBPs, though a more straightforward application of it is an
algorithm that improves the accuracy of matrix iterated products [AKM+20, PV21, CDR+21]. For
completeness, we provide the short proof in section 4.9.2.

Lemma 4.4.1. There exists an algorithm R that gets as input a sequence of sub-stochastic matrices
(A) = (A1, . . . , An) of dimension w × w, an integer k ∈ N, and a sequence sub-stochastic matrices
(B) satisfying:

• If for all 1 ⩽ i ⩽ j < n

∥Ai · · ·Aj − (B)i,j∥∞ ⩽ 1

4(n+ 1)
,

then ∥∥R
(
(Bi,j)

n
i,j=1, (Ai)

n
i=1, k

)
−A1 · · ·An

∥∥
∞ ⩽ (n+ 1) · 2−k.

• R runs in
O
(
log2 k + log k · log(nT )

)
space, where T = max{|Ai|, |(B)i,j |} is the maximum bit-complexity of the given matrices.

In the above lemma, whenever A1 = A2 = · · · = An then it suffices to get as input matrices
(B) = (B1, . . . , Bn) satisfying ∥∥Ai −Bi

∥∥
∞ ⩽ 1

4(n+ 1)
.

In this case, we shall invoke the algorithm using the syntax

R((B), A, k),

where A = A1 = A2 = · · · = An.
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4.5 Revisiting the Saks–Zhou Framework
We revisit Saks and Zhou’s argument in a different terminology, which would allow us to lay the
groundwork for our improved algorithm given in the next section.

4.5.1 Canonicalization of ROBPs
An important step in [SZ99] is to transform a given stochastic matrix (or a sub-stochastic one) into
an ROBP, in a canonical way. We first make this notion explicit.

Given a w×w sub-stochastic matrix M in which every entry is represented using at most s bits,
let B = C(M) be the ROBP of width w+1, over alphabet Σ = {0, 1}s constructed as follows. Given
i ∈ [w] and σ ∈ Σ, B(i, σ) = j where j is the smallest integer satisfying

∑
k⩽j M [i, k] ≥ σ · 2−s if

such exists, and w+1 otherwise. Moreover, we set B(w+1, σ) = w+1 for all σ ∈ Σ. The following
claim then follows easily.

Claim 4.5.1. For a sub-stochastic matrix M , it holds that M(C(M))[1,w] = M , where we denote
by A[a,b] the sub-matrix of A that is formed by taking the rows and columns indexed by a, . . . , b.

In our work, we will also need to work with lossy canonicalizations, in which we translate a
sub-stochastic matrix with a large bit-complexity into an ROBP over a small alphabet. Given a
sub-stochastic M and t ∈ N, we let Ct(M) be the canonicalization of M into an ROBP of width
w + 1 over the alphabet Σ = {0, 1}t, regardless of the representation of its elements. Namely,
B = Ct(M) is defined such that B(i, σ) = j, where again, j is the smallest integer satisfying∑

k⩽j M [i, k] ≥ σ · 2−t if such exists, and w + 1 otherwise. We also set B(w + 1, σ) = w + 1 for all
σ ∈ Σ as before.

Claim 4.5.2. Let A be a w ×w sub-stochastic matrix A in which every entry is represented using
at most s bits, and let t ∈ N where t ⩽ s. Then,∥∥∥M(Ct(A))[1,w] −A

∥∥∥
∞

⩽ w · 2−t.

Moreover, computing Ct takes O(log s+ logw) space.

An Extended Nisan Algorithm. Recall the Nisan generator presented in Section 2.7.1. For
simplicity, let us only consider an ROBP of width w over alphabet Σ with a transition matrix A
rather than different transitions at each layer. Observe that the Nisan generator, set with length
parameter n, can also approximate all intermediate powers by truncating its output accordingly.

We can now summarize the parameters of the generator as a randomized algorithm for approx-
imating powers of matrices.

Theorem 4.5.3 ([Nis92]). There exists an algorithm N that gets as input an ROBP B ∈ ([w]×Σ →
[w])n with a transition matrix A = M(B), an accuracy parameter ε > 0, a confidence parameter
δ > 0, and a seed h ∈ {0, 1}dN where dN = O

(
logn · log nw|Σ|

εδ

)
. The algorithm runs in space

O
(

log nw|Σ|
εδ

)
and outputs a sequence

N(B, h) = (Mh),

where (Mh)i ∈ Rw×w for i = 1, . . . , n, and satisfies the following. With probability at least 1 − δ
over h ∈ {0, 1}dN, it holds that for all i ∈ [n],∥∥(Mh)i −Ai

∥∥
∞ ⩽ ε.
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We will often want to feed Nisan’s algorithm with stochastic (or even sub-stochastic) matrices,
rather than ROBPs. The following theorem extends upon theorem 4.5.3 by preforming a canonical-
ization step prior to applying Nisan’s algorithm, and even allows for a lossy canonicalization step
which would be useful toward reducing the space requirements. As it will be clear from context,
we use N for both the algorithm that gets an ROBP as input and for the one that gets a matrix as
input.

Lemma 4.5.4. There exists an algorithm N that gets as input:

1. A w × w sub-stochastic matrix A in which every entry is represented using at most s bits.

2. An accuracy parameter ε > 0, a confidence parameter δ > 0, and a canonicalization parameter
t ∈ N, where t ⩽ s.

3. A seed h ∈ {0, 1}dN for dN = O
(
logn ·

(
t+ log nw

εδ

))
.

The algorithm runs in space O
(
log s+ log nw

εδ

)
and outputs

N(A, h) = (Mh),

each (Mh)i ∈ Rw×w, and satisfies the following

Pr
h∈{0,1}dN

[
∀i
∥∥(Mh)i −Ai

∥∥
∞ ⩾ ε+ nw · 2−t

]
⩽ δ.

When we omit the parameter t, we implicitly set t = s, and then the error guarantee is simply ε.
Also, when we set N to output a single matrix, we take it to be (Mh)n.

Proof. We compute B = Ct(A) and apply N(B, h, n), which outputs (Mh)1, . . . , (Mh)n. We then
consider only the first w rows and columns of each matrix. By Theorem 4.5.3, with probability at
least 1− δ over h ∈ {0, 1}dN , we are guaranteed that∥∥∥(Mh)i − M(B)i

∥∥∥
∞

⩽ ε

for all i ∈ [n]. By claim 4.5.2, ∥M(B)−A∥∞ ⩽ w · 2−t, and thus, due to claim 2.4.5,∥∥(Mh)i −Ai
∥∥
∞ ⩽ ε+ iw · 2−t.

The space requirements and the bound for dN readily follows from claim 4.5.2 and theorem 4.5.3.
Note that when t = s, the canonicalization is lossless.

4.5.2 Shift and Truncate
Definition 4.5.5 (truncation). For z ∈ [0, 1] and t ∈ N, we define the truncation operator ⌊z⌋t
which truncates z after t bits. Namely,

⌊z⌋t = max{2−t · ⌊2tz⌋, 0}.

We extend it to matrices in an entry-wise manner. That is, for a sub-stochastic matrix A, the
matrix ⌊A⌋t has entries ⌊A[i, j]⌋t.

Lemma 4.5.6. Let y, z ∈ [0, 1] be such that |y − z| ⩽ 2−2t. Then, for all ℓ < t we have that

Pr
ζ

[
⌊z − ζ2−2t⌋t ̸= ⌊y − ζ2−2t⌋t

]
⩽ 2−ℓ,

where ζ is chosen uniformly at random from {0, 1, 2, . . . , 2ℓ − 1}.
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Proof. Without the loss of generality assume z < y. Note that ⌊z − ζ2−2t⌋t ̸= ⌊y − ζ2−2t⌋t is
equivalent to

∃a ∈ N, a2−t ∈
[
z − ζ2−2t, y − ζ2−2t

)
. (4.1)

However, by our assumption |y − z| ⩽ 2−2t the following union⋃
ζ∈{0,...,2ℓ−1}

[
z − ζ2−2t, y − ζ2−2t

)
⊆
[
z − (2ℓ − 1)2−2t, y

)
= I

is disjoint and contained in the interval I which is of length at most |y − z| + (2ℓ − 1)2−2t ⩽ 2−t.
Hence, there is at most one point in I which is an integer multiple of 2−t, meaning that there is at
most one ζ satisfying Equation (4.1).

The preceding lemma is an important ingredient in [SZ99], that enables one to eliminate de-
pendencies between consecutive applications of Nisan’s algorithm. Think of z as an approximation
to some y obtained by a randomized algorithm that typically returns a good approximation z ≈ y.
Note that while z, y might be extremely close, their truncation may differ if they are on the bound-
ary values of the truncation operator. The idea behind Lemma 4.5.6 is that if we randomly shift
both y, z then their truncation is equal with high probability. Once we fix a good shift our ap-
proximation depends only on the input (and the fixed shift) and not on the internal randomness
used to compute z. See [TS13, HK18, HU21] for additional discussion. Extending Lemma 4.5.6 to
matrices, a simple union-bound gives us the following corollary.

Corollary 4.5.7. Let M,M ′ ∈ Rw×w be such that ∥M −M ′∥max ⩽ 2−2t. Then, for all ℓ < t, we
have that

Pr
ζ

[
⌊M − ζ2−2tJw⌋t ̸= ⌊M ′ − ζ2−2tJw⌋t

]
⩽ w22−ℓ,

where ζ is chosen uniformly at random from {0, 1, 2, . . . , 2ℓ−1} and Jw is the all-ones w×w matrix.

4.5.3 Revisiting the Saks–Zhou Algorithm and Its Analysis
Given a w × w stochastic matrix A, we wish to compute An, where n = 2r for some integer r.
(This can be assumed without any significant loss in parameters.) In this section we describe
Saks and Zhou’s randomized algorithm that uses only O(r3/2) random bits, and runs in space
O(r3/2). As discussed toward the end of this section, the algorithm can then be derandomized in
a straightforward manner while maintaining space complexity O(r3/2).

Without the loss of generality we may assume that the input matrix A is given to us using t
digits of precision.
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Algorithm: Saks–Zhou (SZ)
Input: Stochastic Matrix A ∈ Rw×w represented to t bits of accuracy.
Output: Stochastic Matrix M ∈ Rw×w that approximates A2r .
Parameters: Let ε > 0 be a desired accuracy parameter, and δ > 0 be the desired
confidence. Set t = log 2nw2r2

εδ , ℓ = t/2. Instantiate N to approximate powers of order
2r1 with accuracy εN = 2−2t, confidence δN = δ

2r2
, and canonicalization parameter t.

Also, set r = logn = r1r2.

1. Draw h ∼ {0, 1}dN uniformly.

2. Set M̃0 = A.

3. For i = 1, . . . , r2,

(a) Draw ζi ∼ {0, . . . , 2ℓ − 1} uniformly.

(b) Set M̃i =
⌊
N
(
M̃i−1, h

)
− ζi2

−2tJw

⌋
t
.

4. Output M̃r2 .

Theorem 4.5.8 ([SZ99]). For any w×w stochastic matrix A, and integers r1, r2 such that r1r2 =
r = logn

Pr
h,ζ

[∥SZ(A, h, ζ)−An∥∞ ⩾ ε] ⩽ δ.

Moreover, SZ(A, h, ζ) runs in space O
(
r2 · log nw

εδ

)
.

Proof. We let Mi be the “true” random rounding. That is, M0 = A, and for each i

Mi(ζ) = ⌊Mi−1(ζ)
2r1 − ζi2

−2tJw⌋t. (4.2)

Observe that the Mi-s do not depend on h. For brevity, we omit the dependence on h and ζ
whenever it is clear from context.

Next, we argue that with high probability (over h and the ζ-s), M̃i = Mi. To this end, define
for each fixing of ζ1, . . . , ζi,

GOODi,ζ = {h ∈ {0, 1}dN :
∥∥M2r1

i − N(Mi, h)
∥∥
∞ ⩽ εN}. (4.3)

It is important to note that whenever ζ1, . . . , ζi are fixed, the matrices M1,M2, . . . ,Mi are fixed as
well, as opposed to the matrices M̃1, . . . , M̃i, which depend on the choice of h. By lemma 4.5.4, we
get that for any i ∈ [r2] and ζ1, . . . , ζi,

Pr
h∈{0,1}dN

[h ∈ GOODi,ζ ] ≥ 1− δN. (4.4)

Claim 4.5.9. It holds that

Pr
h,ζ

[
∃j ∈ [r2], Mj ̸= M̃j

]
⩽ r2w

22−ℓ ⩽ δ.

Proof. We prove by induction on i that

Pr
h,ζ

[
∃j ⩽ i, Mj ̸= M̃j

]
⩽
(
δN + w22−ℓ

)
· i.
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The base case i = 0 is trivial. Fix some i ≥ 1, and denote by E the “bad” set

E = {(h, ζ) : ∃j < i such that Mj ̸= M̃j or h ̸∈ GOODi−1,ζ}.8

Next, we write

Pr
h,ζ

[
∃j ⩽ i,Mj ̸= M̃j

]
= Pr[E]Pr

[
∃j ⩽ i,Mj ̸= M̃j

∣∣ E]+ Pr[¬E]Pr
[
Mi ̸= M̃i

∣∣ ¬E]
⩽ Pr[E] + Pr

[
Mi ̸= M̃i

∣∣ ¬E]
⩽ Pr

[
∃j < i,Mj ̸= M̃j

]
+ Pr [h ̸∈ GOODi−1,ζ ] + Pr

[
Mi ̸= M̃i

∣∣ ¬E] .
By the induction’s hypothesis the first term is at most

(
δN + w22−ℓ

)
(i− 1), and by Equation (4.4)

the second term is at most δN, so it suffices to show that

Pr
h,ζ

[
Mi ̸= M̃i

∣∣ ∀j < i Mj = M̃j and h ∈ GOODi−1,ζ

]
⩽ w22−ℓ.

In fact, we shall show that for any fixed ζ1, . . . , ζi−1 and h satisfying the above conditioning, we
have

Pr
ζi

[
Mi ̸= M̃i

]
⩽ w22−ℓ.

Since h ∈ GOODi−1,ζ , ∥∥M2r1
i−1 − N(Mi−1, h)

∥∥
∞ ⩽ εN.

Recall that we assumed that M̃i−1 =Mi−1, and so∥∥∥M2r1
i−1 − N

(
M̃i−1, h

)∥∥∥
∞

⩽ εN = 2−2t

as well. By corollary 4.5.7, with probability at least 1− w22−ℓ over ζi,⌊
M2r1

i−1 − ζi2
−2tJw

⌋
t
=
⌊
N
(
M̃i−1, h

)
− ζi2

−2tJw

⌋
t
,

which simply amounts to Mi = M̃i, as desired (see eq. (4.2) for the definition of Mi). This completes
the inductive step.

Next, we handle the accuracy guarantee.

Claim 4.5.10. For all i ∈ {0, 1, . . . , r2} and all ζ it holds that

∥∥∥Mi −A2ir1
∥∥∥
∞

⩽ 2−t+1w
i−1∑
j=0

2jr1 .

In particular, ∥Mr2 −An∥∞ ⩽ ε.
8For brevity, we use the notation GOODi,ζ even when the ζ vector contains more than j elements, in which case

we just ignore the rest of them.
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Proof. We prove the claim by induction on i. The base case follows since M0 = A. Fix some i ≥ 1.
By the definition of Mi we have∥∥Mi −M2r1

i−1

∥∥
max ⩽ 2−t + 2−2t+ℓ ⩽ 2−t+1,

and so by Claim 2.4.4,
∥∥Mi −M2r1

i−1

∥∥
∞ ⩽ 2−t+1w. Write∥∥∥Mi −A2ir1

∥∥∥
∞

⩽
∥∥Mi −M2r1

i−1

∥∥
∞ +

∥∥∥∥M2r1
i−1 −

(
A2(i−1)r1

)2r1∥∥∥∥
∞
.

By the induction’s hypothesis and Claim 2.4.5, the second term is at most

2r1 · 2−t+1w

i−2∑
j=0

2jr1 .

Overall, we get

∥∥∥Mi −A2ir1
∥∥∥
∞

⩽ 2−t+1w + 2r1 · 2−t+1w
i−2∑
j=0

2jr1 ⩽ 2−t+1w
i−1∑
j=0

2jr1 .

This completes the induction. The “In particular” part follows from our choice of parameters,
noting that 2−t+1w · 2r ⩽ ε.

claim 4.5.9 tells us that with probability at least 1 − δ, M̃r2 = Mr2 . By claim 4.5.10 above,∥∥∥M̃r2 −An
∥∥∥ ⩽ ε, so the correctness follows.

For the space complexity, by lemma 4.5.4, N takes O
(
r1 + log w

εNδN

)
space and the rest of

the operations per iteration are absorbed within the latter term. This yields space complexity of
r2 ·O

(
r1 + log w

εNδN

)
= r2 ·O

(
log nw

εδ

)
.

Given the above theorem, one can readily obtain a deterministic algorithm for matrix powering
by averaging over all seeds, using space

O
(
r2ℓ+ dN + log nw

εδ

)
= O

(
r2 log nw

εδ
+ r21 + r1 log nw

εδ

)
.

Setting r1 = r2 =
√
r =

√
logn, and δ = ε, one gets O(ε) approximation in the induced ℓ∞ norm

using space
O
(√

logn · log nw
ε

)
.

We omit the details as we take a different approach for this final step in our improved algorithm.

4.6 Algorithm Outline, Correctness, and Complexity
In this section, we present our improvement upon the Saks–Zhou algorithm to obtain better space
complexity for approximating large powers of matrices, following the outline given in Section 4.3.
To this end, we devise a randomized algorithm which is derandomized in section 4.8, state its
correctness, and space complexity.
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Algorithm: Improved Saks–Zhou (SZImp)
Input: Stochastic Matrix A ∈ Rw×w represented using t2 bits of accuracy.
Output: Stochastic Matrix M ∈ Rw×w that approximates A2r .
Parameters: Let ε > 0 be a desired accuracy parameter, and δ > 0 be the desired
confidence. Set t1 = 4r1 + logw, t2 = log 16nw2r2

εδ , ℓ = log 2w2r2
δ . Instantiate N to

approximate powers of order 2r1 with accuracy εN = 2−2r1 , confidence δN = δ
2r2

, and
canonicalization parameter t1. Also, set r = logn = r1r2.

1. Draw h ∼ {0, 1}dN uniformly.

2. Set M̃0 = A.

3. For i = 1, . . . , r2,

(a) Draw ζi ∼ {0, 1, . . . , 2ℓ − 1} uniformly.

(b) Compute M̃i =
⌊
R
(

N
(
M̃i−1, h

)
, M̃i−1, 3t2

)
− ζi2

−2t2Jw

⌋
t2

.

4. Output M̃r2 .

Remark 9. The Richardson iteration may output a matrix which is not sub-stochastic, but as we
shall see from the analysis, if this happens the algorithm can simply ’quit’.

The parameters are chosen to satisfy the following constraints:

ℓ < t2, (4.5)
t1 < t2, (4.6)

εN + w · 2r1−t1 ⩽ 1

4(2r1 + 1)
, (4.7)

2−t2 ⩽ 1

2r1 + 1
. (4.8)

Equations (4.5) and (4.6) are so that we can apply Corollary 4.5.7, and Equations (4.7) and (4.8)
are so that we can apply the Richardson iteration (Lemma 4.4.1).

Lemma 4.6.1. For any w × w stochastic matrix A, and integers r1, r2 such that r1r2 = r = logn

Pr
h,ζ

[
∥An − SZImp(A, h, ζ)∥∞ ⩾ ε

]
⩽ δ.

Before delving into the analysis, let us briefly discuss our parameters. We start with the
truncation parameters t1, t2. The parameter t2 determines the accuracy of the algorithm, and is
governed by n. The second truncation occurs implicitly within the canonicalization step where we
truncate all but the first t1 bits before applying the Nisan generator. The parameter t1, which
is governed by w and r1, does not affect the accuracy due to the Richardson iteration performed
right after. The “shift” parameter ℓ is the amount of randomness we invest in the shifts, which
also determines the probability in which the shifts are successful. Note that we set ℓ ≪ t2, and in
particular ℓ does not depend on n and the accuracy parameter ε. In contrast, in [SZ99], ℓ = Ω(t)
(see section 4.5).

Next, we determine our algorithm’s space complexity.
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Lemma 4.6.2. The algorithm SZImp(A, h, ζ) can be implemented in

O

(
(logn+ r2 logw) · log log nw

εδ
+ r2 log 1

δ
+ r2

(
log log nw

εδ

)2)
space.

Proof. Consider the function f(M̃i) = M̃i+1 describing one iteration of item 3. Note that this
function has the same input and output length – a w×w matrix, and that each entry is represented
by t2 bits. The function f is itself the composition of three functions:

• The Nisan generator N: By Lemma 4.5.4, this takes

O

(
log t2 + r1 + log w

εNδN

)
= O

(
log log n

ε
+ r1 + log w

δ

)
space.

• Richardson Iteration: By Lemma 4.4.1, this takes

O
(
log2 t2 + log t2 · log(2r1wt2)

)
= O

((
log log nw

εδ

)2
+ log(2r1w) · log log nw

εδ

)
space.

• Truncation: Takes O(log t2) = O
(
log log nw

ε

)
space.

The algorithm is a composition of f on itself r2 times so by corollary 2.2.3 we can sum the above
and multiply by r2, obtaining our desired overall space complexity.

4.7 Proof of Correctness
Throughout the analysis we shall assume that Equations (4.5), (4.6), (4.7), (4.8) hold.

Proof of Lemma 4.6.1. We let Mi be the “true” random rounding, similar to the analysis in sec-
tion 4.5. That is, M0 = A, and for each i ∈ [r2],

Mi(ζ) =
⌊
Mi−1(ζ)

2r1 − ζi2
−2t2Jw

⌋
t2
. (4.9)

Observe, again, that the Mi-s do not depend on h. For brevity, we omit the dependence on h and
ζ whenever it is clear from context.

Next, we argue that with high probability (over h and the ζ-s), M̃i =Mi. Toward this end, we
similarly define for each fixing of ζ,

GOODi,ζ = {h ∈ {0, 1}dN : ∀j ⩽ 2r1 ,
∥∥∥M j

i − N(Mi−1, h)j

∥∥∥
∞

⩽ εN + w · 2r1−t1}, (4.10)

where
(
M

(1)
i , . . . ,M

(2r1 )
i

)
= N(Mi, h). (Note that here we feed N with Mi and not M̃i, similar to

what we did in section 4.5.) By lemma 4.5.4, we get that for any i ∈ [r2] and ζ = (ζ1, . . . , ζi),

Pr
h∈{0,1}dN

[h ∈ GOODi,ζ ] ≥ 1− δN. (4.11)
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Claim 4.7.1. It holds that

Pr
h,ζ

[
∃k Mk ̸= M̃k

]
≤
(
δN + w22−ℓ

)
r2 ≤ δ.

Proof. The proof is similar to the proof of claim 4.5.9. We prove by induction on i that

Pr
h,ζ

[
∃k ⩽ i,Mk ̸= M̃k

]
⩽
(
δN + w22−ℓ

)
· i.

The base case i = 0 is trivial. Fixing some i ≥ 1, we denote by E the set

E = {(h, ζ) : ∃k < i such that Mk ̸= M̃k or h ̸∈ GOODi−1,ζ},

and again we have

Pr
h,ζ

[
∃k ⩽ i,Mk ̸= M̃k

]
= Pr[E]Pr

[
∃k ⩽ i,Mk ̸= M̃k

∣∣ E]+ Pr[¬E]Pr
[
Mi ̸= M̃i

∣∣ ¬E]
⩽ Pr[E] + Pr

[
Mi ̸= M̃i

∣∣ ¬E]
⩽ Pr

[
∃k < i,Mk ̸= M̃k

]
+ Pr [h ̸∈ GOODi−1,ζ ] + Pr

[
Mi ̸= M̃i

∣∣ ¬E] .
By the induction’s hypothesis the first term is at most (δN+w22−ℓ) · (i−1), and by Equation (4.11)
the second term is at most δN. Thus, it suffices to show that

Pr
h,ζ

[
Mi ̸= M̃i

∣∣ ∀k < i, Mk = M̃k and h ∈ GOODi−1,ζ

]
⩽ w22−ℓ.

We show that for any fixed ζ1, . . . , ζi−1 and h satisfying the conditioning, we have

Pr
ζi

[
Mi ̸= M̃i

]
⩽ w22−ℓ.

Since h ∈ GOODi−1,ζ , for all j ≤ 2r1 we have that∥∥∥M j
i−1 − N(Mi−1, h)j

∥∥∥
∞

⩽ εN + w · 2r1−t1 .

Recall that we assume that M̃i−1 =Mi−1, and so for all j ≤ 2r1 ,∥∥∥∥M j
i−1 − N

(
M̃i−1, h

)
j

∥∥∥∥
∞

⩽ εN + w · 2r1−t1 .

Using Lemma 4.4.1 and the guarantee of Equations (4.7) and (4.8), we get∥∥∥R
(

N
(
M̃i−1, h

)
, M̃i−1, 3t2

)
−M2r1

i−1

∥∥∥
∞

⩽ (2r1 + 1) · 2−3t2 ≤ 2−2t2 .

Thus, by Corollary 4.5.7, with probability at least 1− w22−ℓ over ζi,⌊
M2r1

i−1 − ζi2
−2t2Jw

⌋
t2
=
⌊
R
(

N
(
M̃i−1, h

)
, M̃i−1, 3t2

)
− ζi2

−2t2Jw

⌋
t2
,

and recalling the definition of Mi from Equation (4.9) we see that it simply means that Mi = M̃i.
This completes the inductive step.
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For the accuracy guarantee, we have

Claim 4.7.2. For all i ∈ {0, 1, . . . , r2} and all ζ it holds that

∥∥∥Mi −A2ir1
∥∥∥
∞

⩽ 2−t2+1w
i−1∑
j=0

2jr1 .

In particular, ∥Mr2 −An∥∞ ≤ ε.

The proof is identical to the proof of claim 4.5.10, so we omit it. To conclude, note that
by claim 4.7.1 we have that with probability at least 1 − δ, M̃r2 = Mr2 , and by claim 4.7.2 we
establish the accuracy guarantee

∥∥∥M̃r2 −An
∥∥∥ ≤ ε. The space requirement was established in

lemma 4.6.2.

We note that by averaging over all seeds (namely, h and the ζ-s), taking δ = ε ≈ 1
w , we would

get a deterministic approximation, and this was also done in [SZ99]. However, we can get a much
better accuracy, and this is the content of the next section.

4.8 A High-Accuracy Deterministic Approximation
In this section we prove our main result, Lemma 4.8.1, giving a high-accuracy deterministic algo-
rithm for approximating An. Note that SZImp does not provide us with one good approximation
but requires a seed. In [SZ99], Saks and Zhou averaged over the outputs of all seeds. When ε ≈ δ,
this would give an O(ε)-approximation deterministic algorithm.

Recall that Richardson iteration forces us to take ε ≈ 1
n . The dependence of Lemma 4.6.1 on

ε is only double-logarithmic, and so taking a tiny ε does not deteriorate the space complexity by
much. The dependence on δ, however, is logarithmic. Thus, to gain any improvement we cannot
afford to take δ ≈ ε as would be the case if we “mixed” the δ fraction of bad matrices together
with the accurate ones. Our key idea here is as follows: Instead of averaging, we iterate the SZImp
algorithm over all (h, ζ)-s and take the entry-wise median of the outputs. This approach only
requires us to take δ = O(1). Toward that end, given a set of matrices {A1, . . . , Am}, we denote by
mediani∈[m]Ai the matrix M for which M [a, b] is the median of Ai[a, b] over all i ∈ [m].
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Algorithm: Improved Saks–Zhou (SZ+
Imp)

Input: Stochastic Matrix A ∈ Rw×w.
Output: Stochastic Matrix M ∈ Rw×w that approximates An.
Parameters: Let ε > 0 be a desired accuracy parameter, and δ > 0 be the desired
confidence. Instantiate SZImp with εSZImp = 1

8w(n+1) logn , δSZImp = 1/4. The parameters
r1, r2 are instantiated therein.

1. For i = 1, . . . , logn, compute

M̃2i = median
h,ζ

SZImp (⌊A⌋t2 , h, ζ) ,

with r1 = r2 =
√
i for approximating the 2i-th power.

2. For j ∈ [n], we let bi,j ∈ {0, 1} be such that j =
∑⌈logn⌉

i=0 bi,j2
i is the binary repre-

sentation of j. Compute
M̃j =

∏
i:bi,j=1

M̃2i .

3. Output M̃ = R
(
(M̃1, . . . , M̃n), A, k

)
for k =

⌈
log n

ε + 1
⌉
.

Remark 10. For simplicity we assume
√
i is an integer (although it is clearly not). A more precise

is to consider ⌊
√
i⌋ instead and approximate the 2⌊

√
i⌋2-th power using the SZImp algorithm. As

i − ⌊
√
i⌋2 ≤ 2

√
i + 1, computing the “missing” 2O(

√
i) power can be done via the naive matrix

multiplication algorithm (Claim 2.2.5) without effecting the overall space complexity.

For the above choice of parameters, we get that the truncation parameter t2 from Section 4.6
satisfies

t2 = log 16w2r2n

εSZImpδSZImp
= O (lognw) .

Also, note that dN in SZImp satisfies

dN = O

(
r21 + r1 · log r2w

δSZImp

)
= O

(
logn+

√
logn · logw

)
,

and the number of bits needed to represent ζ1, . . . , ζr2 is given by

|ζ| = O

(
r2 · log r2w

δSZImp

)
= O

(√
logn · log logn+

√
logn · logw

)
.

The proof of Theorem 4.2.3 is now a corollary of the following statement.

Lemma 4.8.1. Given a w × w stochastic matrix A, the algorithm SZ+
Imp above satisfies∥∥∥An − M̃

∥∥∥
∞

≤ ε,

and runs in space

O

((
logn+

√
logn · logw

)
· log lognw +

(
log log 1

ε

)2

+ log log 1

ε
· log(nw)

)
.
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Proof. First, note that for each i,
∣∣∣M̃2i

∣∣∣ = O(w2t2), and so∣∣∣M̃j

∣∣∣ = O
(
w2 (t2 + logw) logn

)
= O(w2t2 logn).

We start by analyzing the space complexity.

• Following Lemma 4.6.1, the SZImp algorithm with the prescribed parameters takes

O

(
(logn+ r2 logw) log log nw

εSZImpδSZImp
+ r2 log 1

δSZImp
+ r2

(
log log nw

εSZImpδSZImp

)2
)

space, which is
O
((

logn+
√

logn · logw
)
· log lognw

)
,

and running it for logn times requires only an additional counter of log logn bits.

• Computing the median of m numbers a1, . . . , am each represented via t bits can be done in
O(logm + log t) space. E.g., for a fixed number aj , we can go over all ai-s and count how
many of them are smaller than aj breaking ties lexicographically, i.e.,

ai ≺ ai′ ⇐⇒ (ai < ai′) ∨ ((ai = ai′) ∧ (i < i′)).

In our case, this amount to

dN + |ζ|+O
(
log t2w2

)
= O

(
logn+

√
logn · logw

)
.

• Computing the powers in Item 2 takes

O
(
log logn · log(t2w2)

)
= O (log logn · log(w logn))

space.

• Applying R takes

O

((
log log n

ε

)2
+ log log n

ε
· log

(
(n+ 1) · w2t2 logn

))
space, following Lemma 4.4.1, which is

O

((
log log 1

ε

)2

+ log log n
ε
· log(nw)

)
.

Our algorithm is essentially a composition of the above procedures, and so the claim on the space
complexity follows from composition of space-bounded algorithms (Claim 2.2.2).

We now proceed with the correctness. By Lemma 4.6.1, for at least 3
4 of the (h, ζ)-s, we have∥∥∥SZImp(⌊A⌋t2 , h, ζ)− ⌊A⌋2it2

∥∥∥
max

⩽
∥∥∥SZImp(⌊A⌋t2 , h, ζ)− ⌊A⌋2it2

∥∥∥
∞

⩽ εSZImp ,

and so for at least 3
4 of the (h, ζ)-s we get that for all (a, b) ∈ [w]2,∣∣∣SZImp (⌊A⌋t2 , h, ζ) [a, b]− ⌊A⌋2it2 [a, b]

∣∣∣ ⩽ εSZImp .
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Thus, for all (a, b) ∈ [w]2,∣∣∣∣(median
h,ζ

SZImp (⌊A⌋t2 , h, ζ)
)
[a, b]− ⌊A⌋2it2 [a, b]

∣∣∣∣ ⩽ εSZImp .

This is true for all indices (a, b) and all i ∈ [logn] and so by Claim 2.4.4, for all i ∈ [logn],∥∥∥M̃2i − ⌊A⌋2it2
∥∥∥
∞

⩽ wεSZImp .

By Claim 2.4.5,
∥∥∥Aj − ⌊A⌋jt2

∥∥∥
∞

⩽ jw2−t2 , and applying Claim 2.4.5 again for multiplication of
logn matrices, we get that for every j ≤ n,∥∥∥M̃j −Aj

∥∥∥
∞

⩽
∥∥∥M̃j − ⌊A⌋jt2

∥∥∥
∞

+
∥∥∥⌊A⌋jt2 −Aj

∥∥∥
∞

⩽ εSZImpw logn+ nw2−t2 ⩽ 1

4(n+ 1)
.

Using Lemma 4.4.1, we obtain∥∥∥R((M̃1, . . . , M̃n), A, k)−An
∥∥∥
∞

⩽ (n+ 1) · 2−k ≤ ϵ,

which completes the proof.

4.9 Appendix
4.9.1 Spectral Algorithm for Matrix Powering
In this section we prove Theorem 4.2.1. The idea is to use the Cayley-Hamilton Theorem as was
done, e.g., in [MP00]. The algorithm for computing An given A ∈ Rw×w is as follows.

1. Compute the characteristic polynomial of A and denote it by p(X).

2. Compute r(X) = Xn mod p(X), where deg(r) < deg(p) = w.

3. Compute r(A).

To implement the above in a space-efficient manner, we use the following two results from
parallel computation. The first one is due to Berkowitz, who gave a parallel algorithm for computing
the characteristic polynomial.

Theorem 4.9.1 ([Ber84]). There exists a logspace uniform family of NC2 circuits that computes
the characteristic polynomial of a given matrix. In terms of space complexity, on input A ∈ Rw×w

the algorithm runs in space O(log |A| · logw).

The second algorithm is for polynomial division.

Theorem 4.9.2 ([Ebe89]). Division of polynomials over the integers can be done in logspace
uniform NC1.

It turns out that one can even perform polynomial division, and various other polynomial (and
integer) arithmetic in TC0 (see, e.g., [RT92] and references therein).

Claim 4.9.3. The above algorithm to compute An can be implemented to run in space O(logn +
logw · log |A|).
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Proof. By Theorem 4.9.1, Item 1 can be done in O(logw · log |A|) space. Item 2, following Theo-
rem 4.9.2, can be done in O(log(n·|A|w2)) space, and Item 3 can be done in O(log2w+logw ·log |A|)
space using Claim 2.2.6. The overall space complexity then follows from composition of space-
bounded functions.

The correctness of the algorithm follows from the Cayley–Hamilton Theorem which states that
if p(X) is the characteristic polynomial of a matrix A then p(A) = 0. Since r(X) = Xn mod p(X)
there exists a polynomial q(X) such that Xn = q(X)p(X) + r(X) and so

An = q(A)p(A) + r(A) = r(A).

4.9.2 Proof of Lemma 4.4.1
In this section, for completness, we prove Lemma 4.4.1.

Proof of Lemma 4.4.1. The algorithm constructs the following pair of block matrices which consists
of (n+ 1)× (n+ 1) blocks of w × w matrices. For 0 ≤ i, j ≤ n,

A[i, j] =


−A i = j + 1,

Iw i = j,

0 otherwise.
B[i, j] =


Ai−j i > j,

Iw i = j,

0 i < j.

The algorithm then outputs the matrix R(A,B, k) as given in Section 3.5.
The space complexity of the algorithm follows by Claim 2.2.6. As for the correctness, first

observe that

A−1[i, j] =


Ai−j i > j,

Iw i = j,

0 i < j.

By our assumption
∥∥A−1[i, j]−B[i, j]

∥∥
∞ ⩽ 1

4(n+1) for every 0 ⩽ i, j ⩽ n, and so

∥∥A−1 −B
∥∥
∞ ⩽ 1

4
.

Lastly, note that ∥A∥∞ ⩽ 2 and by the sub-multiplicativity of ∥·∥∞ we get

∥I −BA∥∞ ⩽
∥∥(A−1 −B)A

∥∥
∞ ⩽

∥∥A−1 −B
∥∥
∞ · ∥A∥∞ ⩽ 1

2
.

The correctness now follows by Lemma 4.4.1.

68



Chapter 5

Approximating Products of Stochastic
Matrices in Small Space

5.1 Background
In light of the powering algorithm of Chapter 4 it is natural to ask: what is the space complexity
required to approximate the iterated product

A1 ·A2 · · ·An

of A1, . . . , An ∈ Rw×w stochastic? There is a standard reduction from matrix iterated product to
matrix powering: Let A1, . . . , An ∈ Rw×w then the [1, n+ 1]-th entry of

0 A1 . . . 0 0
0 0 A2 0 0

0 0 0
. . . 0

... . . . An

0 0 . . . . . . 0



n

is exactly the iterated product A1 · · ·An. The downside is that the above matrix is of dimension
nw (rather than w). Combining the reduction with the Cayley–Hamilton based algorithm (The-
orem 4.2.1) yields space complexity of O

(
log2 nw

)
, worse than the naive algorithm (Claim 2.2.7).

However, combining it with the Saks–Zhou algorithm gives the same non-trivial space complexity
of

O
(√

logn · log nw
ε

)
.

The algorithm of [AKM+20] for computing powers of doubly-stochastic matrices does extend to
iterated products using the above reduction, and so for iterated products of doubly-stochastic
matrices we get the nearly-optimal space complexity of

O
(

lognw log log nw
ε

)
.

As previously mentioned, their powering algorithm extends to any stochastic matrix with known
stationary distribution, though it is unclear thus whether it extends to iterated products, namely:
given n matrices A1, . . . , An along with their stationary distribution π1, . . . , πn approximate the
product

A1 · · ·An.
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While technically there is not much sense in considering such products it does indicate a gap in our
understanding. One might argue that an optimal algorithm for approximating powers of general
stochastic matrices yields an optimal algorithm for the iterated product problem, suggesting that
we should focus on matrix powering. On the other hand, it might be unreasonable to expect any
progress for the matrix powering problem that does not go through the iterated product problem.

5.2 Our Result
We extend the algorithm presented in Chapter 4 to iterated products.

Theorem 5.2.1 ([CDSTS22]). For any w, n ∈ N, and ε > 0, there exists a deterministic algorithm
that given n stochastic matrices A1, . . . , An ∈ Rw×w approximates the iterated product

A1A2 · · ·An

to within accuracy ε = n− logn in space

Õ
(

logn+
√

logn · logw
)
,

where the Õ notation hides doubly-logarithmic factors in n and w. More precisely, our algorithm
requires

O

((
logn+

√
logn · logw

)
· log log(nw) + log log 1

ε
· log(nw) +

(
log log 1

ε

)2
)
.

space.

For concreteness let us focus on the regime w = 2
√

logn. As explained above, the algorithm of
Theorem 4.2.1 does not extend to iterated products, and the Saks–Zhou algorithm requires

O(log3/2 n)

space, which exactly matches the space complexity of the naive algorithm Claim 2.2.8. In fact, for
the problem of computing the iterated product in the case w = 2

√
logn nothing better was known

apart from the naive algorithm, whereas our algorithm achieves nearly-optimal space complexity
of

O(logn log logn).

5.3 Overview
Let us try to naively extended the powering algorithm suggested in Chapter 4 to iterated products
as follows:

1. Use the Nisan generator to approximate iterated products of 2
√

logn matrices, instead of the
2
√

logn-th power of a single matrix.

2. Recursively, partition the iterated product to iterated products of 2
√

logn matrices. After√
logn iterations, the entire iterated product is approximated.

There are three major issues with this naive attempt:
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1. The Shifts: Previously, we used a fresh shift in every iteration. In the case of iterated
product, there are many input matrices. We cannot afford to perturb each of those via a
distinct independent shift. Can we use the same shift on all the different matrices? If not,
what else can we do?

2. The Confidence Parameter: In the matrix powering algorithm the Nisan generator has to
work against any power

A,A2
√

log n

, A22
√

log n

, A23
√

log n

, . . . , An.

As there are only
√

logn such powers, we could choose a large confidence parameter δN (see,
e.g., Section 2.7.1 or Lemma 4.5.4) and still be sure that with a good probability over h, our
choice works well for all the

√
log(n) matrices above.

In contrast, for the iterated matrix product algorithm, we need to fix a single h that works
well against any sub-product, and there are n such products. Therefore, the confidence
deteriorates to n · δN which forces us to take δN smaller than 1

n . However, in this parameter
setting the Nisan generator has seed length Ω(log3/2 n) which is too much for us.

3. Space Complexity: In the the space complexity analysis of Lemma 4.6.1 we used composition
of space bounded algorithms, where the space complexity of each layer was roughly O(logw).
However, in the iterated matrix product case there are roughly n terms in the product, and
then it seems the space complexity of each layer has to be Ω(logn) even just for the indexing.
Thus, the total space complexity is Ω(log3/2 n), which is again too much for us. Can we avoid
this loss?

Improving the dependence on the confidence parameter

The discussion above shows that the confidence parameter has to be smaller than 1
n . Nisan’s

generator, however, has bad dependence on δ, and this forces us to use another PRG with a better
dependence on the confidence:

Lemma 5.3.1. There exists an algorithm Λ that gets as input:

1. A sequence of w ×w sub-stochastic matrix (A) = (A1, . . . , An) in which every entry is repre-
sented using at most s bits.

2. An accuracy parameter ε > 0, a confidence parameter δ > 0, and a canonization parameter
t ∈ N, where t ≤ s.

3. A seed h ∈ {0, 1}dN for dN =
(
logn ·

(
t+ log nw

ε

)
+ log logn log 1

δ

)
.

The algorithm runs in space
(
log s+ log nw

ε + log log 1
δ

)
and outputs

Λ((A), h) = (Mh),

each (Mh)i ∈ Rw×w, and satisfies the following. With probability at least 1 − δ over h ∈ {0, 1}dN,
it holds that for all 1 ⩽ i ⩽ n,

∥(Mh)i −A1 · · ·Ai∥∞ ≤ ε+ nw · 2−t.

When we omit the parameter t, we implicitly set t = s, and then the error guarantee is simply ε.
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Comparing Lemma 5.3.1 with Lemma 4.5.4, we see that Lemma 5.3.1 improves the dependence
on δ both in the the space complexity and the length of dN. Henceforth, we shall denote this
parameter by δΛ, distinguishing it from the previously used δN, and similarly εΛ instead of εN. The
construction of Λ is as follows. We start with Nisan’s PRG with constant confidence, and amplify
its confidence to the desired δ using a sampler. For a formal description, and a discussion of the
solution (and the use of samplers), see Section 5.8.2.

The space complexity of composition

As discussed above, in our case there is a subtlety regarding the space complexity of the composition,
because we cannot afford to keep a fresh index at each layer of the composition. We resolve this
issue by noting that some of the indices can be maintained globally. In Section 5.8.1 we prove
Lemma 5.8.2 which is a generalization of the space composition theorem (Claim 2.2.2) that may
be interesting on its own right.

Dealing with the shifts

The shifts are the bigger issue, and resolving it requires new ideas and technical effort. Previ-
ously, in the powering algorithm, we invested only O(logw) random bits per a single shift, and we
had r2 such shifts, one for every matrix we encounter in the computation (namely, the matrices
A,A2r1 , A2·2r1 , . . . , An). However, now we have Ω(n) intermediate matrices, and we cannot afford
to use a fresh shift for each intermediate matrix.

We therefore try a new approach. Instead of using a fresh shift in every iteration, we shift the
input. Also, as we have n input matrices A1, . . . , An, we use the same shift ζ on all of the n input
matrices. As we need each of the shifts to work well, we need a union bound against n matrices,
and we therefore use O(logn) bits for choosing the shift ζ. Thus, we cannot afford to do such a
shift at each layer, and instead we study what happens when we just shift the input, and we do
not shift intermediate layers. Our first attempt is the following algorithm, where t2 = O(logn),
t1 = O(logw), r1 · r2 = logn (and for simplicity, say r1 = r2 =

√
logn):

1. Shift the entry of each of the input matrices by a random ζ ∼ 2−2t2 · {0, 1, . . . , 2t2/2−1 − 1}.

2. For i = 1, . . . , r2,

(a) Partition the iterated product to sub-products, each of 2r1 matrices.
(b) Truncate the matrices to precision t1 and use Λ to approximate the iterated sub-products.
(c) Regain the high accuracy via the Richardson iterated, and then truncate to precision t2.

3. Output M̃r2 .

As before, the role of the outer rounding is to decorrelate the randomness h from the output, and
at this stage it is unclear yet whether it achieves this goal. Notice that we shift all inputs by the
same shift using O(logn) bits for that single shift, whereas in the powering algorithm we used
independent shifts for every intermediate calculation using O(logw) bits per shift. We stress that
there are no other shifts for intermediate calculations in the algorithm. Our hope is that investing
O(logn) bits of randomness in this initial single shift “takes care of all future iterations”.

The analysis of this first attempt boils down to algebraically expressing how a shift of the input
effects the output product. In Lemma 5.5.2 we prove that a shift ζ of each entry of A1, . . . , An

results in an error matrix E(ζ), where

0 ⩽ E(ζ)[i, j] ⩽ ζ · T [i, j],
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and the matrix T is defined by:

T
def
= Jw

n∑
k=1

Ak+1 · · ·An. (5.1)

This implies that each entry of E has magnitude at most n2ζ. However, generalizing the rounding
lemma (Lemma 4.5.6) to the case where the shifts are given by some error function E(ζ) reveals
that in this case we need to bound E(ζ) not only from above, but also from below. We give the
precise details in Lemma 5.5.3. Luckily for us, a closer look reveals that

0 ≤ (1− wnζ)ζ · T [i, j] ≤ E(ζ)[i, j] ≤ ζ · T [i, j],

and that with a good probability a ζ shift of the input is “good”, in the sense that the output is far
from the boundary of a truncation. In particular, we conclude that at least in the first iteration,
with a good probability over the shift, the truncation indeed decorrelates h from the output. We
give the precise details in Section 5.5.

Furthermore, by taking a union bound over all the true matrices that are obtained as partial
products in the computation, we see that with high probability (over the initial shift) all these
products are safe, in the sense that all the entries appearing in them are at least ρ-far from a 2−t2

boundary, for ρ and 2−t2 that may be polynomially small in n. Thus, if we could approximate the
correct matrices with accuracy better than, say, ρ/2, then that approximation is also ρ/2 safe, and
a truncation to t2 bits of accuracy gives a pre-determined result, independent of h.

However, the main challenge in the analysis is that we need to track the shift effects not
only through multiplication, but also through the truncation steps that we have throughout the
computation. Here the approach runs into an unexpected problem: how should we choose the
parameter ρ? Clearly, ρ should be smaller than 2−t2 (as we want to be ρ-far from a 2−t2 boundary).
However, when we truncate to t2 bits of accuracy, we introduce an error of 2−t2 , and so ρ ≥ 2−t2 .
Indeed, after the truncation to t2 bits of accuracy, we are always at a 2−t2 boundary point, and
therefore the approximated matrix that we get is never safe no matter what shift we choose.

To summarize, there are two contradicting forces in our strategy: (1) perturbing the input,
and (2) the truncation. While the initial perturbation makes all correct iterated products safe,
the truncation makes the approximated matrices unsafe. Perhaps a natural approach is to allow
a deterioration in the truncation parameters, namely make t2 smaller as the algorithm progresses.
However, this does not work either because seemingly the argument loses log 1

ρ bits of precision in
every iteration, which is roughly logn.

Our solution to the problem is to introduce another Richardson iteration step to make ρ smaller
than 2−t2 ultimately breaking the dependence between ρ and t2. Specifically, our final algorithm
is the following:

1. Shift the entry of each of the input matrices by a random ζ ∼ {0, 2−2t2 , . . . , 2−2t2 ·(2t2/2−1−1)}.

2. For i = 1, . . . , r2,

(a) Partition the iterated product to sub-products, each of 2r1 matrices.
(b) Truncate the matrices to precision t1 and use Λ to approximate the iterated sub-products.
(c) Regain the high accuracy via the Richardson iterated, and then truncate to precision t2.
(d) Improve further the precision using the Richardson iteration to accuracy ρ.

3. Output M̃r2 .
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An exact outline appears in the next section.
The fact that we use two Richardson steps at each layer may look perplexing at first. However,

the utility of the two Richardson steps may be simply explained. The inner Richardson iteration,
combined with the truncation performed right after, is designed to decorrelate h. On th other
hand, the outer Richardson iteration maintains a small universal error ρ independent of the inner
decorrelation procedure. Thus, while the matrix after the rounding is not safe, the outer Richardson
iteration brings it closer to the correct value - so close that it must be safe.

5.4 Algorithm Outline, Correctness, and Complexity
The algorithm partitions the inputs of the iterated product into groups of size 2r1 , approximates
the product of elements in each group, and recurses. This defines a tree of depth r2 = r

r1
and arity

2r1 where the n = 2r inputs are the leaves. Every level of the tree is a sequence of matrices: the
bottom level consists of 2r matrices, the level above it consists of 2r−r1 matrices, and in general the
i-th level consists of 2r−r1i matrices1. Every node in the recursion tree stands for the approximated
product of its children, and consequently the product of all its descendants in the tree. In order
to formally outline and analyze our algorithm we shall need to find a proper way to index these
nodes.

Recalling the notation of matrix sequences (see Section 4.4), let (Mi) denote the matrix sequence
in level i, and consider its j-th matrix (Mi)j . For simplicity, let us assume that the computation
is exact, i.e., every node equals exactly the iterated product of its children. We thus have the
following simple recursive relation: the product of a node’s descendants, equals the product of the
iterated products associated with its direct children. Algebraically, denote by Γi,j , Li,j the children
and descendants of the j-th node in depth i then∏

Li,j

(M0) =
∏

k∈Γi,j

∏
Li−1,k

(Mi−1), (5.2)

where we use the shorthand
∏

B(M)
def
=
∏

k∈B(M)k. One can work out an exact formula

Γi,j = {k + (j − 1)2r1 | 1 ⩽ k ⩽ 2r1},
Li,j = {(j − 1)2ir1 + 1, (j − 1)2ir1 + 2, . . . , j2ir1}.

Note that the indexing of Li,j is with respect to the bottom sequence (M0), and Γi,j is with respect
to the sequence (Mi−1). Also, Γi,j does not really depend on j (although i does define the range in
which the values of j are valid).

We can now formally outline the algorithm for approximating the iterated product of stochastic
matrices, and its correctness.

1Levels are counted bottom-up and so the leaves are at level 0.
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Algorithm: Iterated Saks–Zhou (SZIt)
Input: Stochastic Matrices A1, . . . , An ∈ Rw×w.
Output: Stochastic Matrices M ∈ Rw×w approximating A1 · · ·An.
Parameters: Set t1 = 4r1 + logw, t2 = 12 logn. Instantiate Λ to
approximate powers of order 2r1 with accuracy εΛ = 2−2r1 , confidence δΛ = 1

n3 , and
canonicalization parameter t1. Also, set r1 = r2 =

√
r =

√
logn.

1. Draw ζ ∼ {0, 1, . . . , 2t2/2−1 − 1}, and h ∈ {0, 1}dN uniformly.

2. Set (M̃0)j = (Aj − ζ2−2t2Jw) for j = 1, . . . , n.

3. For i = 1, . . . , r2,

(a) Compute

(M̃i)j = R
(⌊

R
(
Λ(⌊(M̃i−1)Γi,j⌋t1 , h),M, 6t2

)⌋
t2
, (M̃i−1)Γi,j , 8t2

)
for j = 1, . . . , n

2ir1
.

4. Output M̃r2 .

The parameters are chosen so that they satisfy the following constraints:

εΛ + w · 2r1−t1 ⩽ 1

4(2r1 + 1)
, and, (5.3)

2−t2 ⩽ 1

w(2r1 + 1)
. (5.4)

so that we can apply the Richardson iteration. Also, as anyhow the algorithm only provides
improvement in the regime w ≪ n, it is harmless to assume w ⩽ n

Lemma 5.4.1. For any sequence of sub-stochastic matrices (M) = (M1, . . . ,M2r) ∈ Rw×w

Pr
h,ζ

[
∥SZIt((M), h, ζ)−M1 · · ·M2r∥∞ ⩾ 1

n12

]
⩽ 2

n3
,

where ζ is chosen uniformly from {0, 1, . . . , 2t2/2−1 − 1}.

Finally, we state the space complexity of the algorithm:

Lemma 5.4.2. The algorithm SZIt can be implemented in

O
(
(logn+

√
logn logw) · log lognw

)
space, and O(

√
logn logw) random bits.

Theorem 5.2.1 is proved by employing another Richardson iteration at the end in order to get
better dependence on ε thus obtaining parameters identical to those in Theorem 4.2.3.

Lemma 5.4.1 is proved in Section 5.6, and Lemma 5.4.2 is proved in Section 5.7.
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5.5 Perturbing the Input
We now focus on the effect of shifting the input. Suppose we want to compute the iterated product
A1 · · ·An. We shift every matrix Ai by ζ entry-wise and compute the perturbed iterated product

n∏
i=1

(Ai − ζJw)

To analyze the effect of the initial shifting, we consider a robust notion of rounding:

Definition 5.5.1. We say z ∈ R is (t, ρ)-dangerous if z is ρ-close to a positive multiple of 2−t, i.e.,
if there exists a positive integer n > 0 such that

∣∣z − n2−t
∣∣ ⩽ ρ. Otherwise, we say z is (t, ρ)-safe.

Also, we say a matrix M ∈ Rw×w is (t, ρ)-dangerous if one of its entries is (t, ρ)-dangerous, and
otherwise we say it is (t, ρ)-safe.

Notice that a number z ∈ R is (t, ρ)-safe if its ρ-neighborhood always rounds to the same number
when we truncate it to precision of t digits.

Remark 11. Numbers that are very close to 0 are safe by definition. Indeed, negative values always
round to zero, and so there are no boundary issues around 0.

The terminology of (t, ρ)-dangerous is used in the original work of Saks and Zhou [SZ99]. We
remark, however, that this terminology is not required for the Saks-Zhou algorithm as presented in
Section 4.5, while it is essential for our iterated product algorithm.

In the powering algorithm of Chapter 4, analyzing the shift-and-truncate operation eventually
reduced to analyzing the shift-and-truncate on numbers. In our algorithm for the iterated product,
the situation is very different as we shift the input matrices, and analyze how this shifting affect
the product. Let Ei,j denote the difference between the true product and the shifted product at
the [i, j]-th cell

Ei,j(ζ)
def
= (A1 · · ·An)[i, j]− (

n∏
i=1

(Ai − ζJw))[i, j].

Also, let E(ζ) be the w × w matrix, whose [i, j]’th entry is E[i, j]. The following is an explicit
formula for E.

Lemma 5.5.2. Let A1, . . . , An ∈ Rw×w stochastic, and Jw the all-ones matrix. Then,
n∏

i=1

(Ai − ζJw) = A1 · · ·An − ζJw

n∑
k=1

(1− wζ)kAk+1 · · ·An,

and, in particular, E(ζ) = ζJw
∑n

k=1(1− wζ)kAk+1 · · ·An.

Proof. Expanding the product, a generic term has the form,

A1 · · ·Ai1(−ζJw)Ai1+2 · · ·Ai2(−ζJw) · · ·Aij (−ζJw)Aij+2 · · ·An.

For any stochastic matrix A we have that AJw = Jw, and also J j
w = wj−1Jw so the above simplifies

to
(−ζ)jwj−1JwAij+2 · · ·An.
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Summing over the above terms according to the last index of an all-ones matrix, and using the
binomial theorem we get

n∏
i=1

(Ai − ζJw) =

n∑
k=0

k−1∑
j=0

∑
1⩽i1<i2<···<ij<k

(−ζ)j+1wjJwAk+1 · · ·An

= A1 · · ·An +
n∑

k=1

k−1∑
j=0

∑
1⩽i1<i2<···<ij<k

(−ζ)j+1wjJwAk+1 · · ·An

= A1 · · ·An − ζ

n∑
k=1

k−1∑
j=0

(
k − 1

j

)
(−wζ)jJwAk+1 · · ·An

= A1 · · ·An − ζJw

n∑
k=1

(1− wζ)k−1Ak+1 · · ·An.

It follows from Lemma 5.5.2 that

T [i, j] · ζ · (1− wnζ) ⩽ Ei,j(ζ) ⩽ T [i, j] · ζ

where T is as in eq. (5.1). Furthermore,

0 ⩽ (A1 · · ·An)[i, j] ⩽ T [i, j] ⩽ n2.

Thus, if T [i, j] is very small then so does the true product (A1 · · ·An)[i, j], and in this case we will
round to zero.

The next lemma is a generalization of the rounding lemma (Lemma 4.5.6) to the case where
the shifts are given by some function (e.g., Ei,j), with a fairly controlled behaviour.

Lemma 5.5.3. Let e : R → R be such that for all ζ ∈ [0, 1]

C(1− 2−ℓ−1)ζ ⩽ e(ζ) ⩽ Cζ

where C, ℓ satisfy 0 ≤ C < 2t−ℓ for some positive integers ℓ, t. Then, for all z ⩽ C we have

Pr
ζ∈{0,1,2,...,2ℓ−1}

[
(z − e(ζ2−2t)) is (t, 2−3t−2)-dangerous

]
⩽ 2−ℓ+1.

Proof. First, observe that if z < 2−t−1 then z − e(ζ2−2t) ≤ z < 2−t−1 and therefore z − e(ζ2−2t) is
not (t, 2−3t−2)-dangerous. Thus, we may assume that z ⩾ 2−t−1. Using our assumption on e

C(1− 2−ℓ−1)ζ2−2t ⩽ e(ζ2−2t) ⩽ Cζ2−2t.

Therefore,

e((ζ + 1)2−2t)− e(ζ2−2t) ⩾ C(1− 2−ℓ−1)(ζ + 1)2−2t − Cζ2−2t

= C2−2t(1− 2−ℓ−1(ζ + 1))

⩾ C2−2t−1

⩾ 2−3t−2
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where we used that C ⩾ z ⩾ 2−t−1 and ζ < 2ℓ. In other words, e(ζ2−2t) is increasing with ζ and
consecutive ζ-s are at least 2−3t−2 apart. Moreover,

e((2ℓ − 1)2−2t) ⩽ (2ℓ − 1)2−2tC < 2−t

and so there are at most two ζ-s for which z − e(ζ2−2t) is (t, 2−3t−2)-dangerous.

Corollary 5.5.4. Let A1, . . . , An ∈ Rw×w be stochastic matrices of dimension w ⩽ n. Also, let
ℓ, t ∈ N, ζ ∈ (0, 1) be such that t ⩾ 4 logn and ℓ < t/2. Then

Pr
ζ∈{0,1,2,...,2ℓ−1}

[
n∏

i=1

(Ai − ζ2−2tJw) is (t, 2−3t−2)-dangerous
]
⩽ w22−ℓ+1.

Proof. For each entry [i, j], let
z = (A1 · · ·An)[i, j]

be the correct value of A1 · · ·An at entry [i, j]. As before, let Ei,j(ζ2
−2t) denote the noise introduced

at entry [i, j] by the shift ζ2−2t. We know that

T [i, j] · ζ2−2t · (1− wnζ2−2t) ⩽ Ei,j(ζ2
−2t) ⩽ T [i, j] · ζ2−2t.

Set C = T [i, j] and observe that

wnζ2−2t < n22ℓ2−2t ≤ 2t/22ℓ2−2t ≤ 2−ℓ−1

and C < n2 ≤ 2t−ℓ. Furthermore,

z = (A1 · · ·An)[i, j] ⩽ T [i, j] = C.

Therefore, by Lemma 5.5.3, the probability over ζ that
∏n

i=1(Ai − ζ2−2tJw)[i, j] is (t, 2−3t−2)-
dangerous, is at most 2−ℓ+1. The result then follows by a union bound over all w2 entries.

Using the fact that each Li,j has at most n elements, we also record the following corollary.

Corollary 5.5.5. Let A1, . . . , An ∈ Rw×w be stochastic matrices of dimension w ⩽ n. Also,
let ℓ, t ∈ N, ε ∈ (0, 1) be such that t ⩾ 4 logn and ℓ < t/2. Then, for the matrix sequence
M(ζ) = (A1 − ζ2−2tJw, . . . , An − ζ2−2tJw)

Pr
ζ∈{0,1,2,...,2ℓ−1}

∃i, j ∏
Li,j

(M(ζ)) is (t, 2−3t−2)-dangerous

 ⩽ nw22−ℓ+1.

5.6 Proof of Correctness
Proof of Lemma 5.4.1. Assume the premises of Lemma 5.4.1. Let (M) be a a sequence of sub-
stochastic matrices (M)1, . . . , (M)2r ∈ Rw×w. We have t2 ≥ 4 logn and ℓ < t2/2. Let (M0(ζ)) be
the matrix sequence defined by

(M0(ζ))i
def
= (Ai − ζ2−2t2Jw),
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for i = 1, . . . , n. By Corollary 5.5.5, except for probability nw22−t2/2+2, for all i, j,
∏

Li,j
(M0(ζ))

is (t2, 2
−3t2−2)-safe. Now recursively define

(Mi(ζ))j
def
= R

∏
Γi,j

(Mi−1(ζ))


t2

, (Mi−1(ζ))Γi,j , 8t2

 . (5.5)

Henceforth, we shall assume that ζ is “good” i.e., all sub-products∏
Li,j

(M0(ζ))

are (t2, 2
−3t2−2)-safe. Also, for brevity we shall omit the dependence of (Mi), (M̃i) in ζ, and that of

(Mi) in h. The proof essentially follows from the next two claims, which are very similar to those
in Section 4.6.

Claim 5.6.1. For all i, j
∥∥∥(Mi(ζ))j −

∏
Li,j

(M0(ζ))
∥∥∥
∞

⩽ 2r1−7t2.

With the above claim in hand we can prove the following claim.

Claim 5.6.2. Prh
[
∃i, (Mi) ̸= (M̃i)

]
⩽ nδΛ.

We therefore see that except for probability nδΛ, the sequences (M̃i(ζ)) that the algorithm
constructs are identical to the sequences (Mi(ζ)). By Claim 5.6.1, and Claim 2.4.5∥∥∥∥∥∥(Mi(ζ))j −

∏
Li,j

(M0(ζ))

∥∥∥∥∥∥
∞

⩽ 22r1−7t2 ,

and as the entry-wise shifts are bounded by 2−3t2/2∥∥∥∥∥∥
∏
Li,j

(M0(ζ))−M1 · · ·Mn

∥∥∥∥∥∥
∞

⩽ w ·

∥∥∥∥∥∥
∏
Li,j

(M0(ζ))−M1 · · ·Mn

∥∥∥∥∥∥
max

⩽ nw2−3t2/2.

Using the triangle inequality and taking i = r2 gives

Pr
h

[
∥SZIt((M), h)−M1 · · ·M2r∥∞ ⩾ 2−t2

]
⩽ n(w22−t2/2+2 + δΛ).

The parameters of Lemma 5.4.1 follows from our choice of parameters.

Proof of sub-lemmas

Proof of Claim 5.6.1. We prove by induction on i that∥∥∥∥∥∥(Mi(ζ))j −
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

⩽ 2r1−8t2(2ir1 − 1)

for all j = 1, . . . , n
2ir1

. The base case i = 0 is trivial. By the induction hypothesis we get that for
every k ∥∥∥∥∥∥(Mi−1(ζ))k −

∏
Li−1,k

(M0)

∥∥∥∥∥∥
∞

⩽ 2r1−8t2(2r1(i−1) − 1)
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for all j = 1, . . . , n
2(i−1)r1

. Using Equation (5.2) and the induction hypothesis∥∥∥∥∥∥
∏
Γi,j

(Mi−1(ζ))−
∏

k∈Γi,j

∏
Li−1,k

(M0)

∥∥∥∥∥∥
∞

⩽ 2r1 · 2r1−8t2(2r1(i−1) − 1)

for all j = 1, . . . , 2r1 . The same bound also holds if we consider only a sub-sequence of Γi,j . Also
note that ∥∥∥∥∥∥⌊

∏
Γi,j

(Mi−1(ζ))⌋t2 −
∏
Γi,j

(Mi−1(ζ))

∥∥∥∥∥∥
∞

⩽ w2−t2+1.

Thus, by the Richardson iteration Lemma 4.4.1 and our choice of parameters (Equation (5.3),
Equation (5.4)),∥∥∥∥∥∥R(⌊

∏
Γi,j

(Mi−1(ζ))⌋t2 , (Mi−1(ζ))Γi,j , 8t2)−
∏
Γi,j

(Mi−1(ζ))

∥∥∥∥∥∥
∞

⩽ 2r1−8t2 ,

and so by the definition of (Mi(ζ))j∥∥∥∥∥∥(Mi(ζ))j −
∏
Γi,j

(Mi−1(ζ))

∥∥∥∥∥∥
∞

⩽ 2r1−8t2 .

Putting it altogether∥∥∥∥∥∥(Mi(ζ))j −
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

⩽ 2r1−8t2 + 2r1−8t2 · 2r1 · (22r1(i−1) − 1)

⩽ 2r1−8t2(2r1(i−1) − 1).

This completes the induction. The assertion follows from the observation that ir1 ⩽ logn ⩽ t2,
and our choice of parameters.

Proof of Claim 5.6.2. We prove by induction on i that

Pr
h

[
∃k ⩽ i, (Mk) ̸= (M̃k)

]
⩽ εi

def
= (2r−r1 − 2r−r1(i+1))δΛ.

The base case i = 0 is trivial. Fix some i ≥ 1, assume the induction holds for i − 1 and prove for
i. By the induction hypothesis,

Pr
h

[
∃k ⩽ i (Mk) ̸= (M̃k)

]
⩽ εi−1 + Pr

h

[
∃j (Mi)j ̸= (M̃i)j | (Mi−1) = (M̃i−1)

]
.

Thus, by the union bound it suffices to show that for every 1 ⩽ j ⩽ 2r−r1i

Pr
h

[
(Mi)j ̸= (M̃i)j | (Mi−1) = (M̃i−1)

]
⩽ δΛ.

Fix j and assume that the conditioning holds i.e., (Mi−1) = (M̃i−1). Using Lemma 4.4.1 and our
choice of parameters (Equation (5.3), Equation (5.4))

Pr
h

∥∥∥∥∥∥R
(
Λ(⌊(Mi−1)Γi,j⌋t1 , h), (M̃i−1)Γi,j , 6t2

)
−
∏
Γi,j

(Mi−1)

∥∥∥∥∥∥
∞

⩾ 2−5t2

 ⩽ δΛ.
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Indeed, we shall prove that if the above does not hold∥∥∥∥∥∥R
(
Λ(⌊(Mi−1)⌋t1 , h), (M̃i−1)Γi,j , 6t2

)
−
∏
Γi,j

(Mi−1)

∥∥∥∥∥∥
∞

⩽ 2−5t2 , (5.6)

then (M̃i)j = (Mi)j . Inspecting the definitions of (Mi), (M̃i) we can see that as already (Mi−1) =

(M̃i−1) then it is enough to show that

⌊
∏
Γi,j

(Mi−1)⌋t2 = ⌊R
(
Λ(⌊(Mi−1)⌋t1 , h), (M̃i−1)Γi,j , 6t2

)
⌋t2 . (5.7)

(For the definitions see Equation (5.5) and the SZIt algorithm in Section 5.3). Observe that∥∥∥∥∥∥
∏
Γi,j

(M̃i−1)−
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∏
Γi,j

(Mi−1)−
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∏

k∈Γi,j

(Mi−1)k −
∏

k∈Γi,j

∏
Li−1,k

(M0)

∥∥∥∥∥∥
∞

⩽
∑

k∈Γi,j

∥∥∥∥∥∥(Mi−1)k −
∏

Li−1,k

(M0)

∥∥∥∥∥∥
∞

⩽ 2r1 · 2r1−7t2 ⩽ 2−6t2 .

The first equality is due to the conditioning (Mi−1) = (M̃i−1), the second equality due to Equa-
tion (5.2), the third inequality is due to Claim 2.4.5, and the last inequality is due to the induction
hypothesis and that r1 ⩽ t2.

Recall that ζ is such that the product ∏
Li,j

(M0)

is (t2, 2
−3t2−2)-safe. Alternatively, its entries are at least 2−3t2−2 far away from the boundary of

truncation by t2 bits. Using that∥∥∥∥∥∥
∏
Γi,j

(M̃i−1)−
∏
Li,j

(M0)

∥∥∥∥∥∥
max

⩽

∥∥∥∥∥∥
∏
Γi,j

(M̃i−1)−
∏
Li,j

(M0)

∥∥∥∥∥∥
∞

⩽ 2−6t2

we conclude that the product ∏
Γi,j

(Mi−1)

is also safe, specifically it is (t2, ρ′)-safe for ρ′ = 2−3t2−2−2−6t2 . Since ρ′ > 2−5t2 then Equation (5.6)
implies Equation (5.7). This completes the inductive step.
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5.7 The Space Complexity
We now analyze the space complexity of the algorithm. As a start, let us try to employ the same
approach as in Section 4.6. Define the functions fi that take a sequence (M) of length n and output
the sequence

fi((M))j = R
(⌊

R
(
Λ(⌊(M)Γi,j⌋t1 , h),M, 6t2

)⌋
t2
, (M)Γi,j , 8t2

)
which is exactly the i-th iteration in the SZIt algorithm. Clearly, the composition

fr2 ◦ · · · ◦ f1((M))

computes “row by row” the output of the iterated Saks–Zhou algorithm on an input (M). The
problem is that each fi requires at least

r − ir1 = logn− i
√

logn

space just for indexing as j runs from 1 to 2r−ir1 , and this accumulates to

∑
i

logn− i
√

logn ⩾ log3/2 n
4

space. However, there is a redundancy in the above approach: each fi maintains a global index to
its location in the recursion tree, and to get around this we will globally store that index. Each
node, computes the local function that takes a sequence (M) of length r1 and outputs

R
(⌊

R
(
Λ(⌊(M)Γi,j⌋t1 , h),M, 6t2

)⌋
t2
, (M)Γi,j , 8t2

)
,

where it is given its children (M)Γi,j as input. The above function only maintains indices locally,
namely it does not know its location within the recursion. Knowing the local indices for every
level of the recursion in tandem with the global location suffices for the algorithm to operate. This
framework is formalized in Lemma 5.8.2.

Our algorithm takes the form of a tree with depth
√

logn. The j-th node in the i-th level
corresponds to the matrix (M̃i)j , and is computed from its children in the tree

(M̃i)j = f((Mi−1)1, . . . , (Mi−1)2
√

log n)

(See the SZIt algorithm in Section 5.3). As a special case, Lemma 5.8.2 states that any algorithm
of that sort - a tree in which every node is some function f of its children, can be implemented
in space that it takes to compute f times the depth of the tree. According to Lemma 5.3.1 and
Lemma 4.4.1, the function f can be computed via

O(log logn(logw +
√

logn))

and so Lemma 5.4.2 follows.

5.7.1 On Oblivious Approximations
Our algorithms for randomized exponentiation/product (Lemma 4.5.4, Lemma 5.3.1) has a special
property that enables a more space-efficient implementation - obliviousness. For the simplicity of
the presentation, it is better to first think about the input as an ROBP, rather than a matrix,
ignoring the canonicalization procedure. The algorithm Λ has the following special structure:
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1. The algorithm Λ computes a collection of sequences I(h) ⊆ Σn depending on the randomness
y.

2. Every sequence σ ∈ I(h) corresponds to the Boolean stochastic matrix B(σ).

3. The matrices B(σ) are aggregated to a single matrix via the function g (e.g., g takes the
average over all sequences, weighted average, median-of-averages, etc.).

For instance, in Lemma 4.5.4 the sequences I(h) are generated via hash functions and g is the
averaging function, and in Lemma 5.3.1 the sequences I(h) are generated via random walks on
expander graph and g is the median-of-averages. In the setting of SZIt, the input (and output) of
Λ is a matrix, and not an ROBP. However, this makes no difference as the input matrix is used to
build a canonical ROBP.

Here, obliviousness refers to the fact that the sequences I(h) are universal, and do not depend
on B. This enables us to pre-compute the sequences I(h), which is usually the more difficult task
computationally, and so every iteration only simulates B(σ) for every σ ∈ I(h). It is possible to
implement the SZIt algorithm so that the contribution to the space complexity is

SI + r2 · (Sg + log |I(h)|)

where SI is the space complexity required to compute I(h), and Sg is the space complexity of g.
Note that SI is not multiplied by r2. One way to see that, is using Claim 2.2.2 which enables us
to assume that I(h) is given as part of the input instead of h. Another (equivalent) way is via the
framework of Lemma 5.8.2: viewing I(h) as a single node in the algorithm’s layout used by the
other nodes.

While in our implementation this saving is not acute, it might be a good idea to have that
saving in mind. A good example in which this observation does make a difference is in Hoza’s
improvement [Hoz21] to the Saks–Zhou algorithm, where he obtained a space complexity of

log3/2 n√
log logn

in the case w = n, and ε = 1
n . The reason this observation is crucial in his argument is because

he uses Armoni’s generator [Arm98], which roughly shaves a log logw factor from the seed length
of the INW generator (see Section 2.7.2). While Armoni’s seed length is slightly shortened, its
provable space complexity is linear in the seed length. Even if the space complexity were to be
improved significantly, then it is still likely to have a doubly-logarithmic factor (e.g., as in the space
complexity of the INW generator Section 2.7.2) - dominating the improvement in the seed length.
However, if one pre-computes the sequences produced by Armoni’s generator then its inferior space
complexity does not affect the overall space complexity of the Saks–Zhou algorithm.

Remark 12. One can perhaps use Armoni’s generator as Hoza did to obtain a log log improvement,
but we have not verified it.

5.8 Appendix
5.8.1 Improved Space Bounded Composition
We have seen the space composition theorem (Claim 2.2.2), where the space complexity of the
composition is the sum of the space complexities of each separate layer. However, sometimes the
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composition can be implemented in a cheaper way. A notable example for that is the NC1 ⊆ L
inclusion. An NC1 circuit has depth O(logn) and elementary Boolean functions as gates (And,
Or and Negation). Applying Claim 2.2.2 we get a simulation in O(log2 n) space, because each
of the O(logn) layers requires O(logn) bits just for keeping an index into its input. Looking at
the NC1 ⊆ L proof, one sees that the cheaper simulation maintains indexing in a global way, thus
avoiding the need to pay an index at each layer. This global indexing is made possible because the
computation has a tree structure.

In this section we prove Lemma 5.8.2 which is a natural combination of the above two funda-
mental building blocks in space-bounded computation i.e.,

• Composing space bounded functions, and,

• Computing Boolean formulas in logarithmic space.

Definition 5.8.1. Let G be a set of functions g : {0, 1}⋆ → {0, 1}⋆ such that that each g ∈ G can
be computed by a TM. A generalized Boolean formula F with gates in G over the input variables
x1, . . . , xn is a labeled directed a-cyclic graph such that:

• Variables: Vertices with no incoming edges are labeled with a variable xi ∈ {x1, . . . , xn},

• Gates: Vertices with incoming edges are labeled with a function g ∈ G,

• Output: Vertices with no outgoing edges are labeled by distinct output symbol yi ∈ {y1, . . . , yℓ}.

• Degree: All vertices have out-degree exactly 1, except for the output vertices which have
out-degree 0.

The Boolean formula computes the function F : ({0, 1}⋆)n → ({0, 1}⋆)ℓ

F (x1, . . . , xn) = (y1, . . . , yℓ)

by placing the variables x1, . . . , xn at their corresponding vertices in the graph and propagating the
Boolean values to the output vertices.

Two spacial cases to bear in mind are:

• The case where the graph has O(logn) depth and G is the set of elementary Boolean functions
(And, Or, Negation), which corresponds to an NC1 computation, and,

• The case where the graph is a directed path and G is the set of functions in L, which corre-
sponds to a general composition of space bounded algorithms.

Lemma 5.8.2. Suppose f(x1, . . . , xn) can be computed by a generalized formula with gates in G.
Furthermore,

• Let S denote the space complexity required to output the labeled graph with its labels,

• Let sv(m) denote the space complexity required for computing gv ∈ G on inputs of length m,
where gv is the function associated with v, and,

• Let ℓ(v) denote an upper bound on the length of the value associated with vertex v.
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Then, we can compute the function f in

O

(
S + max

(v1,...,vt)∈P

t∑
i=1

(svi(ℓ(vi)) + log ℓ(vi))
)

space where P is the set of all possible paths.

In addition, it is possible to apply Lemma 5.8.2 for arbitrary a-cyclic graphs (a.k.a. circuits) by
converting them to a formula, paying an additive term of O(log |P|) in the space complexity. For
example, for NC1, S = O(logn) and s(vi) = ℓ(vi) = O(1).

The proof is essentially a combination of the above ingredients so we only highlight needed
modifications.

Proof Sketch. As in the space-bounded algorithm for Boolean formulas, we traverse the graph
bottom-up, namely starting from the output gates, recursively computing the values of the children:

1. Maintain globally the current node within the formula. This is stored at the beginning of the
work-tape.

2. As in the space composition algorithm (Claim 2.2.2), we maintain a stack for every level of
the recursion.

3. Each stack maintains a “local” index to its input (which costs log ℓ(vi)), along with a work-
tape for the computation of the relevant function (which costs svi(ℓ(vi))).

4. Whenever a specific value of a gate is called for, there are two options:

i. If this is an input gate, this can be read from the input-tape.
ii. If this is not an input gate, then we open another (lower) level of the recursion for

computing it. In that case, we update the global location of the algorithm within the
recursion.

5.8.2 Improving the Confidence Parameter
We now discuss the proof of Lemma 5.3.1, and related concepts.

Let us start by giving a different perspective on the Nisan generator (See Section 2.7.1). Recall
that the Nisan generator has two types of inputs: a symbol σ ∈ Σ, and a sequence of hash functions
h = (h1, . . . , hk). Define the collection of functions

{Gh(x)
def
= N(x, h) | h ∈ Hk}. (5.8)

Observe that each Gh is a function that takes

s = O

(
log nw|Σ|

εNδN

)
bits, and outputs n symbols from Σ using O(s) space. Another way to interpret Theorem 2.7.1
is that for a predetermined ROBP if we sample a function from the collection (5.8) then with
high probability it fools that ROBP with accuracy εN. This special “sampling property” of the
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Nisan generator was used to derive two of the most important derandomization results of BPL
[Nis94, SZ99].

In hindsight, the aforementioned special property of Nisan’s generator can be obtained generi-
cally using a primitive called averaging samplers. By “generically” we mean that there is a simple
procedure that endows a given PRG with this “sampling property” (See Lemma 5.8.4). The idea
of using samplers in the context of PRGs against the class of ROBPs is not new, and dates back to
the work of Armoni [Arm98]. Moreover, samplers played a crucial role in [BCG20, CL20]. While
the technical statements are by no means new, the following consequence eluded previous works.

We now introduce the notion of samplers, and briefly explain how to derive Lemma 5.3.1. The
presentation mainly follows the highly recommended survey [Gol97].

Definition 5.8.3. A sampler with accuracy ε, and sampling error δ, is a randomized algorithm νf

with oracle access to a function f : {0, 1}n → [0, 1] such that

∀f Pr
y

[∣∣∣νf (y)− Eσ[f(σ)]
∣∣∣] ⩾ ϵ] ⩽ δ.

In our setting, the quality of a sampler is determined by three complexity measures:

i. Space Complexity: Space required to run the sampler.

ii. Query Complexity: Number of oracle calls to the function f : {0, 1}n → [0, 1].

iii. Randomness: Amount of randomness used by the sampler.

A very important type of samplers is that of averaging samplers, in which the sampler simply
outputs the average of its queries. An averaging sampler is thus defined via a function

S : {0, 1}d × {0, 1}m → {0, 1}n.

The output of νf is then
νf (y) = Ex∈{0,1}d [f(S(x, y))],

and so the query and randomness complexity of the above sampler are m, 2d respectively. More
generally, and analogously to the discussion on oblivious approximations in Section 5.7, one can
consider non-adaptive samplers in which

νf (y) = g((f(S(x, y))
x∈{0,1}d

),

where g is an arbitrary function. (For averaging samplers g is the average function.).
Let us differ the discussion about the existence of efficient samplers, and go back to pseudoran-

dom generators. Suppose that we have a PRG G : {0, 1}s → Σn against B[n,w,Σ], i.e., for every
ROBP B

∥Ex[B(G(x))]− Eσ[B(σ)]∥∞ ⩽ ε.

Note that G does not necessarily satisfy the guarantee of the Nisan generator discussed above. E.g.,
G can be taken to be the INW generator (See Section 2.7.2). Set the function

f(x)
def
= Ex[B(G(x))],

then it natural to try and sample from f using a sampler. Consider

GS
def
= G ◦ S, (5.9)
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namely GS(x, y) = G(S(x, y)). It is worth pointing out that if S is an averaging sample then GS

is a PRG. Using a non-averaging sampler νf we would have obtained a randomized algorithm
that approximates the transition matrix in a black-box fashion (i.e., only queries the ROBP as a
function), and for non-adaptive samplers the approximation is “oblivious”.

Lemma 5.8.4. Let S : {0, 1}m × {0, 1}d → {0, 1}n be an averaging sampler with accuracy ϵS, and
sampling error δG. Also, let G : {0, 1}s → {0, 1}n be a PRG against B[n,w,Σ] with accuracy εG.
Then for every B ∈ ([w]× Σ → [w])

Pr
x

[
∥Ey[B(GS(x, y))]− Eσ[B(σ)]∥max ⩾ εG + εS

]
⩽ w2δS .

Moreover, GS can be implemented in the space required to implement S, plus the space required to
implement G.

Proof of Lemma 5.8.4. For every indices 1 ⩽ i, j ⩽ w consider the Boolean function

fi,j(z)
def
= (B(G(z))[i, j].

By the sampler property

Pr
x
[|(B(G(S(x, y)))[i, j]− (Ez[B(G(z))])[i, j]| ⩾ εS ] ⩽ δS .

By union bound the above holds for all indices 1 ⩽ i, j ⩽ w expect with probability w2δS and so

Pr
x
[∥(B(G(S(x, y)))− Ez[B(G(z))]∥ ⩾ εS ] ⩽ w2δS .

Using that
∥Ez[B(G(z))]− Eσ[B(σ)]∥max ⩽ εG.

completes the proof.

It is time to discuss explicit constructions and parameters. The following is a well-known
construction of an averaging sampler with very good parameters.

Theorem 5.8.5 (Corollary 7.3 in [RVW02]). There exists an averaging (ϵ, δ)-Sampler S : {0, 1}m×
{0, 1}d → {0, 1}n with m = n+ log(1/εδ) and d = O(log(1/ϵ) + log log(1/δ)), assuming

log(1/δ) > log(1/ε)2O(log∗(1/δ))2.

The space requirement of Theorem 5.8.5 are implicit in the literature, though inspecting the
construction one sees that it uses simple primitives such as hash functions, expander graphs, and
k-wise independent distributions - all known to have constructions that run in logarithmic space.
Therefore, it is claimed that the sampler of Theorem 5.8.5 can be implemented in O(m). By the
observation made at the end of Lemma 5.4.2, such space complexity suffices for the SZIt algorithm.
Still, as the sampler of Theorem 5.8.5 is involved and it is preferable to use an alternative simpler
construction even at the cost of sub-optimality. Such an alternative route does exist, though it
does take a toll: it is not an averaging sampler.

2log∗ n denotes the iterated logarithm.
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Lemma 5.8.6 (Median-of-Averages sampler [BGG93]). There exists an averaging (ϵ, δ)-Sampler
S : {0, 1}m × {0, 1}d → {0, 1}n with the following parameters:

m = n+ log(1/εδ), d = O(log 1

ε
+ log logn log log 1

δ
),

that runs in O(log log n
ε + log log 1

δ ) space.

The above sampler is very simple, and so we sketch its construction and briefly analyze its space
complexity. There are two ingredients:

1. Pairwise independent distribution over ({0, 1}n)m with m = O
(

1
εδ

)
: This can be implemented

via taking linear combinations in F2n , and can be sampled using r = 2n bits. Recall that
arithmetic operations over F2n can be done in logarithmic space (e.g.[HAB02, HV06]).

2. Expander graphs over the vertex set {0, 1}r with degree D def
= logn, and spectral gap λ such

that λ/D < 0.1. We use the expander graph of Section 2.7.2 which is a Cayley graph of
an Abelian group so that random walks can be computed space-efficiently. That is, given
γ1, . . . , γℓ ∈ {1, . . . , D}ℓ, can be computed in space O(log ℓ+ log logD).

Let f : {0, 1}n → [0, 1] be some bounded function. The sampler takes a random walk on the
expander graph of length ℓ = O(log 1

δ ), uses the vertices along the path to obtain ℓ samplers
(Z

(j)
1 , . . . , Z

(j)
m )ℓj=1 of the pairwise independent distribution, and samples the points Z(j)

i ∈ {0, 1}n.
We then take the average over every batch

µj = Ei[f(Z
(j)
i )],

and output the median of those averages median(µ1, . . . , µℓ). A detailed analysis is provided in
[Gol97]. The space complexity follows from the above assertions, and composition of space bounded
algorithms (Claim 2.2.2).

Remark 13. Taking the median in Section 4.8 is in fact a naive implementation of the median-
of-averages sampler: it takes the median of independent samples, whereas the median-of-averages
sampler takes the median of the dependent samplers obtained by taking a random walk over an
expander graph.

Lemma 5.3.1 follows almost directly from instantiating Lemma 5.8.4 with the median-of-averages
sampler of Lemma 5.8.6.
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מהזיכרון משמעותית גדול הריצה זמן שבהם לאלגוריתמים תקף רק ובפרט ,S ≪ logT שבהם במקרים ביטוי לידי
לאלגוריתם מאפשרים אנחנו כי להדגיש חשוב ולכן (לעיתים), עוצרים אינם בהכרח כאלה אלגוריתמים צורכים. שהם

.T בתוחלת הוא הריצה זמן כי ודורשים זניחה בהסתברות לעצור לא
כפל של הבעיה באמצעות היא מוגבלי-זיכרון אלגוריתמים של דה-רנדומיזציה של הבעיה את לנסח שקולה דרך
אם סטוכסטיות. מטריצות של חזקות לקירוב יעיל כאלגוריתם מנוסחת וז׳ו סאקס של התוצאה למעשה, מטריצות.
של T ה- החזקה את קירוב של לבעיה שקול יותר או פחות S וזיכרון T בזמן שרץ אקראי חישוב מדויק, יותר להיות
מטריצות של מכפלה לקרב כדי נדרש זיכרון כמה כללי באופן לשאול טבעי לכן, .2S ממימד סטוכסטית מטריצה

נתונות סטוכסטיות
A1, . . . , An ∈ Rw×w.

בזיכרון שרץ לעיל האלגוריתם היה לבעיה ידוע שהיה ביותר היעיל האלגוריתם

O(log3/2 n+
√

logn logw).

בזיכרון בערך שרץ זו לבעיה אלגוריתם מתארים אנחנו [CDSTS22] בעבודה

O(
√

logn logw),

שבו במקרה נתבונן בפרמטרים ההבדל את להדגים כדי .w ≪ n בתחום הזיכרון סיבוכיות את משפר כלומר

w = 2
√

logn,

פרמטרים עבור O(log3/2 n) של בזיכרון רץ וז׳ו סאקס של האלגוריתם .2
√

logn ממימד מטריצות n לנו יש קרי
זאת, לעומת וז׳ו. סאקס של באלגוריתם שימוש ללא בקלות זהים פרמטרים עם אלגוריתם להשיג ניתן ולמעשה אלו,

.O(logn log logn) של מיטבית כמעט זיכרון סיבוכיות משיג שלנו האלגוריתם
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סרטים: שלושה למכונה להקצות נדרש הקלט, או הפלט מאורך משמעותית קטנה הזיכרון כמות כאשר כי נעיר
ממנה ונמנע הפלט את המכונה כותבת אליו פלט סרט לקרוא, רק מותר למכונה וממנו הקלט כתוב עליו קלט סרט
אורך להיות מוגדר הזיכרון החישובית. המשימה את לבצע כדי משתמשת המכונה בו עבודה וסרט ממנו, לקרוא

בפועל. בו משתמשת שהמכונה העבודה סרט
להבדיל אקראיים. במטבעות שמשתמש חישוב הינו הסתברותי חישוב האקראיות. משאב על לדבר נעבור
בפרט - גבוהה בהסתברות מצליח אלא פעם, בכל מצליח שהחישוב דורשים לא אנחנו דטרמיניסטי, מחישוב
אז שעד בעיה לפתרון הסתברותיים אלגוריתמים שני הוצעו השבעים בשנות לעיתים. שגוי להיות יכול החישוב
ושטראסן סולוביי של היה הראשון האלגוריתם ראשוני? הוא נתון מספר האם אלגוריתם: עבורה ידוע היה לא
אלגוריתמים, בתכנון מרכזי לכלי הפכה שאקראיות עד רב זמן לקח לא .[Rab80] ורבין מילר של והשני ,[SS77]
כי נמצא ראשוניות, בדיקת של במקרה וגם רבים, במקרים זאת, למרות הסיבוכיות. בתורת מרכזי מחקר ולתחום
הכרחית אינה אקראיות מקרים באילו - השאלה מתעוררת יעיל. לחישוב הכרחית אינה האקראיות דבר של בסופו
כמות את משמעותית להגדיל מבלי לדטרמיניסטי אותו ולהפוך הסתברותי אלגוריתם לקחת ניתן האם יעיל? לחישוב
דה-רנדומיזציה. נקרא לחלוטין, או חלקית אקראיים, במטבעות התלות הסרת של התהליך צורך? שזה המשאבים
לחישוב שקול הינו אקראי חישוב בקבוע, כפל של תקורה כדי שעד סבורה הקהילה זיכרון, סיבוכיות של בהקשר

דטרמיניסטי. קרי קלאסי,
פסאודו- מחוללי באמצעות היא זיכרון, מוגבל חישוב של ובפרט בכלל, לדה-רנדומיזציה המרכזיות הדרכים אחת
שלנו במקרה מוגבל, יריב עבור אקראית שנראית התפלגות מייצר פסאודו-אקראיות מחולל בקצרה, אקראיות.

פרמטרים: בשלושה נמדדת ואיכותו זיכרון, מוגבלי אלגוריתמים

ההתפלגות. את לייצר הנדרשת האקראיים המטבעות כמות אקראיות: א.

התתפלגות. את לייצר הנדרשת הזיכרון כמות זיכרון: ב.

ההתפלגות לבין הפסאודו-אקראית ההתפלגות בין להבחין יכול זיכרון מוגבל שאלגוריתם הדיוק מידת שגיאה: ג.
האחידה.

כהן, גיל עם משותפת עבודה שהוא ,[CDR+21] במאמר האפשר. ככל קטנים יהיו הפרמטרים ששלושת נרצה
ניתן נתונה, שגיאה עם פסאודו-אקראיות מחולל בהינתן כי מראים אנחנו רנרד, ואורן תא-שמע אמנון דורון, דין
בונה לא שלנו הבניה זאת, עם המחולל. של והאקראיות בזיכרון אופטימלית כמעט תלות עם השגיאה את להקטין
על תלוי בלתי ובאופן במקביל הושגה זו תוצאה ממושקל. פסאודו-אקראיות מחולל אלא פסאודו-אקראיות, מחולל
אקראיות מחוללי-פסאודו של השגיאה את להוריד ניתן כי להבחין הראשונים .[PV21] וודהאן וסליל פיין טד ידי
עם ממושקל מחולל שבנו [BCG20] גארג וסומגה כהן, גיל ברוורמן, מארק היו ממושקל מחולל של בניה ידי על

אקראיות

O(log2 n · log logn
1

ε
+ logn · logw + log w

ε
· log log w

ε
),

קודמות: עבודות על יתרונות שני שלנו לעבודה .[CL20, Hoz19] דומות בניות פורסמו בעקבותיהם כאשר

בסיסיים מאד מאחוריה והרעיונות ,[BCG20, CL20] קודמות מבניות משמעותית פשוטה הבניה פשטות: א.
להבנה. וקלים

עם כלשהו מחולל לקחת מאפשר שלנו הבניה מסויים, ממושקל מחולל תיארו קודמות בניות בעוד כלליות: ב.
השגיאה. את עבורו ולהוריד כלשהו פרמטרים

נוספים. למקרים שלה, ווריאנט או הבניה, את להחיל שניתן מאד ייתכן בנוסף,
ועוסקת [CDSTS22] תא-שמע ואמנון דורון, דין כהן, גיל עם משותפת עבודה על מבוססת האחרונה התוצאה
צורכים. שהם מהזיכרון משמעותית גדול שלהם הריצה שזמן הסתברותיים אלגוריתמים של דה-רנדומיזציה של בבעיה
דטרמיניסטי באופן לסמלץ ניתן S בזיכרון שרץ אלגוריתם כל כי הוכיחו וז׳ו סאקס [SZ99] הדרך פורצת בעבודה

באמצעות
O(S3/2)

,O(S
√

logT ) של משופר בזיכרון שרצה סימולציה ומשיגה שלהם, האלגוריתם על מתבססת שלנו התוצאה זיכרון.
בא בזיכרון השיפור זניחה). בהסתברות לעצור לא לאלגוריתם מרשים (אנחנו בתוחלת הריצה זמן הוא T כאשר
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פורצת בעבודה כאשר, מענה קיבלה זו שאלה נתון. ערוץ של הקיבול את שמשיגים מפורשים קודים לבנות ניתן
.[Ar�09] האנטרופיה קיטוב שיטת באמצעות יעילים ופענוח קידוד אלגוריתמי שלהם כאלה קודים בנה אריקן דרך,
למידע כך. על נרחיב לא אך קודם, עוד גם רבות תוצאות והיו הקיבול, השגת של במושג רבות דקויות יש כי נעיר

אריקן. של המקורי המאמר ראו נוסף,
זה אין - האינפורמציה מתורת כלים באמצעות נעשתה שאנון במודל שגיאות לתיקון קודים על העבודה מרבית
נוספים לכיוונים התפתחה מאד מהר הקודים תורת זאת, עם זו. תורה להולדת נחשבת שאנון של עבודתו שכן פלא
ודרש [Ham50] מוגבל יריב ידי על הרעש את לתאר הציע האמינג מהקוד. והדרישות הרעש, מודל לשינוי בהתאם
באנאלוגיה תמיד. - הרעש את לייצר בחר שהיריב באסטרטגיה תלות ללא הקוד מילת את לשחזר ניתן תמיד כי
במילת קורדינטות של t ∈ N מוגבל מספר למחוק/להפוך מותר ליריב שאנון, שהציע המחיקות/שגיאות לערוצי
שגיאות של דומה כמות עבור האמינג של במודל בהרבה גדולה יתירות שדרושה מצפים אנחנו כמותי, באופן הקוד.
כל על אקראית. נבחרות אלו שאנון של הרעש שבמודל בעוד למחוק, קורדינטות אילו בחוכמה בוחר היריב שכן
הקרובות הקוד מילות שתי בין המרחק - בודד סטטיסט פי על נקבעים הקוד של הביצועים האמינג של במודל פנים,
האמינג מודל הקוד. של המרחק נקרא זה פרמטר בערכן. השונות הקורדינטות כמספר נמדדת קרבה כאשר ביותר,
קודי ריד-מילר, קודי את כוללות חשובות דוגמאות אלגבריות. בניות באמצעות שנבנו קודים של חדש של סוג הצית
מבניות תכונות מקיימים אלו קודים כלל, בדרך גיאומטרית. מאלגברה וקודים גוליי, קודי בוז-צ׳הודרי-הוכנגהם,
בתורת שונים שימושים לצורך שמנוצלות ועוד, דואליות מעגליות, טרנזיטיביות-כפולה, טרנזיטיביות, כגון שימושיות

במיוחד. למושכים אותם שהופך מה הקודים,
בגדר נשאר שאנון במודל שלהם הניתוח רבה, במידה ידועים האמינג במודל אלו קודים של שהביצועים למרות
כלומר נתון, ערוץ כל של הקיבול את משיגים אלו כי שיערה הקהילה ריד-מילר, קודי עבור לפחות תעלומה.
טובים שלהם שהביצועים כך על הצביעו אמפיריים ניסויים למעשה, שאנון. של במודל אופטימליים שלהם הביצועים
ואורבנקה ססוגלו, פיסטר, מונדלי, קומר, קודקר, הצליחו 2015 בשנת רק .[AKM+09] אריקן של מהקודים יותר
אבה, שנה, באותה .[KKM+17] המחיקות ערוץ של הקיבול את משיגים קבוע קצב עם ריד-מילר קודי כי להוכיח
מהר, מספיק לאחד שואף וקצב מהר, מספיק לאפס שואף קצב עם ריד-מילר קודי גם כי הראו ו-ויגדרזון שפילקה,

.[ASW15, SS20] והשגיאות המחיקות ערוץ של הקיבול את משיגים
יכול הוא אז כלשהו, בערוץ רעש עם להתמודד יכול הקוד אם מסויים שבמובן היא שלנו המרכזית התוצאה
קודים של הביצועים על [KKM+17] ושותפיו קודקר של העבודה על בהתבסס ערוץ. בכל רעש עם להתמודד
מסיקים אנחנו שאנון, במודל מסויים ערוץ שזהו מחיקות, ערוץ מעל הכפולה הטרנזיטיביות תכונות את המקיימים
דורש המדויק הניסוח דיו. רועש שאינו ערוץ כל מעל רעש עם להתמודד יכול כנ"ל קוד כל הבאה: התוצאה את
את לנסח ניתן שראינו הערוצים של במונחים בערוץ. הרעש מידת את שמודד בטצ׳ריה, פרמטר שנקרא מושג
פרמטר עם המחיקות ערוץ מעל אמין הכפולה הטרנזיטיביות תכונת את שמקיים קוד כל הבא: באופן התוצאה
קבועים p1, p2, σ כאשר σ שונות עם הגאוסי הערוץ מעל ואמין ,p2 פרמטר עם הסימטרי השגיאות ערוץ מעל ,p1

הקוד. של ובמרחק הקוד, של בקצב התלויים
הנחה להחליש מצליחים אנחנו אך למדי, גבוה הקוד של המרחק כי מניחה ושותפיו קודקר של העבודה
המוכרים השגיאות מקודי ריד-מילר, שקודי היא שלנו מהעבודה נוספת חשובה מסקנה משמעותית. בצורה זו
הוכח [RP21] מכן לאחר שפורסם במאמר כי נעיר ערוץ. כל מעל רעש עם להתמודד יכולים בתחום, והחשובים
התוצאה הדיוק, למען ערוץ. כל של לקיבולת ששואפת רעש כמות עם להתמודד יכולים ריד-מילר קודי למעשה כי
של מלא משחזור להבדיל הקוד, מילת כל את כמעט משחזרים שבתוחלת כלומר בתוחלת, פענוח על מדברת שלהם

גבוהה. בהסתברות הקוד מילת
.[HSS21] סמרודניצקי ואלכס הזלה, יאן עם משותפת עבודה על מבוסס התוצאות

זיכרון מוגבל אקראי חישוב - ב׳ פרק

מקבילי, ריצה זמן זיכרון, ריצה, זמן כגון נתונה בעיה לפתרון הנדרשת המשאבים בכמות עוסקת הסיבוכיות תורת
מכונת - טיורינג של המודל באמצעות חישוב לתאר נהוג המחשב, מדעי של בתיאוריה ועוד. אקראיות, תקשורת,
חד-כיווני, לרוב אינסופי, סרט על הפועלת (אלגוריתם) הוראות של סופית סדרה היא מ״ט בקצרה, (מ״ט). טיורינג

ולכתוב. לקרוא יכולה היא שממנו
אורך הוא הזיכרון מ״ט, של במונחים כעת. נסביר אותם והאקראיות הזיכרון במשאבי מתרכזים אנחנו בעבודה
והפלט. לבעיה, הקלט את לשמור שדרוש מהמקום מתעלמים אנחנו כאשר בפועל, בו משתמשת שהמכונה הסרט
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תקציר

שאנון במודל שגיאות לתיקון קודים - א׳ פרק

בין תקשורת של בשאלה התעניין שאנון קלוד [Sha48] התקשורת" של מתמטית "תאוריה הדרך פורצת בעבודתו
רועש תווך מעל צדדים שני

שולח רעש מקבל
y הודעה: ỹ מורעשת: הודעה

המחשב, במדעי ביותר החשובים התחומים לאחד הפכה שלימים הקודים, לתורת היסודות את הניחה עבודתו
רועש. תווך מעל תקשורת של המקורית לבעיה מעבר הרבה שימושית ונמצאה

שהוצע הרעש במודל שלהם ובביצועים שגיאות, לתיקון לינארים, בינארים, בקודים מתמקדים אנחנו בעבודה
נקראים במרחב והווקטורים ,V ⊆ Fn

2 לינארי תת-מרחב הינו שגיאות לתיקון לינארי בינארי, קוד שאנון. ידי על
לינארית העתקה עם המרחב את לזהות ניתן קוד. מילות גם

E : Fdim(V )
2 → Fn

2

התכונה את לקיים צריך V כאמור, .V במרחב ולהתרכז מזו להתעלם נהוג אך הקידוד, פונקצית גם שנקראת
מתאפשר הדבר לשחזרו. גם שניתן וככל v על מידע לחלץ ניתן ,v ∈ V כלשהו ווקטור של מורעשת גרסה שבהינתן

קרי יותר קטן ממימד למרחב שייך הוא בעוד ,n הינו v של אורכו כי

dim(V ) < n,

על ומוגדר קצב שנקרא פרמטר באמצעות נמדדת היתירות כמות .v של בייצוג יתירות קיימת אחרות, במילים או
ידי

R(V )
def
=

dim(V )

n
.

לתיקון ליכולת ערובה אינה יתירות כי נעיר שגיאות. לתיקון קוד של ביותר הבסיסיים הפרמטרים אחד הינו הקצב,
תורת נכנסת כאן - v על הנדרש המידע את לשחזר היכולת את מבטיח אינו יתירות של קיומה עצם כלומר שגיאות,

מהקוד. לדרישות ובהתאם בחוכמה, V המרחב את לבחור היא והמטרה הקודים,
שאנון בעבודותו, נוצרות. אלו שגיאות כיצד להגדיר יש שגיאות, תיקון של בשאלה מתמטי באופן לעסוק כדי
גבוהה. בהסתברות הקוד מילת את לשחזר ניתן האם ושאל זיכרון, חסר אקראי, כתהליך הרעש את לתאר הציע

רעש: לתיאור נפוצים מודלים שמהווים ערוצים, גם הנקראים אקראיים, תהליכים שלושה להלן

תלוי. בלתי באופן ,p ∈ (0, 1) בהסתברות '?' שאלה בסימן מוחלפת קורדינטה כל מחיקות: ערוץ א.

באופן p ∈ (0, 12) בהסתברות ולהיפך, '1' ל- הפוך '0' קרי ׳מתהפכת׳, קורדינטה כל סימטרי: שגיאות ערוץ ב.
תלוי. בלתי

זה בערוץ .σ נתונה שונות עם גאוסיאנית, בצורה המתפלג רעש מתווסף קורדינטה לכל גאוסיאני: לבן רעש ג.
.{0, 1} במקום {−1, 1} בתור הקורדינטות את לפרש נהוג

מחיקות/שגיאות, של במקרה p הרעש פרמטר של בחירה כל שכן ערוצים, של משפחות בשלוש מדובר למעשה כי נעיר
הנקראים ערוצים של למשפחה שייכים לעיל הערוצים שלושת ערוץ. מגדירה גאוסיאני, לבן רעש של במקרה σ או
נתונים, וקוד ערוץ עבור כזה. לערוץ מתכוונים אנחנו ערוץ, נאמר כאשר ומעתה ערוצים-סימטרים-חסרי-זיכרון,

ידיו. על שהורעשו קוד מילות גבוהה בהסתברות לשחזר ניתן אם הערוץ מעל אמין הקוד כי נאמר
מעל באמינות לתקשר באמצעותו שניתן הקוד קצב על עליון חסם יש ערוץ לכל כי הוכיח שאנון בעבודתו,
מעל (1−p)-מ גדול קצב עם קוד באמינות לשדר ניתן לא לדוגמה, הערוץ. של הקיבול נקרא זה מרבי קצב הערוץ.
לכל כי הוכיח הוא מזאת, יתרה .1 − p הוא המחיקות ערוץ קיבול כלומר ,p מחיקה הסתברות עם מחיקות ערוץ
וכיצד האם השאלה, נותרה שכזה. מפורש קוד בונה לא שלו ההוכחה אך זה, חסם שמשיגים קודים קיימים ערוץ

2



תמצית

שיכול קוד כל כי נראה ובו שאנון של הרעש מודל תחת שגיאות לתיקון בקודים עוסק התזה של הראשון החלק
קומר, קודקר, של עבודתם על בהתבסס ערוץ. כל מעל רעש עם להתמודד יכול כלשהו, בערוץ רעש עם להתמודד
תכונת את שמקיים קוד כל הבאה: התוצאה את מסיקים אנחנו [KKM+17] ואורבנקה ססוגלו, פיסטר, מונדלי,
של שהעבודה בעוד קטן. מספיק בטצ׳ריה קבוע עם ערוץ כל מעל רעש עם להתמודד יכול הכפולה הטרנזיטיביות
מסקנה משמעותית. בצורה זו הנחה להחליש מצליחים אנחנו למדי, גבוה הקוד של המרחק כי מניחה ושותפיו קודקר
עם להתמודד יכולים בתחום, והחשובים המוכרים השגיאות מקודי ריד-מילר, שקודי היא שלנו מהעבודה נוספת
להתמודד יכולים ריד-מילר קודי למעשה כי הוכח [RP21] מכן לאחר שפורסם במאמר כי נעיר ערוץ. כל מעל רעש
שניתן רעש של המירבית הכמות עם מתמודדים אחרות, במילים או ערוץ, כל של לקיבול ששואפת רעש כמות עם

עמה. להתמודד
פסאודו- במחוללי נתמקד תחילה, זיכרון. מוגבל חישוב של בדה-רנדומיזציה נדון התזה של השני בחלק
כמעט תלות עם השגיאה את להקטין ניתן נתונה, שגיאה עם פסאודו-אקראיות מחולל בהינתן כי ונוכיח אקראיות
מחולל אלא פסאודו-אקראיות, מחולל בונה לא שלנו הבניה זאת, עם המחולל. של והאקראיות בזיכרון אופטימלית
.[PV21] וודהאן וסליל פיין טד ידי על תלוי בלתי ובאופן במקביל הושגה זו תוצאה ממושקל. פסאודו-אקראיות

של הבעיה את תופסת מסוים שבמובן סטוכסטיות, מטריצות של חזקות קירוב של בבעיה נדון מכן לאחר
למטריצות T מסדר חזקות של קירוב מדקויות, לרגע נתעלם אם זיכרון. מוגבלי אלגוריתמים של דה-רנדומיזציה
.S וזיכרון T בזמן שרצים הסתברותיים אלגוריתמים של לדה-רנדומיזציה שקול הינו 2S × 2S ממימד סטוכסטיות

בזיכרון שרץ סטוכסטיות מטריצות של חזקות קירוב של לבעיה [SZ99] אלגוריתם תיארו וז׳ו סאקס

O((S + logT )
√

logT ).

השיפור .O(S
√

logT ) של משופר בזיכרון שרצה סימולציה ומשיגה שלהם, האלגוריתם על מתבססת שלנו התוצאה
השיפור דה-רנדומיזציה, של לעולם בחזרה התוצאה את מתרגמים כאשר לכן, .S ≪ logT כאשר ביטוי לידי בא
אינם בהכרח כאלה אלגוריתמים צורכים. שהם מהזיכרון משמעותית גדול הריצה זמן שבהם לאלגוריתמים תקף
זמן כי ודורשים זניחה בהסתברות לעצור לא לאלגוריתם מאפשרים אנחנו כי להדגיש חשוב ולכן (לעיתים), עוצרים

נתונות סטוכסטיות מטריצות של מכפלה קירוב לגבי מה .T בתוחלת הוא הריצה

A1, . . . , An ∈ Rw×w?

.O((logw+ logn)
√

logn) בזיכרון רץ שכאמור לעיל האלגוריתם היה לבעיה ידוע שהיה ביותר היעיל האלגוריתם
בזיכרון בערך שרץ זו לבעיה אלגוריתם נתאר

O(logw
√

logn),

שבו במקרה נתבונן בפרמטרים ההבדל את להדגים כדי .w ≪ n בתחום הזיכרון סיבוכיות את משפר כלומר

w = 2
√

logn,

פרמטרים עבור O(log3/2 n) של בזיכרון רץ וז׳ו סאקס של האלגוריתם .2
√

logn ממימד מטריצות n לנו יש קרי
זאת, לעומת וז׳ו. סאקס של באלגוריתם שימוש ללא בקלות זהים פרמטרים עם אלגוריתם להשיג ניתן ולמעשה אלו,

.O(logn log logn) של מיטבית כמעט זיכרון סיבוכיות משיג שלנו האלגוריתם
השני והחלק ,[HSS21] סמורודניצקי ואלכס הזלה, יאן עם משותפת עבודה על מבוסס התזה של הראשון החלק

.[CDR+21, CDSTS22] תא-שמע ואמנון רנרד, אורן דורון, דין כהן, גיל בשיתוף עבודות על
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