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 Abstract 

Algebraic Geometric Codes, or Goppa codes, denoted C(D,G), 

are error correcting codes that generalize the Reed-Solomon 

codes. They are linear codes over the field 𝔽𝑞. A codeword is 

defined for every function in the Riemann-Roch space 

associated with the divisor G. given such f, the codeword 

includes the value of f at each of the points on the curve 

included in the divisor D. 

Algebraic Geometric codes are an important construction in 

Theoretical Computer Science since they were an important step 

to our understanding of the trade-off between rate and distance 

of error correcting codes over fields of size at least 49. 

This work deals with the problem of proving bounds on the 

distribution of the symbols of 𝔽𝑞 that appear in a codeword by 

bounding the probability of events of the form ‘a random 

symbol from the word belongs to a specific subset of 𝔽𝑞’. We 

choose the sets that define these events to have algebraic 

significance, thus enabling us to prove bounds via the counting 

of points on certain algebraic curves. 

The need to count points on curves begs the use of powerful 

tools from Algebraic Geometry such as the Weil Bound. 

However, the curves that are relevant to the construction of 

Algebraic Geometric Codes typically have a large genus, which 

makes the classical results yield only trivial bounds. 

In this work we use elementary tools to bound the number of 

codeword symbols that are ℓ-th powers in the multiplicative 

subgroup of 𝔽𝑞. We generalize the Stepanov Method introduced 

in 1969. Adapting it to work over curves other than the 

projective line requires basic tools from the theory of function 

fields as well as carful description of the structure we require 

from the function fields we work with. 



1 Introduction

This work deals with the problem of proving bounds on character sums over
function fields. One typical example of such character sums is the following
classic theorem:

Theorem 1.1. (Weil) Let f ∈ Fq[x] be a non-square polynomial of degree
d, and χ the quadratic residue character (i.e., χ(a) is 0 if a = 0, 1 if a is a
square and −1 otherwise). Then

|
∑
a∈Fq

χ(f(a))| ≤ O(d
√
q).

One way to prove Theorem 1.1 is the following. Our starting point is the
Hasse-Weil bound:

Theorem 1.2. (Hasse-Weil Bound [Sti09, Theorem 5.2.3]) The number N1

of places of degree one on a curve over Fq with genus g is at most

N1 ≤ q + 1 + 2g
√
q

Having the Hasse-Weil bound, we define the curve Fq(X,Z) mod (Z2 −
f(X)). Note that the number of rational points on the curve is about twice
the number of points x such that χ(f(x)) = 1. The genus of this curve is
O(d). It therefore follows that this number is at most q

2
+ O(d

√
q). Mul-

tiplying f by a non-square, gives a bound on the number of non-residues,
and together we see that the number of residues and non-residues is almost
balanced, and therefore their bias (which is captured by |

∑
χ(f(x))|) is

bounded by O(d
√
q).

One can generalize the approach to low-genus general function fields (the
above example was for the genus zero rational function field), but the ap-
proach fails when trying to work with high genus function fields.

In 1969 Stepanov [Ste69] published an elementary proof of a slightly
weaker version of some specific cases of the Hasse-Weil bound, and this was
later generalized by Bombieri [Bom06] to give:

Theorem 1.3. (Stepanov-Bombieri version of the Hasse-Weil Bound (Taken
from [Tao14])) The number N1 of degree one places on a curve over Fq with
genus g is at most

N1 ≤ q + 1 + (2g + 1)
√
q

when q is a prime power square and q ≥ (g + 1)4.
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In this work we use the Stepanov-Bombieri method directly, to prove a
character sum bound over function fields of very high genus. Our results
do no use the method as a black-box, as we have already mentioned that
even the tight Hasse-Weil bound does not suffice. Instead, we show that
for a certain (natural) class of function fields, the technique can be used to
directly bound the character sum. In Section 4 we explain what function
fields are captured, and the bound that we get. We demonstrate our result
with an example:

Theorem 1.4. Let C be the Hermitian curve Fq(x, y) mod (yp + y − xp+1)
where q = p2. Let f(x, y) be a polynomial with odd valuation at P∞ and total
degree d < p

2
. Let χ be the quadratic residue character. Then |

∑
x∈C χ(f(x))| ≤

O(
√
dp2.5).

Notice that the bias is o(N1) (when we think of p as going to infinity)
proving that for any such f , the residues and non-residues are almost bal-
anced.

Our techniques generalize to many other function fields, including, e.g.,
the Garcia-Stichtenoth curve Fq(x, y) mod (yp + y − xp

xp−1+1
), the Hermitian

tower, the Garcia-Stichtenoth tower and more.

1.1 More about the technique

In the polynomial method, we want to bound the number of elements with
some combinatorial property. We do that by presenting a (low-degree) poly-
nomial Q such that all these elements can be derived from Q (e.g., they
are roots of Q). For example, suppose we are given as input a set {(ai, bi) ∈
Fq×Fq} and we want to bound the number of degree d polynomials p ∈ Fq[X]
such that f(ai) = bi for at least A values i. The Guruswami-Sudan algo-
rithm [GS98] does that by first finding a low-degree polynomial Q ∈ Fq[X, Y ]
such that Q vanishes with high multiplicity over all points (ai, bi) in the set,
and then proves that every solution f gives a factor y − f(x) of Q. The
Guruswami-Sudan algorithm can explicitly finds these solutions.

The Stepanov method is similar, except that the polynomial Q has to
vanish with high multiplicity over a variety, rather than just an arbitrary
set. For example, this variety might be the set of (x, y) such that y2 =
f(x). In the polynomial method, one usually has independent constraints
per different points. However, it is usually cheaper to enforce that Q vanishes
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as a polynomial over the variety, and this is a key ingredient in Stepanov’s
method.

In this work we want to count the number of points P ∈ C, such that
f(P ) is a non-zero square. As before, this corresponds (up to a factor of 2)
to the number of points on the curve F ′ = F (Z) where Z2 = F . We want
to use the Stepanov method to find a Q that vanishes with high multiplic-
ity on the rational points of F ′. This is fairly straight forward when F is
the rational function field. However, when F is a large genus function field,
things get complicated. To begin with, one needs to have derivatives in the
function field, and the theory behind this is well studied and well under-
stood. However, while derivatives in function fields share many properties
with derivatives over the rational function field, many essential differences
exist. For example, the degree of the derivative might be much larger than
the degree of the original function. These differences are responsible for many
of the complications that arise. To overcome these difficulties, we employ a
general, powerful tool relating the pole divisor of the derivatives of f ∈ F
with the pole divisor of f . We prove:

Theorem 1.5. Let F be a function field of genus g, and x ∈ F a separating
element of F . There exists ω ∈ F such that for every f ∈ F with poles only
at P∞ and pole order at most A, the derivative of f with respect to x, denoted
Dx(f), satisfies:

• ωDx(f) has poles only at P∞

• The pole order of ωDx(f) is at most A+ 3g − 2 + 2 deg(x)

We are unaware of previous results of this form, even though it may well
be the case that such results exist unbeknownst to us.

Many problems are left open. For example, we suspect that the 3g term
in Theorem 1.5 should really be 2g. Also, we do not know what is the
true error term in Theorem 1.4, for example, it might be that under natural
conditions on f , the error is bounded by O(d

√
N1). Even more crucial is to

generalize the Hermitian curve bound to degrees d above p, or for general
curves to work with functions coming from Riemann spaces above the genus.
We remark that such improvements might have far reaching consequences to
the construction of explicit Binary error correcting codes close to the Gilbert-
Varshamov bound.

The thesis organized as follows: In Section 2 we give an informal in-
troduction to algebraic function fields, trying to focus on derivatives and
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differentials, and we also decribe the notation used throughout the thesis. In
Section 3 we state and prove a generalization of Theorem 1.5. Then, in Sec-
tion 4 we state the problem, specify the properties required from the function
field, and state the result we obtain. In Sections 5 and 6 we prove the result
itself.

2 Introduction to function fields and deriva-

tives

In this section we give some background on algebraic function fields and
introduce the notations that will be used throughout the paper. Our goal is
to give an intuitive explanation of the mathematical objects and ideas. For
a complete formal treatment of the subject we refer the interested reader to
[Sti09].

The rational function field K(x) is the field extension of K with a tran-
scendental element x. A function field F/K is a finite extension of the
rational function field K(x)1. For example, the Hermitian function field is
F = Fq(x, y) mod φ(x, y), where q = p2, p is a prime power and φ(x, y) =
TrFq/Fp(y)−NFq/Fp(x) = yp + y − xp+1.

A place of F/K is analogous to a ”point” at which we can ”compute” or
”evaluate” the elements f ∈ F . Let us take the rational function field K(x)
as example. For every α ∈ K there is a place Pα corresponding to x−α and if

f has no pole at α then f(Pα)
def
= f mod (x−α) = f(α). Another place is P∞,

where f
g

has a pole at P∞ if deg(f) > deg(g) and if f
g

does not have a pole at
P∞, its value can be computed by dividing the leading coefficients of f and g.
There are more places of the rational function field K(x): every irreducible

polynomial h ∈ K[x] has a corresponding place Ph where f(Ph)
def
= f mod h.

For example, in the rational function field R(x), evaluating f at the place
Px2+1, corresponds to taking f(x) mod (x2 + 1) and this can be interpreted
as f(i) ∈ C, where C is the complex field R[x] mod (x2 + 1). We say a place
P has degree r, if the evaluation of elements f ∈ F at P returns an element
in a degree-r field extension of K. For example, the degree of Px2+1 as a
place of R(x) is 2, because it returns values in C. If F/K is a function field,
we let PF denote the set of all places of F .

1We will only be concerned with the case where K is a perfect field. We will always
assume K is perfect without restating this assumption.
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Formally, a place P of a function field is a maximal ideal I of a valuation
ring R of F , where R contains all elements of F without a pole at the place,
and the maximal ideal I of R contains all elements of F that vanish at the
place. We can now define an ”evaluation function” φP : R → (R mod I),
which is called the residue class map of P , defined by φP (f) = f(mod I).
φP returns values in the residue class field R/I which is isomorphic to a
finite extension of the base field K. The degree of this extension is called
the degree of P and denoted deg(P ). For convenience, we sometimes call the
residue class map φP an evaluation function, or simply an evaluation, and

use the notation f |P
def
= φP (f).

With this in mind, we can think of elements in F as functions from PF
to finite extensions of K (or ∞ if the function has a pole at the place). A
function f ∈ F is defined at P if it belongs to the valuation ring R and then
f |P is an element in the residue class field. If f is not defined at P we let
f |P =∞.

When the function field is defined as the extension F = K(x, y)/ϕ(x, y)
of K(x), any point (α, β) ∈ K × K on the curve (i.e., ϕ(α, β) = 0) has an
associated degree one place P = Pα,β. One can see it is a degree one place by
noticing that φP (x) = α and φP (y) = β and therefore φP returns elements in
K. Thus, we can associate points on the (algebraic) curve with degree one
places of the function field.

Naturally, given f ∈ F and P ∈ PF , we are interested in the number of
zeroes or poles f has at P . Formally, for every place P there is a valuation
function vP : F → Z ∪ {∞} that counts the number of zeroes of f at P ,
namely vP (f) = k > 0 means f has exactly k zeroes at P , vP (f) = k < 0
means f has exactly k poles at P and vP (f) = 0 means f has neither a zero
nor a pole at P , and therefore f(P ) is a non-zero element in some extension
field (of degree deg(P )) of K. Also vP (0) =∞ for all places P .

An important fact is that every 0 6= f ∈ F has a finite number of zeroes
and poles, and furthermore the number of zeroes f has is the same as the
number of poles when counted appropriately. For example, a degree r poly-
nomial f ∈ K[x] can have at most r zeroes and has exactly r poles at P∞.
The fundamental theorem of Algebra tells us that f has exactly r zeroes over
the algebraic closure of K, and, in fact, this is true for any field K, not nec-
essarily algebraically closed, if we count zeroes appropriately, i.e., accounting
for the degree of places and multiplicity of roots. We denote this number of
zeroes (or poles) of f by deg(f). It turns out that deg(f) = [F : K(f)] (see,
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[Sti09, Thm 1.4.11]).
We mention a few properties of valuations. Let F/K be a function field

and v a valuation of F/K. Then:

• v(f) is finite for f 6= 0 and v(0) =∞.

• There exists an element f ∈ F with v(f) = 1.

• v(c) = 0 for every element 0 6= c ∈ F that is algebraic over K (and, in
particular, for every 0 6= c ∈ K).

In fact, the functions that do not have any zeroes at all are exactly the
elements c ∈ F that are algebraic over K. These are called the constants of
F/K and they form a field, the field of constants of F/K. We will assume
K is algebraically closed in F and so the only constant functions are the
elements of K. Also,

• v(fg) = v(f) + v(g) and v( 1
f
) = −v(f),

• v(f + g) ≥ min{v(f), v(g)} and if v(f) 6= v(g) then v(f + g) =
min{v(f), v(g)} (this property is called the strict triangle inequality).
More generally,

Corollary 2.1. Let F/K be a function field and v a valuation of F/K,
and let 0 6= fi ∈ F for 0 ≤ i ≤ M be nonzero elements in F . Suppose
v(fi) 6= v(fj) whenever i 6= j, then v(

∑M
i=0 fi) = mini{v(fi)} and in partic-

ular v(
∑M

i=0 fi) 6=∞ and so
∑M

i=0 fi 6= 0

A divisor is a formal sum of a finite number of places with integer co-
efficients. The divisors of F/K, denoted Div(F ), form an abelian group.
We say the degree of a divisor D =

∑
P dPP is deg(D) =

∑
P dP deg(P ).

Each non-zero function f ∈ F has an associated divisor (f) =
∑

P vP (f)P
because it has a finite number of zeroes and poles, and deg((f)) = 0 since f
has the same number of zeroes and poles. We denote by (f)0 and (f)∞ the
zero-divisor and pole-divisor of f respectively so that (f) = (f)0 − (f)∞. A
non-zero function f is defined by its divisor up to multiplication by a con-
stant (an element of K) because if (f) = (g) then (f/g) = (f)− (g) = 0 and
therefore f/g is a constant.

The Riemann-Roch space of a divisor D =
∑

P dPP , is defined as

L(D) = {f ∈ F | ∀P ∈ PF , vP (f) ≥ −dP},
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i.e., L(D) contains all the functions f ∈ F that have at most dP poles at P
when dP > 0, and at least −dP zeroes at P when dP ≤ 0. For example, in
the rational function field K(x), L(n · P∞) contains only polynomials in x
(because it does not allow poles outside P∞) and among the polynomials in
K[x] it contains only polynomials of degree at most n (because it allows at
most n poles at P∞). As another example, L(n · P∞ − 1 · P0) contains the
polynomials of degree at most n that vanish at the point x = 0.

We can think about divisors as putting constraints on functions. The
degree of a divisor D is the difference between then number of poles it allows
and the number of zeroes it forces. We would have liked to think of it as
the number of degrees of freedom it allows. The actual number of degrees of
freedom is the dimension of L(D), also called the dimension of D. Thus, a
natural question is what is the relationship between deg(D) and dim(L(D))?

To begin with, if deg(D) < 0, then dim(L(D)) = 0. In particular, if an
element f ∈ F has at most A poles and at least A+1 zeroes, then f = 0 ∈ F .
A useful alternate phrasing of this is:

Claim 2.2. If f ∈ F is non-zero and has at most A poles, then it has at
most A zeroes.

Also, if deg(D) ≥ 0 we have dim(L(D)) ≤ deg(D) + 1.
The Riemann-Roch theorem states that for any function field F/K there

is a fixed quantity, called the genus of F/K and denoted genus(F ), which
gives an upper bound on the number of ”holes” we may have, i.e., for any
divisor D, dim(L(D)) ≥ deg(D)+1−g. Furthermore, there is a special class
of divisors, called canonical divisors, all of which have degree 2g − 2, such
that:

Theorem 2.3. (The Riemann Roch Theorem) [Sti09, Thm 1.5.15]. Let D
be a divisor of a function field of genus g and let W be any canonical divisor,
then

dim(L(D)) = deg(D) + 1− g + dim(L(W −D))

In particular:

• if deg(D) ≥ g we have dim(L(D)) ≥ deg(D) + 1− g > 0,

• if deg(D) ≥ 2g − 1 we have dim(L(D)) = deg(D) + 1− g.
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We will get back to canonical divisors in Section 2.2.
In the rational function field, the genus is zero, and therefore the dimen-

sion of L(D) is equal to deg(D) + 1 as long as deg(D) is non-negative. In

the Hermitian function field, the genus is g = p(p−1)
2

. For example, for the
divisor D = (p2 − p− 1) · P∞ we have deg(D) = p2 − p− 1 = 2g − 1 and

L(D) = Span
{
xiyj | pi+ (p+ 1)j < p(p− 1)

}
with dimension g = p(p−1)

2
, and we indeed see that dim(L(D)) = deg(D)−g+

1. For an example where the difference between the degree and the dimension
is not g−1 we can take D = kP∞ for 0 ≤ k < p, then deg(D) = k while L(D)
contains only the constant functions and is spanned by 1, so dim(L(D)) = 1.

2.1 Hasse derivatives

In calculus and in polynomial rings over fields we have a notion of derivatives
which is useful for studying the multiplicity of zeroes of polynomials. Simi-
larly, in function fields we can derive with respect to any separating element
of F/K2. We denote by Dz : F → F the derivative with respect to z. These
derivatives are K-linear and adhere to most rules we know from calculus:

• Dz(z) = 1,

• Dz(xy) = xDz(y) + yDz(x),

• Dz(c) = 0(∀c ∈ K),

• Dz(x
p) = 0, where p is the characteristic of F ,

• Dz(x) = Dy(x)Dz(y) whenever y ∈ F is also separating.

We denote Dm
z = (Dz)

m the m-th iterated derivative with respect to z. Note
that Dz in F is an extension of the formal derivative in K[z] and K(z).

In complex analysis, where F = C(Z), iterated derivatives have a close re-
lationship with multiplicity of zeroes. Namely, f has a zero of multiplicity at
least m at a point x0 if and only if the first m derivatives D0

z(f) = f,D1
z(f) =

f ′..., Dm−1
z (f) all vanish at that point. This behavior breaks down when the

2 z ∈ F is called separating if the extension F/K(z) is separable. In a function field F/K
with characteristic p 6= 0 the non-separating elements are exactly the constant functions
and the elements z s.t. z = yp for some y ∈ F .
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characteristic is p > 0. For example, suppose F = Fp(Z) and f ∈ F is
some non-constant function and look at g = fp. Clearly, g has a bounded
number of zeroes. However, D1

z(g) = D1
z(f

p) = 0 and therefore the iterated
derivatives Dm

z (fp) are all zero for all m > 0. Thus, the number of vanish-
ing derivatives does not give accurate information about the multiplicity of
zeroes of g = fp.

One way to think of the derivatives of an element f in the complex rational
function field C(Z) is using Taylor expansion, which tells us that if f is a

rational function then f(z + u) =
∑∞

m=0
Dmz (f)
m!

um. The Hasse derivative
Hm
z (f) of f ∈ C(Z) is defined to be the coefficient function of um in the

Taylor expansion f(z+u) =
∑∞

m=0
Dmz (f)
m!

um, i.e., Dm
z (f) = m! ·Hm

z (f). This
idea also extends to rational function fields over finite fields: For f ∈ Fp(Z),
f(z+u) =

∑∞
m=0 hm(z)um, and the Hasse derivative is defined to be Hm

z (f) =
hm(z). It is immediate that with this definition of Hasse derivative, if the
first m Hasse derivatives of f vanish at some point x0, then f has a zero of
multiplicity at least m at x0.

Notice that for m = 1 the Hasse derivative H1
z (f) coincides with D1

z(f),
and for larger m they differ by a constant multiplicative factor of m!. The
main point is that in finite characteristic Hm

z (f) might be non-zero even
though Dm

z (f) = 0, simply because m! = 0. The (minor) price we pay
for working with Hasse derivatives rather than iterated derivatives is that
iterating Hasse derivatives does not give a Hasse derivative.

In fact, this idea also generalizes to any function field F/K. Let F/K
be a function field and z ∈ F separating2. The m-th Hasse derivative with
respect to z, denoted by Hm

z , is defined on K[z] by the K-linear extension
of Hm

z (zn) ,
(
n
m

)
zn−m to all of K[z]. Hm

z can be uniquely extended to all of
F/K so that they satisfy:

1. H0
z = idF

2. Hm
z vanish on K for all m > 0

3. Hm
z (fg) =

∑m
j=0 H

j
z (f)Hm−j

z (g) (Product Rule)

4. Hm
z ◦Hn

z =
(
m+n
m

)
Hm+n
z (Composition Rule)

These uniquely determined extensions are called the Hasse derivatives. A
consequence of these properties is that
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Corollary 2.4. Let F/K be a function field of characteristic p and let z be
a separating element. Then:

m!Hm
z = Dm

z

where Dm
z is the iterated derivative and Hm

z is the m-th Hasse derivative. In
particular, when p = 0 or when p > 0 and m < p we get that Hm

z and Dm
z

differ by a non-zero constant, and so Hm
z (f) = 0 if and only if Dm

z (f) = 0.

The fact that Hasse derivatives capture multiplicity is given in the fol-
lowing claim, which is an immediate corollary of [Gol03, Corollary 2.5.14
(Taylor’s Theorem)],

Claim 2.5. Let P be a place in F/K and let t be a separating element with
vP (t) = 1. Let f ∈ F and M ∈ N \ {0} , then

vP (f) ≥M ⇐⇒ ∀m < M (Hm
t (f))(P ) = 0.

For example, take f = x4(x + 1)2 ∈ F2(x). It is a square and so its
derivative is identically 0, but by expanding it with respect to x and again
with respect to x+1 we have f = 1·x4+1·x6 and f = 1·(x+1)2+1·(x+1)6 and
by the coefficients it is clear that f has a double zero at x = 1 but a quadruple
zero at x = 0. Let us name the places at x = 0 and x = 1 as P0, P1. Indeed,
we find out that H1

x(f) = H1
x+1(f) = 0 and H2

x−1(f) = H2
x(f) = x4. Thus,

f vanishes exactly twice at P1 and at least thrice at P0. Further computing
H3
x and H4

x shows f has exactly four zeroes at P0. The reader might have
noticed our computations yielded H1

x(f) = H1
x+1(f) and H2

x(f) = H2
x+1(f).

This is not a coincidence, but in fact a special case of a more general truth
(see Corollary 2.7 below).

Claim 2.6 (Chain Rule for Rational Functions). (see [Jeo11, Chain rule
II]) Let f, g be two rational functions over K and consider f(z), g(f(z)) as
elements of the function field K(z)/K. Then:

Hm
z (g(f(z))) =

m∑
k=1

Hk
f(z)(g(f(z)))

∑(
k

i1, i2, ..., im

)
(H1

z (f))i1 ...(Hm
z (f))im

where the inner sum goes over i1, ...im ∈ N with i1 + ...+im = k and i1 +2i2 +
...+mim = m, where

(
k

i1,i2,...,im

)
= k!

i1!i2!...im!
is the multinomial coefficient.
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For an analogous claim in a general function field we refer the reader to
[Tor00, equation 2.4]. From the above claim we get:

Corollary 2.7 (Simple change of variable). Let z be a separating element in
F/K, let f ∈ F and α ∈ K, then for every m > 0

Hm
z (f) = Hm

z−α(f)

Proof. It suffices to prove Hm
z (f) = Hm

z−α(f) in K(z)/K, since the extension
of Hm

z (f) in K(z)/K to F is unique, so if Hm
z (f) = Hm

z−α(f) holds in K(z)/K
it also holds in F . Now let f be a rational function in z, and define g(z) =
f(z+α) and h(z) = z−α. Now we apply claim 2.6 to f(z) = g(h(z)) to get:

Hm
z (f) = Hm

z (g(h(z)))

=
m∑
k=1

Hk
z−α(f)

∑(
k

i1, i2, ..., im

)
(H1

z (h))i1 ...(Hm
z (h))im

noting that Hj
z (h) = 0 for j > 1 and H1

z (h) = 1 we get that the only surviving
term is the one with i1 = k = m and ij = 0 for j > 1, giving us:

Hm
z (f) = Hm

z−α(f)

(
m

m, 0, ..., 0

)
(H1

z (h))m = Hm
z−α(f)

In Appendix A.1 we describe the Riemann-Roch spaces and Hasse deriva-
tives in the rational function field.

We have demonstrated a connection between vanishing of Hasse deriva-
tives and multiplicity (Claim 2.5) and saw that derivatives do not change
under translation by a constant (Corollary 2.7). We now give a definition
that will serve us later:

Definition 2.8. Let F be a function field with constant field K. Let S be a
set of degree one places (also called rational points) of F/K. We say z ∈ F
is derivative-useful for S, or, in short, S-useful, if for every P ∈ S there
exists α ∈ K such that vP (z − α) = 1.

Intuitively this means the function z takes a value (has no pole) at every
place of S, and takes this value with multiplicity 1. It can be pictured as
the graph of z passing through (P, α) but not being tangent to the constant
function α there. We have:

11



Claim 2.9. If z is S-useful and for all 0 ≤ m < M the function Hm
z (f)

vanishes at all places in S, then f vanishes with multiplicity at least M at
every place of S (i.e. vP (f) ≥M for every P ∈ S).

Proof. Fix P ∈ S. As z is S-useful there exists some α ∈ K such that
vP (z − α) = 1. By Corollary 2.7 we see that

(
Hm
z−α(f)

)
|P = (Hm

z (f)) |P = 0
for all 0 ≤ m < M . Hence Claim 2.5 tells us vP (f) ≥M as desired.

Remark 2.10. The term ”S-useful” is not standard and does not hold any
deeper meaning then saying z ”works” for every place of S in the sense
discussed above.

2.1.1 Hasse derivatives of p-th powers

When the characteristic is p > 0 we know that the non-separating elements
are exactly the ones that are p-th powers, and that Dz(f

p) = 0 for all f ∈ F .
The following lemma tells us how Hasse derivatives behave on p-th powers:

Claim 2.11. [Tor00, Remark 2.4 and Remark 2.5], [Jeo11, Theorem 3.1]
Let z ∈ F/K be a separating element of a function field of characteristic
p > 0. Let q = pk be a power of p and f ∈ F . then:

1. Hm
z (f q) = (H

m/q
z (f))q if q divides m and Hm

z (f q) = 0 otherwise.

2. Hm
z (f) = 0 for m = 1, ..., q − 1 if and only if there exists some g ∈ F

such that f = gq

3. H1
z (f) = Hp

z (f) = Hp2

z (f) = ... = Hpk−1

z (f) = 0 if and only if there
exists some g ∈ F such that f = gq

The following corollary will be useful to us later on:

Corollary 2.12. Let z ∈ F/K be a separating element of a function field of
characteristic p > 0. Let q be a power of p, m < q and f, g ∈ F , then:

Hm
z (fgq) = Hm

z (f)gq

Proof. Since m < q, all of the derivatives of gq that will appear in the ex-
pansion of Hm

z (fgq) by means of the product rule are zero (from Claim 2.11)
except for the term Hm

z (f)gq.
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2.2 Differentials

In real and complex analysis we have the notion of differentials. Informally,
dx measures the change in x. Then, D1

x(f) = df
dx

is the change in f with

respect to the change in x, i.e., limε→0
f(x)−f(x+ε)

(x+ε)−x . While the notion of deriva-

tive (i.e., the change of f with respect to the change in x) is well defined,
the notion of change in x alone is ill-defined, as we can change the scale of
change, e.g., make it twice faster. Thus, our first goal is to chose a canonical
change, and define the change according to it. Our presentation is informal
and we refer the reader to [Sti09, Chapter 4] for a formal treatment of the
subject.

Let F/K be a function field. We model a change function by a derivation
of F , which is a K-linear map D from F to some F -module that upholds
the product rule of derivatives, i.e. D(fg) = fD(g) + gD(f). For example
H1
z : F → F is a derivation for every separable z ∈ F . One can define the

module of differentials of F , denoted ∆F , such that all derivations of F factor
through ∆F via a canonical mapping d : F → ∆F , i.e., if δ : F → M is a
derivation of F into some F -module M , then there exists a unique F -linear
map µ : ∆F →M such that δ = µ◦d. It turns out that d is itself a derivation.
For x ∈ F , d(x) is called the differential associated with x and is denoted
dx. The set ∆F of differentials of F contains all elements udx where u ∈ F
and x is separating, where this set is taken modulo the equivalence relation
udx = vdy if and only if u

v
= D1

x(y). With this we get a notion of division of

differentials via udy
vdx

= u
v
D1
x(y).

Originally, we defined valuation of elements in F . We now extend the
notion of valuation to differentials. If P ∈ PF is a place of F and udx ∈ ∆F

a differential of F , we define vP (udx) as follows. We pick a local parameter t
of P (i.e., vP (t) = 1) and we find b ∈ F such that udx = bdt. Then vP (udx) =
vP (b). One can show that this definition is independent of the specific choice
of local parameter t. As differentials have valuations, differentials also have
zeroes and poles, i.e., places where the valuation is strictly positive or strictly
negative, and this can be encoded in a divisor, denoted (udx) and called
the divisor associated with the differential udx. It turns out any differential
udx ∈ ∆F has only finitely many zeroes or poles and so the associated divisor
is indeed well defined. A divisor which is associated to some differential in
∆F is called a canonical divisor. All canonical divisors have degree 2g − 2
and their Riemann-Roch space has dimension g where g = genus(F ).

The following claims will be useful:
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Claim 2.13. Let u ∈ F , x, y ∈ F separating, then:

• (udx) = (u) + (dx)

• (D1
x(y)) = ( dy

dx
) = (dy)− (dx)

The first bullet is a restatement of [Sti09, Proposition 1.5.13] and the
second one is an immediate consequence of the first bullet and the equality
1dy = D1

x(y)dx.
There is a close relationship between the zeroes and poles of f and the

zeroes and poles of df . The following claim is stated in [Mas84, Chapter I (6)]
for the case where K is algebraically closed, but by considering a constant-
field extension of F one can verify it holds exactly as stated for any perfect
base field K and even when P is not a place of degree one (which is not a
consideration when K is algebraically closed)3.

Claim 2.14. Let f ∈ F/K, df its associated differential, then:

• For every place P , vP (df) ≥ vP (f) − 1. In particular, If f has zeroes
at P , df can lose at most one zero at P . Also, if df has a pole at P ,
df can have at most one more pole at P . Also,

• If vP (f) ≥ 0 then vP (df) ≥ 0, i.e., df can have poles only at places
where f has poles.

As an example, let us compute (dx) in K(x)/K. We first compute
vP∞(dx). We take t = 1

x
to be the local element at P∞ (as vP∞(x−1) = 1). We

have 1dx = −x2dt (since 1dt = dt
dx
dx = D1

x(
1
x
)dx = −1

x2
dx) and so vP∞(dx) =

vP∞(−x2) = −2. The other places of K(x)/K are all of the form Ph where
h is an irreducible polynomial in K[x]. Then 1dx = 1

h′(x)
dh, where h′ is the

formal derivative of h as a polynomial in x (because h′(x)dx = dh
dx
dx = 1dh).

Thus, vh(dx) = −vh(h′(x)) = 0. In total we get (dx) = −2P∞. Note that
while x has a single pole at P∞, its differential dx has two poles there, and
while x vanishes at Px−0, dx does not vanish there. We proved −2P∞ is a
canonical divisor of K(x)/K. Its degree is indeed −2 = 2genus(K(x)/K)−2.
In fact, every other divisor of degree −2 is also canonical in K(x)/K, since
if deg(D) = −2 then deg(D − (dx)) = 0 and there is a function f with
(f) = D − dx (using the Riemann-Roch theorem for the genus 0 rational
function field), and then (fdx) = (f) + (dx) = D.

3For completeness we prove this in appendix B.
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We mentioned before that deg(df) = 2g − 2 for canonical divisors (df),
and therefore when g is large (df) has many more zeroes than f . We also
know that (df) has a zero wherever f has a zero of multiplicity at least 2.
Finding the other zeroes of df is a bit more complicated. It turns out that:

Claim 2.15. [Sti09, Sections 3.4 and 3.5] The zeroes of (df) are either:

• at places that are zeroes of f , or,

• at places of F/K that are ramified when F is viewed as an extension
of K(f)/K (we discuss ramification later on).

As an example let us compute (dx) in the Hermitian function field F =
K(x, y)/ < y5 + y − x6 >, where K = F25. We know that

• deg(dx) = 2genus(F )− 2 = 2
(

5
2

)
− 2 = 18,

• dx may have poles only where x has, i.e., only at P∞,

• By Claim 2.15 the zeroes of (dx) can only be at places that are zeroes
of x, or places that are ramified in F/K(x).

When we look at the zeroes of x we find 5 = [F : K(x)] places P(0,β) that
correspond to the points {(0, β) ∈ K × K | β5 + β = 0}, all of which are
degree one places. The element t = x− β is a local parameter of P(0,β), and
dx = dx

dt
dt = D1

x(t)dt = dt, so vP (dx) = vP (1) = 0, and therefore dx does not
have zeroes at these five places. It follows that the only zeroes of dx can be
at places that ramify in F/K(x). There is only place of F/F25 that ramifies
in F/K(x) and it is the place P∞. Therefore dx has 18 zeroes at P∞ and
(dx) = 18P∞. A similar computation can be used to compute (dy), however,
it is easier to use dy

dx
= D1

x(y) = D1
x(y

5 + y) = D1
x(x

6) = x5 and get

(dy) = (
dy

dx
dx) = (x5dx) = 5(x) + (dx) = 5(x)0 − 5(x)∞ + (dx)

= 5(x)0 − 25P∞ + 18P∞ = 5(x)0 − 7P∞,

and so dy has 7 poles at P∞ and 5 zeroes at each of the five places where x
has a zero. We can verify that indeed deg((dy)) = 25− 7 = 18 = 2g − 2.
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2.3 Function field extensions

A function field F/K is a finite field extension of the rational function field
K(x). Any finite field extension F ′ of F is, by itself, a finite field extension of
K(x), and therefore F ′ is also a function field. Many AG code constructions
work by taking a sequence of finite field extensions of K(x), resulting in a
tower of fields F0 = K(x) ⊂ F1 . . . ⊂ Fn = F , where the properties of the
function field F/K (such as the genus and the number of degree one places)
are derived by analyzing each finite field extension on its own. In this section
we consider such finite field extensions of F/K. Our presentation is again
informal, and for a formal treatment of the subject we refer the reader to
[Sti09, chapter 3].

A finite field extension F ′/F of a function field F/K might change (and
enlarge) the field of constants (the field of functions that do not have zeroes
or poles). We focus on function field extensions where the constant field
remains the same. I.e., we fix the base field K, while letting the genus and
the number of rational points of Fn go to infinity. For error correcting code
constructions this corresponds to a family of codes over a fixed alphabet and
length going to infinity.

Formally, a place P in a function field is a maximal ideal I in a valuation
ring R of F (where R contains all elements of F with a non-negative valuation
at the place, and the maximal ideal I of R contains all elements of F with
a positive valuation in the place). Now suppose F ′/F is a function field
extension. A place Q′ of F ′ is a maximal ideal in a valuation ring R′ of F ′.
Given Q′ define R = R′ ∩ F and Q = Q′ ∩ F . Then, it turns out that R is a
valuation ring of F and Q is a maximal ideal of R. We say the place Q′ of
F ′ lies over the place Q of F , and we denote it by Q′|Q (the same notation
as ”Q′ divides Q”). Every place of F ′ is lying over a single place of F , and
every place of F has at least one place of F ′ lying above it (alternatively -
every place of F is lying below some place of F ′). We refer to elements and
places of F ′/K ′ as ”above” and those of F/K as ”below”.

Similarly, the residue class map (evaluation function) associated with Q′

is an extension of the residue class map of Q. Here extension means an
extension of a function defined on F to a function defined on all of F ′. I.e., if
we denote the residue class maps by φQ′ and φQ respectively, then for every
f ∈ F it holds that φQ′(f) = f mod Q′ = f mod Q = φQ(f). Note that
f mod Q′ is defined because f ∈ F ⊂ F ′.
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Example 2.16. We give an example demonstrating some of the behaviors
places of F ′ lying over places of F might have. For simplicity we state some
facts without a justification, and only later (Example 2.20), after giving some
more definitions and tools, we explain why the stated facts are true. We fix
K = F5 and F ′ = K(x, y)/(y2 − (x3 − x)). F ′ is an elliptic curve, it can
be attained by starting with F = K(x) and extending it with y that satisfies
y2 = x3−x = (x−1)x(x+1). Let us now discuss the behavior of some places
of F = K(x) as we extend them to F ′.

• There is only one place of F ′ lying over P∞ of K(x). We denote this
place by P

′
∞. It holds that vP ′∞(x) = −2 = 2vP∞(x) while vP ′∞(y) = −3.

These are the only poles of x and y.

• We next look for the two zeroes of x and the three zeroes of y. The place
P0 = Px−0 in K(x) also has just one place P ′(0,0) above it, corresponding

to the point (x = 0, y = 0) on the curve. vP ′
(0,0)

(x) = 2 = 2vP0(x) while

vP ′
(0,0)

(y) = 1. The two other zeroes of y are at (x = 1, y = 0) and

(x = −1, y = 0) each of them being a simple zero.

• We now look at the function y
x
. We see that vP ′∞( y

x
) = −3− (−2) = −1

and vP ′
(0,0)

( y
x
) = 1 − 2 = −1. Thus the function y

x
has a simple pole

at both P
′
∞ and P ′(0,0). The zeroes of y

x
are at (x = 1, y = 0) and

(x = −1, y = 0) each of them being a simple zero.

• The place P3 = Px−3 of F = K(x) splits in two, i.e., it has two places
lying over it, namely (x = 3, y = 2) and (x = 3, y = 3 = −2). x − 3
has a simple zero at each of these places.

So far we only looked at places of degree one. We now give some examples
of places of higher degree.

• The place Pw of F/K, corresponding to the irreducible polynomial w(x) =
x3 +x2−x+ 1 over K(x), splits in two, giving two degree-3 places P ′w,1
and P ′w,2 of F ′/K. The two corresponding places (i.e., the ideals over in
the valuation rings contained in F ′ which are composed of all functions
that vanish at those places) are I ′w,1 = 〈x3 +x2−x+1, y−(2x2−x−1)〉
and I ′w,2 = 〈x3 + x2− x+ 1, y+ (2x2− x− 1)〉 respectively. In the con-
stant field extension F125/F5, we get six degree one places that can be
interpreted as points on the curve F125(x, y)(mod y2 − x3 + x): For
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each of the three α ∈ F125 such that α3 + α2 − α + 1 = 0 and each of
the two β ∈ F125 such that β2 = α3 − α we have a degree one place in
F125(x, y)(mody2 − x3 + x) corresponding to the point (x = α, y = β).

• The place Pz of F/K corresponding to z = x3 + x2− x+ 3 ∈ K(x) has
a single place of F ′/K above it. We denote that place by P ′z. It turns
out that vPz(z) = vP ′z(z) = 1.

P ′z is also the only zero of z in F ′. As vP ′∞(z) = −6, and the number
of zeroes of z equals the number of poles,we conclude that that P ′z must
be of degree 6. This happens because in F125 there is no β that solves
β2 = α3 − α for the α that solve α3 + α2 − α + 3 = 0, and to get
a solution we need to go to F1252 = F56. The residue class map of
Px3+x2−x+3 returns elements in F125, while The residue class map of
P ′x3+x2−x+3 returns elements in F56.

In the above example we saw a few different behaviors of places P ′|P :
some places P have a single place P ′ above them while others split into
a few distinct places. The residue class field sometimes stays the same and
sometimes extends to a larger field, and the multiplicity of zeroes of a function
f ∈ F when considered at a place P ′ of F ′ sometimes stays the same and
sometimes gets larger by an integer multiple.

We start with the valuation function. If Q′|Q, then vQ′ : F ′ → Z ∪ {∞}
and vQ : F → Z ∪ {∞}, and both functions are defined over F . It is a
fact that there is a constant e(P ′|P ), that depends only on P ′, such that
vQ′(f) = e(Q′|Q) · vQ(f). More formally,

Lemma 2.17. (Ramification) Let F ′/K ′ be a finite field extension of F/K.
Let Q ∈ PF and Q′ ∈ PF ′ such that Q′|Q. There is a positive integer e =
e(Q′|Q) such that for all f ∈ F ⊂ F ′, vQ′(f) = e · vQ(f). e(Q′|Q) is called
the ramification index (or ramification for short) of Q′ over Q.

In particular, f ∈ F has a pole (correspondingly, a zero) at Q′ when
considered as a function in F ′/K ′ if and only if f has a pole (correspondingly,
a zero) at the place Q = Q′∩F of the function field F . If F ′/F is finite then
e(Q|P ) divides the degree of the extension. 4

We next move to the residue class field:
4For those with background in algebraic number theory - this is very similar to rami-

fication in number fields, where if B/A an extension of rings of integers of number fields,
then a prime ideal p ∈ Spec(A) has a decomposition in Spec(B) as p =

∏
qeii and ei is the

ramification of qi.
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Definition 2.18. Let F ′/K ′ be a finite field extension of F/K. Let Q ∈ PF
and Q′ ∈ PF ′ such that Q′|Q. Let LQ (respectively LQ′) be the field extension
of K which is the image of the class residue map of Q (respectively Q′). The
quantity f(Q′|Q) , [LQ′ : LQ] > 0 is called the relative degree of Q′|Q.

As deg(Q) = [LQ : K] and deg(Q′) = [L′Q : K ′] we see that f(Q′|Q) =
1

[K′:K]
deg(Q′)
deg(Q)

, and, in particular, the degree of Q′ is always larger than the

degree of Q. Also, f(Q′|Q) divides [F ′ : F ].
Finally, as we saw before, different places P of F/K may have a varying

number of places of F ′/K ′ above them. We say P splits if there are two or
more places of F ′/K ′ lying above it.

In our example of the elliptic curve we saw a few examples of ramification,
relative degree, and splitting. We saw:

• Places with ramification 2, no splitting and relative degree one,

• Places that split in two, ramification index 1 and relative degree 1, and,

• A place with relative degree 2, no splitting and ramification index one.

All of the above adhere to the following fundamental rule:

Theorem 2.19. (Fundamental Equality [Sti09, Theorem 3.1.11]) Let F ′/K ′

be a finite extension of F/K and {Qi}i=1,...,r be the places laying over P ∈ PF .
Let ei = e(Qi|P ) and fi = f(Qi|P ). Then

r∑
i=1

eifi = [F ′ : F ]

If P has only a single place above it with ramification index equal to
[F ′ : F ] and relative degree one, we say P is totally ramified in F ′. If P
has [F ′ : F ] distinct extensions in F ′ (each with ramification 1 and relative
degree 1) we say P is totally split.

In general, if Q1, Q2 are two distinct places lying over P then e(Q1|P ) and
e(Q2|P ) can be unrelated, and the same for f(Q1|P ) and f(Q2|P ). However,
when F ′/F is a Galois extension, the ramifications and the relative degrees
of all places of F ′ lying over the same place of F are all the same, and in
particular, if Q1, ...Qr are all the places over P , the fundamental equality
becomes [F ′ : F ] = efr where e = e(Q1|P ) and f = f(Q1|P ).

19



Example 2.20. Let us return to example 2.16, where we considered F ′/K
where K = F5 and F ′ = K(x, y)/(y2−(x3−x)). We consider it as a degree-2
extension of F = K(x), and note this is a Galois extension. Now we proceed
to find the places of F ′ lying over a few places of F = K(x).

We know x has a single pole in K(x), denote it P∞. suppose P ′∞ is
a place of F ′ above it. x must have a pole at P ′∞ and we get 2vP ′∞(y) =
vP ′∞(y2) = vP ′∞(x3−x) = 3vP ′∞(x) (where the last equality is due to the strict
triangle inequality and the fact that x has a pole at P ′∞). Thus, 2vP ′∞(y) =
3e(P ′∞|P∞)vP∞(x) = −3e(P ′∞|P∞). By the fundamental equality in a Galois
extension e(P ′∞|P∞) divides [F ′ : F ] = 2, thus e(P ′∞|P∞) is either 1 or 2. As
2 divides 3e(P ′∞|P∞) we have e(P ′∞|P∞) = 2, and so P ′∞ is fully ramified,
has degree one and is the only place lying over P∞.

As y2 = x3 − x, if y has a pole at P , so does x. Thus, y has a pole
only at P ′∞. As 2vP ′∞(y) = 3vP ′∞(x) = 6vP∞(x) = −6, we see that y has a
pole of order 3 at P ′∞. The zeroes of y are at the places P ′(−1,0), P

′
(0,0), P

′
(1,0)

corresponding to the points (x = −1, y = 0), (x = 0, y = 0) and (x = −1, y =
0) on the curve. Since y has pole order 3 and all of these places are zeroes of
y, these are all of the zeroes of y, the zeroes are simple zeroes and the places
are degree one places.

The places P ′(−1,0), P
′
(0,0), P

′
(1,0) totally ramify. We demonstrate this for

P ′(0,0)|P0. We have 2 = v0,0(y2) = v0,0(x)+v0,0(x2−1) = v(0,0)(x), since (x2−
1) does not vanish at (0, 0). Thus, v0,0(x) = 2 = 2 ·v0(x) end e(P ′(0,0)|P0) = 2.

2.4 Kummer extensions

An algebraic function field F ′/K ′ is a Kummer extension of F/K if:

• K contains a primitive n-th root of unity,5 and,

• F ′ = F (Z) mod (Zn − u) where u ∈ F and u 6= wd for all w ∈ F and
d|n such that d > 1.

Kummer extensions are Galois. For example, the elliptic curve we dis-
cussed in Example 2.16 is a Kummer extension of the rational function field.

For P ∈ PF we denote by L(P )
def
= ∪m∈NL(m · P ) the K-linear, infinite

dimensional vector space of all function that have poles only at P . L(P )
is the set of functions that are regular at P . The following claim follows

5When K = Fq this means n|(q − 1).
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from [Sti09, Corollary 3.7.4 and Proposition 3.11.1] and the Hurwitz Genus
Formula ([Sti09, Theorem 3.4.13]):

Claim 2.21. Let P∞ be a degree one place of a function field F/K of genus
g, ` a prime number and u ∈ L(P∞) which is not an `-th power in F . Denote
d = deg(u) = −vP∞(u) and assume d is co-prime to `. Let F ′ = F (Z) where
Z` = u be the Kummer extension with respect to u. Then:

• F ′ is a degree ` extension of F

• P∞ is totally ramified in F ′.6 Also K is the full constant field of F ′.

• Z ∈ L(P ′∞) and deg(Z) = d

• g′ def
= genus(F ′) satisfies `(g − 1) ≤ g′ − 1 ≤ `(g − 1) + d

From now on we assume that K is a finite field, K = Fq for some prime
power q. Let ` be a prime number that divides q−1. Let P∞ be a degree one
place, and S a set of degree one places of F that does not contain P∞. Let
u ∈ L(P∞) ⊂ F such that u his not an `-th power in F . We are interested

in the number of P ∈ S such that u|P
def
= φP (u) ∈ K is an `-th power as an

element of K (where φP is the evaluation function at P ). 7 We claim that
in this situation:

Claim 2.22. Suppose u|P 6= 0 for some degree one place P ∈ S. Then:

• If u|P is not an `-th power in K, then there is a single place above P
in F ′ and it is a place of degree ` (and ramification 1).

• If, however, u|P is a non-zero `-th power in K, then the place P is
totally split in F ′, i.e. there are ` distinct degree one places above P
(that have all ramification 1).

Proof. Let φP be the evaluation function corresponding to P . Since P ∈ S,
u is regular and P∞ /∈ S we know that u is defined at P , and therefore u
is also defined at any place P ′ of F ′ which is above P . Since u = Z`, their

6We remind the reader that this means that P ′
∞ is the only place of F ′ above P∞, has

degree one and its ramification index over P∞ is `.
7Notice that u|P is defined because u does not have a pole at any P ∈ S, and u|P ∈ K

because any P ∈ S is degree one.
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poles are in the same places, so Z must be defined at P ′. φP (u) ∈ K. We
assume φP (u) 6= 0.

Suppose φP (u) is not an `-th power in K×. Let P ′ be some place of F ′

lying over P . We know φP ′ must be an extension of φP which is defined at
Z, and so φP (u) = φP ′(u) = φP ′(Z

`) = φP ′(Z)`, meaning that φP ′(Z) is an
`-th root of φP (u) which is not an `-th power in K. This means that φP ′(Z)
is an element of an `-th degree extension of K (since ` is prime), meaning
P ′ is a place of degree at least `. Since the the extension F ′/F is of degree `
(claim 2.21), the fundemental equality tells us P ′ must be of degree exactly
`, be the only place above P , and have ramification 1.

Suppose φP (u) is an `-th power in K×. We will define ` distinct evaluation
functions that extend φP . The fact they are all distinct will mean they each
correspond to a different place of F ′, giving ` distinct places of F ′ all lying
over P , and by the fundamental equality we will get they are all of degree one
and ramification one. Since F ′ = F (Z), and Z is defined at all extensions
of P , it is enough to define φP ′ on Z for it to be an extension of φP

8.
Since φP (u) is a non-zero `-th power in K×, there are distinct α1, ...α` with
α`i = φP (u) = φ′P (u), and setting φ′P (Z) = αi will give an extension of φP .
This is well defined since φ′P (Z)` = φ′P (u), meaning any two expressions over
F (Z) that differ by a multiple of Z` − u will give the same value under φ′P .
Since our ` choices of extension all differ in the value of Z it is clear these are
` distinct evaluations, and therefore they correspond to ` distinct plcaes.

This behavior of splitting of places of S where u is a non-zero `-th power
leads us to the following useful claim:

Claim 2.23. Let F ′ = F (Z) mod (Z` − u) be a Kummer extension with `
prime and u ∈ L(P∞) ⊂ F such that u is not an `’th power of an element in
F . Further assume K is the full constant field of F ′. Let S be a set of degree
one places F/K and assume P∞ 6∈ S. Suppose S` ⊂ S is such that u|P is a
non-zero `-th power for all P ∈ S`, and let S ′` be the set of all places of F ′

lying over S`.

8Alternatively, one can pick a parametrization of F as a curve such that P is a rational
point on the curve, and instead of finding ` extensions of the evaluation function, we will
find ` rational points on the curve with an additional parameter Z and the additional
equation Z` = u, and finding ` points lying over the original point P proves the point fully
splits.
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Then: If x ∈ F is S`-useful9 then x when considered as an element of F ′

is S ′`-useful.

Proof. Let Q ∈ S ′` and denote P ∈ S` the place of F lying below Q. Since u|P
is a non-zero `-th power, P is totally split in F ′ (by claim 2.22). This means
there are ` places lying over P (Q among them), each of them with relative
degree one and ramification 1 over P . Since x ∈ F is S-useful and P ∈ S` ⊂ S
there exists an α ∈ K such that vP (X − α) = 1. Since Q is lying over P
and has ramification 1 we get vQ(X − α) = e(Q|P )vP (X − α) = 1 · 1 = 1.
So for any Q ∈ S ′` we found α ∈ K with vQ(X − α) = 1 which finishes the
proof.

Definition 2.24. The minimal degree of a non constant function in a func-
tion field is called the gonality of the function field.

The following is an immediate consequence of [BATS09, Lemma 10] which
is useful for us in Section 4.

Claim 2.25. Let F/Fq be a function field over the finite field Fq. Suppose
the number of degree one places in F is equal to N . let x ∈ F be a non
constant function, then the degree of x (the number of poles/zeroes of x) is
at least N

q+1
. In other words: the gonality of F is at least N

q+1
.

Remark 2.26. The functions in L(P ) are often called regular functions. In
this work we will always use this teminology with respect to places denoted by
P∞ or P ′∞.

3 The derivative height bound

In the polynomial ring K[X], the derivative of a non-constant polynomial is
a polynomial of a strictly smaller degree, and the more times we derive the
smaller the degree gets until we reach the zero polynomial. This gives the
impression that derivatives are simpler, i.e. have less poles than the original
function.

When transitioning to rational functions, this is no longer the case. For
example, when m is smaller then the characteristic of K, Dm

x ( 1
x
) = cm

xm+1 for

9In practice, our way of ensuring x is S`-useful will be to find an x which is useful for
all of S.
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some non-zero constants cm. Now, the more we derive the more poles we get,
and each derivation increases the pole order by one.

Another noteworthy example is the derivative of any quotient of polyno-
mials f(x)

g(x)
. We have:

D1
x(
f

g
) =

f ′g − g′f
g2

D2
x(
f

g
) =

g2f ′ − 2gf ′g′ − fgg′′ + 2f(g′)2

g3

D3
x(
f

g
) =

f ′′′g3 + 6gg′(f ′g′ + fg′′)− g2(3f ′′g′ + 3f ′g′′ + fg′′′)− 6f(g′)3

g4

At the m-th derivative we get some polynomial in the derivatives of f and
g divided by gm+1, meaning the poles at the zeroes of g increase many-fold
as we derive. Thus, both in the case of 1

x
and in the more general case of f

g
,

the poles ”stay where they were”, but the pole order increases. This gives us
reason to hope that deriving a regular function will leave us with a regular
function.

Now consider derivatives of the form D1
g(f) where f, g ∈ K(x)/K. Due

to the chain rule

D1
g(f) =

df

dg
=
df

dx

dx

dg
=
f ′

g′

and we see that D1
g(f) may have poles also where g′ has zeroes, and the

more zeroes g has, the more new poles we introduce when deriving. Thus, it
greatly matters with respect to which function g we choose to derive.

Next, we look beyond the genus zero rational function field. We take the
Hermitian function field (see appendix A.2) as our working example. Let
F = Fp2(x, y) mod yp + y − xp+1. The elements x and y are regular, i.e.,
they only have poles at a single degree one place, which we denote P∞. It
holds that vP∞(x) = −p and vP∞(y) = −(p+ 1). Now,

xp = Dx(x
p+1) = Dx(y

p + y) = Dx(y
p) +Dx(y) = Dx(y),

and so, Dx(y) = xp has p2 poles at P∞ while y has only p + 1 at P∞, an
increase of p2 − p− 1 = 2genus(F )− 1.

Theorem 3.3 relates the divisor of a function and the divisor of its deriva-
tive. We focus on the case the derived function is supported on a single point.
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We remind the reader that Hx(f) is the Hasse derivative of f with respect
to x. Also, deg(x) = [F : K(x)] is the total number of poles (or zeroes)
of x in F . We also let DegSupp((x)∞) be the degree of the support of the
pole divisor of x, i.e., the degree of the pole divisor of x when all positive
coefficients are reduced to one. We prove:

Theorem 3.1. Let F/K be a function field of genus g. Let x ∈ F be a
separating element of F/K and P∞ a degree one place of F . Let

G = 3g − 2 + deg(x) + DegSupp((x)∞)

W = G−max{v∞(dx), 0}
D = G · P∞ − (dx)0,

∆ = G+ min{v∞(dx), 0}.

Then there exists an element 0 6= ω = ω(x, P∞) ∈ L(D) ⊆ L(WP∞) such
that for every f ∈ L(AP∞) it holds that

ω ·Hx(f) ∈ L((A+ ∆ + 1) · P∞).

Proof. Let us denote f ′ := H1
x(f) = D1

x(f). By Claim 2.13, f ′ = df
dx

and

(f ′) = (df)− (dx).

It follows that the poles of f ′ can come either:

• from poles of df , or,

• from zeroes of dx.

Since f ∈ L(AP∞), Claim 2.14 tells us all the poles of f and df are at P∞.
Claim 2.14 also tells us that v∞(df) ≥ v∞(f)− 1 ≥ −(A+ 1), and so df has
at most A+ 1 poles, all of which must be at P∞. We wish to find ω ∈ F s.t.
ω ·f ′ ∈ L(P∞) so we need to choose ω that cancels the poles of f ′ at all places
other than P∞. These poles can arise only from zeroes of dx. More precisely,
we are interested in the zeroes of dx outside P∞. While we are interested in
the zeroes of dx, we first consider the poles of dx. By Claim 2.14:

• The poles of dx are at the same places as the poles of x, i.e., vP (dx) < 0
implies vP (x) < 0, and,
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• At any place P where dx and x have a pole, dx may have at most one
more pole than x, i.e., vP (dx) ≥ vP (x)− 1.

It therefore follows that deg((dx)∞) ≤ deg(x)+DegSupp((x)∞). We now
use the fact that (dx) is a canonical divisor, and therefore has degree 2g − 2
(see Section 2). Thus, the number of zeroes of dx is exactly 2g−2 more than
the number of poles of dx, and in total we get

deg((dx)0) ≤ deg(x) + DegSupp((x)∞) + 2g − 2 = G− g.

Now, recall that D = G · P∞ − (dx)0. Thus,

deg(D) = G− deg((dx)0) ≥ g.

By the Riemann-Roch Theorem (Theorem 2.3) there exists some 0 6= ω ∈
L(D). Fix any such ω.

Claim 3.2. ωf ′ = ω · df
dx
∈ L((A+ 1 + ∆)P∞).

Proof. For any P 6= P∞, vP (D) = −vP ((dx)0). Hence,

vP (ω) ≥ −vP (D) = vP ((dx)0), and,

vP (ωf ′) = vP (ω) + vP (df)− vP (dx)

≥ vP (ω) + vP (df)− vP ((dx)0) ≥ vP (df) ≥ 0.

Next we compute the pole order of wf ′ at P∞. We have w ∈ L(D) ⊆
L((G−max{v∞(dx), 0})P∞). Thus,

−v∞(ωf ′) = v∞(dx)− v∞(ω)− v∞(df)

= v∞(dx) +G−max{v∞(dx), 0} − v∞(df)

≤ A+ 1 +G+ v∞(dx)−max{v∞(dx), 0},

because v∞(df) ≥ v∞(f)− 1 ≥ −A− 1 = −(A+ 1). However,

v∞(dx)−max{v∞(dx), 0} = min{0, v∞(dx)},

and the proof is complete.
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3.1 General derivation order

We now generalize Theorem 3.1 to any derivation order m. We remind the
reader that Hm

x (f) is the m-th Hasse derivative of f with respect to x.

Theorem 3.3. Let F/K be a function field of genus g over a base field
of characteristic p. Let x ∈ F be a separating element of F/K and P∞ a
degree one place of F . Let G,W,D,∆ be as before. There exists an element
0 6= ω = w(x, P∞) ∈ L(D) ⊆ L(WP∞) such that for every positive integer
m < p (or any integer m, if p = 0)

∀f ∈ L(A · P∞), ω2m−1 ·Hm
x (f) ∈ L(Am · P∞).

where Am = A−W +m · (∆ +W + 1).

Proof. We use the same w as before. We prove by induction. We already
saw the m = 1 case. Assume for m and let us prove for m+ 1. The m+ 1-th
Hasse derivative is the same as the m+ 1-th iterated derivative Dm+1

x up to
multiplication by a non-zero scalar (see corollary 2.4 and using m + 1 < p
when the characteristics is finite). Now,

ω2Dx(ω
2m−1Dm

x f) = ω2 [ Dx(ω
2m−1)Dm

x f + ω2m−1Dx(D
m
x f) ]

= (2m− 1) · ωDx(ω) · ω2m−1Dm
x f + ω2m+1Dm+1

x f

Thus,

ω2m+1Dm+1
x f = ω2Dx(ω

2m−1Dm
x f)− (2m− 1) · ωDx(ω) · ω2m−1Dm

x f.

By the induction hypothesis and the m = 1 case:

ω2m−1 ·Dm
x f ∈ L(Am · P∞),

ωDx(ω
2m−1Dm

x f) ∈ L((Am + (∆ + 1)) · P∞).

Also ω ∈ L(WP∞). By the m = 1 case,

ω ·Dx(ω) ∈ L((W + (∆ + 1)) · P∞)

The term ω2Dx(ω
2m−1Dm

x f) is in L((Am + W + ∆ + 1)P∞). The term
ωDx(ω)·ω2m−1Dm

x f is also in L((Am+W+∆+1)P∞). Altogether, ω2m+1Dm+1
x f

is in L(Am+1P∞) = L((Am +W + ∆ + 1)P∞).

Remark 3.4. Note that if Dx(ω) is in L(P∞), we can multiply by a single
ω per derivative, instead of multiplying by ω2.

Corollary 3.5. Assume the above setting. Let m > 0 then ω ∈ L((3g +
2 deg(x)− 1)P∞), and Am ≤ A+ (2m− 1)(3g + 2 deg(x)− 1).
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3.2 Discussion

Example 3.6. We saw that in the Hermitian function field Dx(y) = xp. In
fact, we saw in section 2.2, that in this case (dx) = (2g−2)P∞, i.e., it has no
poles, and all its zeroes are at P∞. Then, we can take w = 1. Furthermore,
for every f ∈ L(AP∞), −v∞(Hx(f)) = v∞(dx) − v∞(df) ≤ 2g − 2 + A + 1.
For a general m, Am ≤ A+m(2g − 1).

Example 3.7. Now consider the Hermitian function field when we derive
by y. For example, Dy(x) = 1

xp
. Things in this case are more complicated

because we saw in section 2.2 that (dy) = (p + 2)P∞ − p(x)0. Nevertheless,
since all functions in L(P∞) are polynomials in x and y, we get that if we
are deriving with respect to y we can choose w to be xp to cancel out the 1

xp

which is the derivative of x with respect to y. With this choice of ω we again
get that if f ∈ L(AP∞) then ωmHm(f) ∈ L((A+m(2g − 1))P∞).

The bounds we obtained are worse. This is because:

• We paid an additive g to guarantee a certain Riemann-Roch space is
not empty, by forcing the degree of its divisor to be at least g. While
there are divisors of degree g − 1 which have empty Riemann-Roch
spaces, there are divisors of degree 0 which have non-empty Riemann-
Roch spaces. It is conceivably possible that the 3g − 1 we have is not
mandatory and can be replaced with 2g − 1 as we have in the Hermi-
tian curve. Perhaps, using the Riemann-Roch theorem with canonical
divisors would do the trick.

• Additionally, the 2m factor is a side effect of the inductive argument
which requires us to apply the induction hypothesis twice - once for
Hm−1(f) and once for H1ω. If, however, H1ω is regular, we can apply
the induction hypothesis once and so ωm would be sufficient. Alter-
natively, if the poles of Dm(f) which exceed those of Dm−1(f) behave
like ”dividing by a function again and again”, similarly to what we
saw with Dm

x (f
g
) in K(x) or to Dy(f) for regular f in the Hermitian

function field, we would again get that ωm is sufficient.

• The requirement m < p is also a side effect of the induction, but
when looking at the p-th Hasse derivative of yp we get from claim 2.11
Hp
x(yp) = H1

x(y)p = xp
2

which is of pole order p3 = p(p+ 1) + (2g−1)p,
an increase of exactly 2g − 1 times the order of the derivative.
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To summarize this, an optimistic reading of the proof would lead us to
believe that the following version of theorem 3.3 could hold:

Conjecture 3.8. Let F/K be a function field of genus g. Let x ∈ F be a
separating element of F/k. Let P∞ be a degree one place of F . There exists
an element 0 6= ω = w(x, P∞) ∈ F such that for every m ∈ N

∀f ∈ L(P∞), ωm ·Hm
x (f) ∈ L(P∞).

Furthermore, ω ∈ L((2g − 1 + deg(x) + DegSupp((x)∞)) · P∞) and so if
f ∈ L(A · P∞) then ωm ·Hm

x (f) ∈ L(Am · P∞) for

Am = A+m(2g − 1 + deg(x) + DegSupp((x)∞) + min{v∞(dx), 0}).

4 The setting and our result

4.1 The function fields we work with

In the following we will work with:

• A function field F/Fq,

• A set S of degree one places,

• A degree one place we call P∞, and,

• An element X0 ∈ L(P∞) that is S-useful (see Definition 2.8). Note
that this implies that P∞ /∈ S.

Here we state the assumptions we put on the function field F/Fq, S and X0.

1. We assume q = p2 and p is a prime number.10

2. We also want F to have many degree one places and a small genus.
Let P1

F denote the set of degree one places of F , and N1 = |P1
F |. From

the Drinfeld-Vladut Bound [Sti09, Theorem 7.1.3] we know that in any
sequence of function fields over Fq, with N1 going to infinity, the genus

10A large part of our work is applicable even when p is a prime power and not just
prime, but the use of theorem 3.3 is pivotal, and at this point our proof only holds for
M < p where p is the characteristic of the field.
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tends in the limit to at least N1

p−1
, and there are several constructions

attaining this bound [Sti09, Section 7]. In particular we assume:

gF
def
= genus(F ) ≤ a · N1

p
, (1)

for some constant a ≥ p
p−1
≥ 1.

3. We would like deg(X0) to be as small as possible. From the gonality
lemma, Claim 2.25, we know that every element f ∈ F with deg(f) > 0
has deg(f) ≥ N1

q+1
. We assume

deg(X0) = b · N1

q
, (2)

for some constant b, and so b ≥ 1− 1
q+1

. We want b to be small.

We now see several examples to some of the function fields presented in
Appendix A:

Example 4.1. Let F/Fq be the Hermitian function field, with N1 = p3 + 1

and genus p(p−1)
2

. Let S = P1
F \ P∞, |S| = p3. Let X0 = x and notice that

indeed X0 = x is S-useful. We have deg(X0) = p. Thus,

• a = p·g
N1

= p−1
2

, and,

• b = q·deg(x)
N1

= 1− 1
N1

.

Example 4.2. Next, we look at the Hermitian tower function field of level
e, Fe. When 2e < p we the genus of Fe is at most epe. Let S be all the degree
one places other than P∞, |S| = pe+1. Let X0 = x1 and notice that indeed
X0 is S-useful. We have deg(X0) = pe−1. Thus,

• We assume 2e < p. Then, a = p·g
N1

= epe+1

pe+1 = e < p
2
, and,

• b = q·deg(x)
N1

= q·pe−1

pe+1 = 1.

Example 4.3. Our final example is the GS tower of level e. The genus of
Fe is less then pe. X0 = x1 is S-useful for a set of pe(p−1) degree one places
(which are exactly the evaluation points in the GS error correcting code). We
have deg(X0) = pe−1. Thus,

• a = p·g
N1
≤ p·pe

pe(p−1)
= p

p−1
, and,

• b = q·deg(x)
N1

≤ q·pe−1

pe(p−1)
≤ p

p−1
.
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4.2 The problem

We continue with the notation set before.

• Let ` be a prime number dividing q − 1. Note that ` is different from
the characteristic of F .

• f ∈ L(rN1P∞), where r is a parameter, and,

• We assume deg(f) = −vP∞(f) is coprime to `. This assumption implies
f is not an `-th power in FqF , where FqF is the constant field extension
of F with the algebraic closure of Fq.

Our goal is to estimate the number of places P ∈ S such that f |P ∈ Fq
is an `-th power. We define

F ′ = F (Z) mod Z` − f.

By Claim 2.21, F ′ is a Kummer extension of F and P∞ is totally ramified
in F ′. Also g′ = genus(F ′) satisfies `(g − 1) ≤ g′ − 1 ≤ `(g − 1) + degF (f)
Let P ′∞ denote the single place of F ′ above P∞. As P ′∞ is totally ramified we
have:

• deg(P ′∞) = 1,

• vP ′∞(X0) = ` · vP∞(X0), and vP ′∞(f) = ` · vP∞(f),

• ` · vP ′∞(Z) = vP ′∞(f) = ` · vP∞(f) and so vP ′∞(Z) = vP∞(f) ≤ rN1. In
fact, Z ∈ L(rNP ′∞).

Let S` ⊆ S be the set of all places P ∈ S where f |P ∈ Fq is a non-zero `-th
power. Let S ′` be the places of F ′ that lie over S`. By Claim 2.22, S` totally
split in F ′, and so

|S ′`| = `|S`|.

In this terminology, our goal is to identify a large vector space of functions
f , for which |S`|, or equivalently, |S ′`|, is about right.
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4.3 Our result

Our bound will be good for f such that t = −vP ′∞(Z) = −vP∞(f) is close
to a multiple of vP∞(X0) which is not a multiple of ` · vP∞(X0).11 Formally,
write

−vP∞(f) = −(`c1 + d1)vP∞(X0) + e1 (3)

where c1, d1, e1 ∈ Z, 0 < d1 < ` and |e1| minimal. We want |e1| to be small,
and if t = −vP∞(f) is close to a multiple of vP∞(X0) which is not a multiple
of ` · vP∞(X0), then |e1| is indeed small. If, however, t is close to a multiple
of ` · vP∞(X0), then, as we do not allow d1 = 0, we must take |e1| to be fairly
large (about |vP∞(X0)|).

Let A be some (large) positive integer.
In Section 5 we prove:

Theorem 4.4. In the above notation, suppose A < bN − (` − 1)q|e1| and
let {ai} be any basis of L(AP ′∞). Then {aiXjqZkq|j ∈ N; 0 ≤ k < `} are
independent over Fq.

In Section 6 we prove:

Theorem 4.5. In the above notation, assume further

• r < a
p
, and,

• `2

`−1
< 1

9a+3b
(b− `q|e1|+1

N1
)
√

rp3

a
.

Then:

|S`| ≤
bN1

`

(
1 + (`− 1)

√
rp

a
+

`(9a+ 3b)
√
a( qr

b
+ `

`−1
)

b
√
rp3 − `

`−1
(9a+ 3b)

√
a− q`|e1|+1

N1

)
Note that if p is large and a and |e1| are small, then we can bound the

second error term with:

`(9a+ 3b)
√
a( qr

b
+ `

`−1
)

b
√
rp3 − `

`−1
(9a+ 3b)

√
a− q`|e1|+1

N1

= O(
`qr

b
√
rp3

) = O(
`

b
· √rp)

making it roughly equal to the first error term which is (`− 1)
√

rp
a

.

11Recall that f,X0 ∈ L(P∞). If f is a polynomial in X0, i.e., f = P (X0), then the
requirement that deg(f) is not an `-multiple of deg(X0), implies that deg(P ) is coprime
to `, and, in particular, f is not an `’th power of a polynomial in X0.
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5 Independence - up-proof with valuations

Before we prove Theorem 4.4 we first focus on a special basis of a relevant
Riemann-Roch space:

Let A be some (large) positive integer. Let T ⊆ N be the set of integers
i such that there exists an element bi ∈ L(P ′∞) with vP ′∞(bi) = −i.12 The set
{bi}i∈T,i≤A is a basis of L(A · P ′∞) ⊂ F ′.

Theorem 5.1. In the above notation, suppose A < bN − (` − 1)q|e1|. Let
i, i′, j, j′, k, k′ be non-negative integers, such that i, i′ ≤ A and k, k′ < `.
Then two elements biX

jqZkq and bi′X
j′qZk′q have the same P ′∞-valuation if

and only if (i, j, k) = (i′, j′, k′).

Proof. Let us compute vP ′∞(biX
jq
0 Z

kq):

vP ′∞(biX
jq
0 Z

kq) = vP ′∞(bi) + jq · vP ′∞(X0) + kq · vP ′∞(Z)

= −i+ jq` · vP∞(X0) + kq(`c1 + d1) · vP∞(X0)− e1kq.

Plugging in vP∞(X0) = −bN1

q
we get:

vP ′∞(biX
jq
0 Z

kq) = −i− bN1(`j + (`c1 + d1)k)− e1kq

= −`bN1(j + kc1 + k
d1

`
+
i+ e1kq

`bN1

)

and so if vP ′∞(biX
jq
0 Z

kq) = vP ′∞(bi′X
j′q
0 Zk′q) we get that:

j − j′ + (k − k′)(c1 +
d1

`
) =

i′ − i+ (k′ − k)qe1

`bN1

Which means i′−i+(k′−k)qe1
`bN1

must be an integer multiple of 1
`
. However, this

quantity (in absolute value) is at most A+(`−1)q|e1|
`bN

< 1
`

by the assumption on

A. And so we get that i′−i+(k′−k)qe1
`bN

= 0, giving us

j − j′ + (k − k′)(c1 +
d1

`
) = 0

Considering the fractional part of this equation and remembering 0 < d1 < `
gives k = k′, which in turn gives us j = j′ and i = i′, finishing the proof.

12If g′ = genus(F ′) > 0 then T is non-consecutive and contains up to g′ gaps. However,
it is a semi-group, and is called the Weierstrass semigroup of P ′

∞.
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Remark 5.2. In the case where vP∞(f) is divisible by ` there are two cases
to consider. If P∞ does not split at all, and has a single extension in F ′

with full relative index, the proof can be modified to get a similar result to
theorem 5.1, which is enough for us to continue the analysis as in the later
sections of this work. If, however P∞ has more than one place lying over it
in F ′ the whole framework of our proof is no longer applicable. As the more
general case is the one where P∞ splits in F ′ we limit ourselves to the case
where vP∞(f) is not divisible by ` for the sake of both simplicity and brevity.

We are ready to prove Theorem 4.4:

Proof. (of Theorem 4.4) We first prove it for the basis {bi}i∈T,i≤A from The-
orem 5.1. Suppose

∑
ci,j,kbiX

jqZkq = 0. As all the elements in the sum have
distinct valuations at P ′∞, the valuation of the sum is the minimal valua-
tion of biX

jqZkq with a non-zero coefficient ci,j,k. However, the valuation is
v(0) =∞. Hence all the coefficients ci,j,k are zero.

Now suppose
∑

j,k gj,kX
jq
0 Z

kq = 0 for gj,k ∈ L(AP ′∞). Write each gj,k as∑
i ci,j,kbi. From the previous argument we see that all ci,j,k are zero, hence

all gj,k are zero.
In particular let {ai} be an arbitrary basis of L(AP ′∞). Let gj,k =∑
i ci,j,kai ∈ L(AP ′∞) to obtain gj,k = 0 for all j, k. From the independence

of ai we conclude that all ci,j,k must be zero, finishing the proof.

6 Bounding the bias - analysis of the up-proof

In this section we prove Theorem 4.5. We do this using a version of Stepanov
method. We remind the reader that S` ⊆ S is the set of all places P ∈ S
where f |P ∈ Fq is a non-zero `-th power, and S ′` is the set of places of F ′

that lie over S`. We also saw that by Claim 2.22, S` totally split in F ′, and
so |S ′`| = `|S`|.

Proof. Set an integer M < p to be determined later. Our goal is to find
0 6= R ∈ F ′ such that:

• deg(R) is not too large, and,

• for every P ′ ∈ S ′`, vP ′(R) ≥M .
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It then follows from Claim 2.2 that M · |S ′`| ≤ deg(R) and therefore

|S`| ≤
deg(R)

`M
.

We search for R in the following vector space: Let A < bN1− (`− 1)q|e1|
and B be parameters that will be chosen later. Let {ai} be a basis of L(AP ′∞).
Set

U = {aiXjq
0 Z

kq | j < b and k < `}

We search for R in the Fq-linear span of U . By Theorem 4.4 the elements in
U are independent and so the dimension of span(U) is the size of U . Hence,

dim(span(U)) ≥ ` ·B · (A− g′ + 1).

As ai ∈ L(AP ′∞), X0 ∈ L(`bN
q
P ′∞), and Z ∈ L(rN1P

′
∞), we see that

span(U) ⊆ L((A+ `(B − 1)bN1 + (`− 1)qrN1)P ′∞). (4)

In particular, if R ∈ span(U) then deg(R) ≤ A+ `(B− 1)bN1 + (`− 1)qrN1.
Express R =

∑
ci,j,kaiX

jq
0 Z

kq. We want to find a set of linear constraints
on ci,j,k that guarantees that vP ′(R) ≥ M for all P ′ ∈ S ′`. For that end, for
0 ≤ m < M define:

gm = ωm ·
∑

ci,j,kH
m
X0

(ai)X
j
0Z

k,

where ω0 = 1 and ωm = ω2m−1 for 0 < m < M , and ω is as in Theorem 3.3.
We claim that it is enough to require the gi are zero:

Lemma 6.1. If g0 = g1 = . . . = gM−1 = 0 as elements of F ′ then R vanishes
M times on all of S ′`.

We give the proof in Section 6.1. Our next step is to show each require-
ment gi = 0 imposes a bounded number of homogeneous linear constraints
on the coefficients ci,j,k. Specifically,

Lemma 6.2. For every m,i, j, k, ωmH
m
X0

(ai)X
j
0Z

k ∈ L(AmP
′
∞) where A0 =

A+(B−1)`bN1

q
+(`−1)rN1 and Am = A0 +3(2m−1)(`g+ rN1) for m > 0.
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We give the proof in Section 6.2.
Now choose a basis for L(AmP

′
∞) and represent each ωmH

m
X0

(ai)X
j
0Z

k ∈
L(AmP

′
∞) as a vector of length dim(AmP

′
∞). Then the constraint gm = 0,

where gm =
∑
ci,j,kωmH

m
X0

(ai)X
j
0Z

k and we keep ci,j,k as variables, gives
dim(AmP

′
∞) ≤ Am linear homogeneous equations in the variables ci,j,k.

Altogether we get a system of
∑M−1

m=0 Am linear, homogeneous equations
in ` ·B · dim(AP ′∞) variables. Choosing parameters such that

M−1∑
m=0

Am ≤ ` ·B · dim(AP ′∞),

guarantees a non-zero solution R, and then |S`| ≤ deg(R)
`M

.
What is left now is choosing parameters. There are several different

parameters, and two conflicting error terms. In 6.3 we explain how to choose
the parameters. Roughly speaking, M is chosen to be on the order of

√
rp3

(assuming some other parameters, like a, b and ` are constant). In 6.3 we
plug our choices for A,B and M and derive the declared bounds.

6.1 The sufficiency of the conditions

Proof. (of Lemma 6.1) Fix P ′ ∈ S ′` and 0 ≤ m < M . Assume gm = ωm ·(∑
ci,j,kH

m
X0

(ai)X
j
0Z

k
)

is zero as an element of F ′. Notice that ωm is either 1
or ω2m−1 where ω is not zero, and so ωm is never the zero function, meaning
it is invertible in F ′. Therefore,

∑
ci,j,kH

m
X0

(ai)X
j
0Z

k is zero as an element
of F ′. In particular it is zero on P ′.

Now,

Hm
X0

(R)|P ′ = Hm
X0

(
∑

ci,j,kaiX
jq
0 Z

kq)|P ′

= (
∑

ci,j,kH
m
X0

(ai)X
jq
0 Z

kq)|P ′ ,

using Corollary 2.12 and the Fq-linearity of Hm. P ′ is a degree one place
of F ′, and so ϕP ′(X0) = X0|P ′ and ϕP ′(Z) = Z|P ′ are both elements of Fq
(P ′ 6= P ′∞ so X0 and Z are indeed defined at P ′). Therefore

Xq
0 |P ′ = ϕP ′(X

q
0) = ϕP ′(X0)q = ϕP ′(X0) = X0|P ′ ,

Zq|P ′ = ϕP ′(Z
q) = ϕP ′(Z)q = ϕP ′(Z) = Z|P ′ ,
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and Hm
X0

(R)|P ′ =
(∑

ci,j,kH
m
X0

(ai)X
j
0Z

k
)
|P ′ = 0. We conclude that Hm

X0
(R)

vanishes on P ′.
Now X0 is S-useful, and therefore it is S`-useful. By Claim 2.23, X0 is

S ′`-useful. As this is true for every m < M , Claim 2.9 implies that R vanishes
M times on P ′, and the proof is complete.

6.2 Describing the constraints

Proof. (of Lemma 6.2) Xj
0Z

k and ωmH
m
X0

(ai) are regular at P ′∞. The de-

gree of Xj
0Z

k is at most (B − 1)`bN1

q
+ (` − 1)rN1. For m = 0, the de-

gree of ωmH
m
X0

(ai) = ai is at most A. For m > 0 we have ωmH
m
X0

(ai) =
ω2m−1Hm

X0
(ai), which by corollary 3.5 is a regular function with degree at

most A+ (3g′ − 1 + 2 deg(X0))(2m− 1), where g′ = genus(F ′) ≤ `g + rN1.
Altogether, wmH

m
X0

(ai)X
j
0Z

k ∈ L(AmP
′
∞) for every i, j, k.

6.3 Analysis of parameters and the bound on S`

In this part we will show some calculations that dictate the constraints on
the parameters A, B and M . The number of constraints is at most

M−1∑
m=0

Am ≤
M−1∑
m=0

(A0 + (6g′ + 4b
N1

q
)m) ≤ MA0 + (6g′ + 4b

N1

q
)
M2

2

≤MA+ (3g′ + 2b
N1

q
)M2 +M((B − 1)`b

N1

q
+ (`− 1)rN1).

Notice that the number of degrees of freedom is less than `BA while the
number of constrains is more than MA. Therefore, in order for the number
of degrees of freedom to exceed the number of constraints, we must have
M < `B. We shall therefore write

`B = M + E.

We now compare the number of constraints with the number of degrees of
freedom, demanding that the number of constraints be smaller:

(M + E)(A− g′ + 1) > MA+ (3g′ + 2b
N1

q
)M2 +M((B − 1)`b

N1

q
+ (`− 1)rN1)

EA > `B(g′ − 1) + (3g′ + 2b
N1

q
)M2 +M((B − 1)`b

N1

q
+ (`− 1)rN1)
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And so it is enough to ask:

E

M
> g′(

3M

A
+

`B

MA
) + 2b

MN1

qA
+ (B − 1)`b

N1

qA
+ (`− 1)

rN1

A
(5)

With the above notation we restate the bound on |S`|, using eq. (4) that
states that deg(R) ≤ A+ `(B − 1)bN1 + (`− 1)qrN1. We have

|S`| ≤
deg(R)

`M
≤ A

`M
+
`(B − 1)bN1

`M
+

(`− 1)qrN1

`M

<
A

`M
+

(M + E)bN1

`M
+

(`− 1)qrN1

`M

<
bN1

`

(
1 +

E

M
+

(`− 1)qr

bM
+

A

bN1M

)
and so

|S`| <
bN1

`

(
1 +

E + 1

M
+

(`− 1)qr

bM

)
.

We note that since E
M

= B`−M
M

is an error term, if it exceeds ` we get a
trivial bound. So we assume B ≤M .

The probability a random number in Fxq is a non-zero `-th power is 1
`
.

Thus, the term N1

`
is about the expectation in a random process, assuming

S ⊆ P1
F \ P∞ is a large faction of all degree one places. We have a multi-

plicative loss of b that we ignore. Other than that we have an error term E
which is the sum of two error terms: E = E+1

M
+ (`−1)qr

bM
and our bound on

|S`| is minimal when the sum of these two error terms is minimal.
At first glance it would appear that the error shrinks as the value of M

grows, leading us to taking a maximally large value of M . However further
inspection reveals that E

M
actually increases as the value of M grows, leading

to a tradeoff and an optimal choice for the value of M .
Let us break down the two error terms, starting with E+1

M
. From Equa-

tion (5) we need to have:

E

M
> g′(

3M

A
+

`B

MA
) + 2b

MN1

qA
+ (B − 1)`b

N1

qA
+ (`− 1)

rN1

A
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Recalling our bounds on g′ and g as noted in Section 4, namely g′ ≤ `g +
rN1 ≤ N(a`

p
+ r) we get that it is enough to have:

E

M
≥ N1

A

(
(3M +

`B

M
)(
a`

p
+ r) +

2bM + (B − 1)`b

q
+ r(`− 1)

)
We saw B ≤M . We will also assume ` ≤M and get it is enough to have:

E

M
≥ MN1`

A

(
4a

p
+

4r

`
+

3b

q
+
r(`− 1)

M`

)
(6)

From here it is rather easy to see that the error term E
M

grows as M grows.

The second error term is (`−1)qr
bM

, which decays linearly in M . Since one
error term grows with M and the other decays with M , the minimal error
is at least half the error when the two terms are equal,13 giving us a rough
estimation for what the best value of M should be.

Equating the error terms we get:

(`− 1)qr

bM
≈ MN1`

A
(
4a

p
+

4r

`
+

3b

q
+
r(`− 1)

M`
)

Assuming A = Θ(bN1), and that r is small (which turns out to be necessary)

we get that the optimal choice of M is M = Θ

(√
rp3

a

)
Putting aside the estimations above, we shall now give a choice for the

parameters A,B,M and prove theorem 4.5

Proof of theorem 4.5. First we choose

A = bN1 − q`|e1| − 1,

M = b `− 1

`(9a+ 3b)

A

N1

√
rp3

a
c,

B = dM
`

(1 +
MN1`

A
(
4a

p
+

4r

`
+

3b

q
+
r(`− 1)

M`
))e

and denote E = `B −M .
We check that these choices satisfy our constraints. First,

13To see that assume the two term are equal when they have value a. Then the error
that we get when they are equal is 2a, and the minimal error is at least a.
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• A < bN1 − q(`− 1)|e1|, and,

• M < p since r < a
p

and A < N(9a+ 3b).

Also,

Claim 6.3. B ≤M .

Proof. It is enough to show that:

(1 +
MN1`

A
(
4a

p
+

4r

`
+

3b

q
+
r(`− 1)

M`
)) ≤ `.

Since r < a
p

it is enough to show that:

M ≤ `− 1

`

A

N1

p

9a+ 3b

which holds because r < a
p
.

Also

Claim 6.4. ` ≤M .

Proof. Since ` is an integer it is enough to show that ` < `−1
`(9a+3b)

A
N1

√
rp3

a
,

which holds because of our choice of A and the condition on ` in the statement
of theorem 4.5.

Also note that

E = `B −M ≥M
MN1`

A
(
4a

p
+

4r

`
+

3b

q
+
r(`− 1)

M`
)

and therefore, due to Equation (6), if B ≤M and ` ≤M then

E

M
> g′(

3M

A
+

`B

MA
) + 2b

MN1

qA
+ (B − 1)`b

N1

qA
+ (`− 1)

rN1

A

as desired.
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This concludes the check that our choices satisfy our constraints. We

conclude that |S`| < bN1

`

(
1 + E+1

M
+ (`−1)qr

bM

)
. Substituting the values of M

and E we get |S`| < bN1

`
(1 + E) where

E ≤ E + 1

M
+

(`− 1)qr

bM

≤ MN1`

A
(
4a

p
+

4r

`
+

3b

q
+
r(`− 1)

M`
) +

`

M
+

(`− 1)qr

bM

≤ `− 1

p

√
rp3

a
+
b`+ (`− 1)qr

bM

≤ (`− 1)

√
rp

a
+

`(9a+ 3b)
√
a( qr

b
+ `

`−1
)

b
√
rp3 − `

`−1
(9a+ 3b)

√
a− q`|e1|+1

N

,

completing the proof.
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A Some examples of function fields

A.1 The rational function field

Let us consider F = F5(x), the rational function field over the field with
five elements. The elements of F are the rational functions in x. F/K has a
degree one place P∞ corresponding to a ’point at infinity’. A rational function
vanishes at P∞ if the denominator has a higher degree as a polynomial than
the numerator. More generally the valuation corresponding to P∞ is v∞
defined by v∞(f(x)

g(x)
) = deg(g)− deg(f).

The evaluation function (also known as residue class map) associated

with P∞ is φ∞, it is defined over all f(x)
g(x)

such that n = deg(g) ≥ deg(f)

and if g(x) =
∑n

i=0 gix
i and f(x) =

∑n
i=0 fix

i then φ∞(f(x)
g(x)

) = fn
gn

(note

that fn might be zero but gn is not zero). All other places of F are places
associated with irreducible polynomials in F5[x]. Let h(x) ∈ F5[x] be some
irreducible polynomial, then it defines a place of degree deg(h) denoted Ph.

The valuation vh associated with it is vh(
f(x)
g(x)

) = ”the number of times h
divides f minus the number of times h divides g”. the associated evaluation
φh is defined on all f(x)

g(x)
where h divides g fewer times than h divides f . φh

can be calculated in two equivalent ways either φh(
f(x)
g(x)

) = f(x)
g(x)

(modh) or

φh(
f(x)
g(x)

) = f(α)
g(α)

where α ∈ F5deg(h) is such that h(α) = 0.

The divisor of a rational function f(x)
g(x)

= c ∗
∏
ai(x)ei where c ∈ F5[x],

ai are distinct irreducible polynomials and ei ∈ Z is (f(x)
g(x)

) = (deg(g) −
deg(f))P∞ +

∑
eiPai . Since the degree of a place Ph is exactly deg(h) it

is clear that for every rational function this divisor is of degree 0, and that
the divisor is trivial if and only if the function is a constant. In the other
direction, if a divisor KP∞ +

∑
eiPai is of degree zero then its Riemann-

Roch space is exactly c ∗
∏
ai(x)−ei (where c ∈ F5) which is 1 dimensional

as a vector space over F5, just as the Riemann-Roch theorem (Theorem 2.3)
predicts. In the more general case if D = KP∞ +

∑
eiPai is some divisor of
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positive degree then

L(D) = Span
{
xj
∏

ai(x)−ei | 0 ≤ j ≤ deg(D)
}

and this space is of dimension deg(D) + 1.
The derivative with respect to x in F is exactly like the derivative of

a rational function in analysis (we just need to remember our arithmetic
operations all take place in the field F5). if we want to derive a function z
with respect to y instead of x we can use the chain rule Dy(z) = dz

dy
= dz

dx
dx
dy

=

Dx(z) 1
Dx(y)

. For Hasse derivatives we can expand a rational function f(x)
g(x)

as

a power series in x (or in x− c for c ∈ F5 if we so desire) and then use

Hm
x (

∞∑
n=n0∈Z

cnx
n) =

∞∑
n=n0∈Z

cn

(
n

m

)
xn−m

to compute the Hasse derivative of f(x)
g(x)

. Note that the value at 0 of the m-th

Hasse derivative is exactly the coefficient of xm in the power series (so long

as f(x)
g(x)

is defined at zero, meaning there are no terms of the form x−k and so

the Hasse derivative has a value at zero). We refer the reader to the end of
section 2.2 for an example of a canonical divisor in K(x)/K.

A.2 The Hermitian function field

Let p be a prime power and denote q = p2. The Hermitian function field
is F = Fq(x, y)/ϕ(x, y) where ϕ(x, y) = Tr

Fq
Fp(y) − N

Fq
Fp(x) = yp + y − xp+1.

The genus of F is p(p−1)
2

. When viewed as an extension of Fq(x), the infinite
place is fully ramified, and all other degree one places are fully split, giving
a total of p3 + 1 degree one places. The degree one places other then infinity
(which is denoted P∞) correspond to pairs (α, β) ∈ F2

q with Tr(β) = N(α)
and denoted Pα,β. The function x is ”useful for the set of all degree one
places except P∞ while y is ”useful” for all degree one places Pα,β with α 6= 0
(this is a set of size p3 − p).

x has p poles at P∞ and p simple zeroes (at points P0,β with Tr(β) = 0).
y has p + 1 poles at P∞ and p + 1 zeroes at P0,0. x and y are both regular
(poles only at P∞). In fact, powers of x and y form a basis for the space
of regular functions, namely - L(kP∞) = Span {xiyj | pi+ (p+ 1)j ≤ k} and
since xp+1 ∈ Span{y, yp} it is enough to take i ≤ p.
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We refer the reader to the end of section 2.2 for an example of a canonical
divisor in the Hermitian function field.

A.3 The Hermitian tower

A lot of what we bring here is presented in [GX12, Section 3.1]. The Her-
mitian tower is a generalization of the Hermitian function field. With the
same definitions of p, q,Fq, ϕ, the e-level Hermitian tower is Fe = Fq(x1, ...xe)
where ϕ(xi, xi+1) = 0. F1 is just a rational function field, while F2 is the Her-
mitian function field. the point at infinity is fully ramified at each level of the
tower, and so is fully ramified at Fe. Each of the other q degree one places
of F1 = Fq(x1) is fully split at every level of the tower and so has pe−1 points
lying over it in Fe. The degree one places of Fe except infinity correspond to
tuples (α1, α2, ...αe) with ϕ(αi, αi+1) = 0. So the e level tower has 1 + pe+1

places of degree one, roughly multiplying by a factor of p at every level of
the tower.

The genus of Fe is ge = 1
2
(
∑e−1

i=1 p
e(1 + 1

p
)i−1 − (p + 1)e−1 + 1) and when

2e ≤ p we get ge ≤ epe, so the genus also increases at every level by about a
factor of p.

xi ∈ Fe are regular functions with pole order −vP∞(xi) = pe−i(p + 1)i−1.
The zeroes of xi are at the places matching the tuples (0, ..., 0, αi+1, ..., αe),
these are pe−i places, each of them with degree one and the valuation of xi
there is (p+ 1)i−1. x1 is ”useful” for all the degree one places except infinity,
and each other xi is ”useful” for the set of degree one places where αi−1 is
non-zero.

The Riemann-Roch spaces of regular functions are spanned by monomials
in xi:

L(kP∞) = Span
{
xj11 · · ·xjee |

∑
jip

e−i(p+ 1)i−1 ≤ k
}

A.4 The GS tower

A lot of what we bring here is presented in [GS96, Section 3] and we invite
the reader to read further in order to fully admire the intricacies of what
happens in the GS tower.

For p a prime power and q = p2 the e-level GS tower is defined as Fe =
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Fq(x1, ...xe) where ψ(xi, xi+1) = 0 for

ψ(x, y) = yp + y − xp

xp−1 + 1
= Tr(y)− N(x)

Tr(x)

The genus of Fe is less than pe. Each point Pα of F1 = Fq(x1) for α with
Tr(alpha) 6= 0 splits completely in Fe. Giving a set is of size pe(p − 1) of
degree one places, and x1 is ”useful” for this set. P∞ is totally ramified in Fe
and all of the poles of x1 are there. x1, x2...xe are all of degree pe−1 but only
x1 is regular, the rest have poles at certain degree one places that correspond
to (α1, ..αe) where some of the αi-s have trace 0 or even to places where some
of the xi have poles.

In [SAK+01] an algorithmic process for finding a basis for the Riemann-
Roch space L(kP∞) is specified.

B Miscellaneous proofs

Proof of claim 2.14. Let f ∈ F/K, P ∈ PF , t ∈ F with vP (t) = 1. We are
interested in (df)F the divisor of df over F . We move to F̄ /K̄ = K̄ · F/K =
K̄F/K̄ which is the constant field extension of F/K with all of K̄, the
algebraic closure of K. Let P̄ ∈ PF̄ be a place lying over P . Since K̄ is
algebraically closed we know deg(P̄ ) = 1. From [Sti09, Theorem 3.6.3] we
learn that vP̄ (t) = vP (t) = 1 and we can write:

f =
∞∑

n=n0∈Z

cnt
n (cn ∈ k̄, cn0 6= 0)

D1
t (f) =

∞∑
n=n0∈Z

n · cntn−1 (cn ∈ k̄, cn0 6= 0)

From the definition of valuation for differential we know that

vP̄ (1df) = vP̄ (D1
t (f)dt) = vP̄ (D1

t (f)) ≥ n0 − 1

From [Sti09, Theorem 3.6.3] we know that vP̄ (1df) = vP (1df) and vP (f) =
vP̄ (f) and so we get vP (1df) ≥ vP (f) − 1. Furthermore, if f has no pole at
P , then f has no pole at P̄ and so n0 ≥ 0 and so D1

t (f) has no pole at P̄
and therefore at P , meaning vP (1df) ≥ 0.
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C Documentation of research exceeding the

scope of the main work

Remark C.1. Regarding the choice of X0 - we could pick Y that is S-useful,
and X0 that is regular and defined at places of S without capturing them. In
this case we would pay for Y in the application of the DHB. However, if Y
is regular it doesn’t incur an extra cost in DHB, so finding a small function
that is regular and also S-useful is the best. If, however, we fail to find a
small regular function that is S-useful we could find a small regular function,
and find a small S-useful function separately.

C.1 Nontrivial values of multiplicative character

In theorem 4.5 we bound the number of places of S where f is a nonzero
`-th power. This can be interpreted as the number of places P ∈ S where f
is non-zero and the character χ : F×q → Z/`Z gives 0 when applied to f |P .
It is also interesting to bound the number of times χ(f |P ) is equal to any
0 < t < `. to achieve this bound note that for γ ∈ F×q applying theorem 4.5
to γf gives a bound on the number of places from S where χ(f |P ) = −χ(γ).
It is also interesting to get a lower bound on these quantities, rather than just
an upper bound. In the book of Schmidt [Sch06] there might be some tricks
as to how to do this better than the obvious way, considering N,N0, N1, N2

as he defines them on page 16 an utilizes them on page 22 (and other places
perhaps). Here we give the simplest way to get a lower bound. Since f is
defined on all of S, then for every P ∈ S either f vanishes at P or χ(f |P ) is
some number between 0 and `− 1. From claim 2.2 we have an upper bound
on the number of places where f vanishes - rN , and from theorem 4.5 we
have an upper bound on the size of the preimage of each number < ` under
χ. The sum of the sizes these ` + 1 sets is precisely |S| so combining all of
the upper bounds with the sum gives us a lower bound, it has a larger error
term (by a multiplicative factor of (`−1) and an additive factor of rN) but it
is still a correct lower bound achieved without further research or additional
techniques.
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C.2 Down proof independence and analysis

The ”up proof” is nice because it does not use a lot of information about
the function field F . However, it has a big problem. Since we want to work
in F ′ and want P ′∞ to be fully ramified we must limit ourselves to working
with function f ∈ F with pole order that is coprime to `. For comparison
see remark C.3.

another problem with the up proof is, that we pay the maximum possible
payment for each derivative, namely g′ ≈ `g+rN (this is due to theorem 3.3).
Ideally we would like to get a more direct bound on the number of linear
constraints each derivative incurs by way of using a specific set monomials,
and keeping track of how each derivative looks - if we can show a derivative
lives in some relatively small linear space we only need to pay its dimension,
and perhaps that will be less than O(m(`g + rN)).

The ”down proof” means picking R from a space U of monomials in F ,
and demanding it vanish at the places of S` which are places of F/K, without
ever discussing F ′ = F (Z). Our choice of U will be {aiXjq

0 f
k(q−1)/`} where

ai ∈ LF (AP∞), j < B and k < `.
We present a brief version of an analogue of theorem 4.4:

Theorem C.2. Suppose `A < bN − (` − 1)(|vP∞(f)| + q|e1|) and {ai} is
some (any) basis for L(AP ′∞). Suppose we have a vanishing combination

0 =
∑

ci,j,kaiX
jq
0 f

k(q−1)/`; j ∈ N, 0 ≤ k < `, ci,j,k ∈ Fq

then all ci,j,k are zero.

Proof. The crux of the proof is showing that elements of the form biX
jq
0 f

k(q−1)/`

have distinct valuations when either i, j or k are different (here bi is a basis for
L(AP∞) where vP∞(bi) = −i). by computing and lugging in vP∞(X0) = −bN

q

we get:

vP∞(biX
jq
0 f

k(q−1)/`) = vP∞(bi) + jqvP∞(X0) + k
(q − 1)

`
vP∞(f)

= −i− jbN +
1

`
kq((`c1 + d1)(−bN

q
) + e1)− k

`
vP∞(f)

= −i− jbN − bNk(c1 +
d1

`
) +

e1kq

`
− k

`
vP∞(f)

= −bN
(
j + kc1 +

kd1

`
+
`i+ kvP∞(f)− kqe1

bN`

)

48



Which means that if `A < bN − (` − 1)(|vP∞(f)| + q|e1|) the only way for
two expressions of this form to be equal is to have i = i′, j = j′, k = k′. The
rest of the proof is identical to theorem 4.4

Remark C.3 (An incredible remark!). This independence proof (theorem C.2)
works even when the degree of f is a multiple of `, but the main theorem of
the bound on the size of S` does not hold for functions that are `-th powers.
We believe the explanation for that is that there cannot be `-th powers with
degree significantly below the genus without, in some sense being powers of
X0 or at least having pole order that is very close to that of some power of
X`

0, meaning the error e1 will have to be huge and A would have to be too
small to give an effective bound on S`.

As for achieving the bound on |S`, we proceed with the polynomial
method. However instead of using a polynomial from the span of U =
{aiXjq

0 f
k(q−1)/`}, we define R = fMQ where Q is from the span of Q. The

motivation for doing this is that when we derive Q one of the terms looses the
fk(q−1)/` part, as the derivative of fk(q−1)/` is f−1+k(q−1)/`H1(f). We wish to

keep the fk(q−1)/` since whenever P ∈ S` we have f |k(q−1)/`
P = f |P (q − 1)/`k =

1k = 1 and so f vanishes from the equations. With the form R = fMQ we
get (from the product rule) that

Hm(R) = fM−m
∑

ci,j,kaiX
jq
0 f

k(q−1)/`
∑
s<m

HsaiH
m−sf

and by considering ω2m−1
∑

s<mH
saiH

m−sf and applying theorem 3.3 we
get a bound for the number of linear constraints it would take to force R to
vanish M times at S`.

Remark C.4. Notice that since R = fMQ and Q is a regular function, R
also vanishes M times wherever f vanishes. This slightly affects the calcula-
tion on the upper and lower bounds we get.

We now present a short-form version of the calculation of the parameters
of the down proof:

The degrees of freedom - at least `B(A− g + 1)
Constraints - since we have HsaiH

m−sf we still need to use theorem 3.3,
and so we pay for the genus, but only for the genus of F and not the larger
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genus of F ′ (since F ′ does not appear in this proof at all). The analogue we
would get for lemma 6.2 would bound the degree of∑

ci,j,kX
j
0ω

2m−1
∑
s<m

HsaiH
m−sf

with

Am = (B − 1)b
N

q
+ (2m− 1)(3g − 1) + A+ rN

and summing over m < M would give a total number of constraints of

MA+ (M − 1)2(3g − 1) +M((B − 1)b
N

q
+ rN)

Together these give (in a way analogue to section 6):

E

M
>
M

A
(3g − 1) + (B − 1)b

N

qA
+
rN

A

The degree of R is bounded by MrN + A + BbN + (q − 1)rN `−1
`

and

the bound we get on |S`| is deg(R)
M

which assuming A is close enough to bN is
bounded by:

|S`| <
bN

`

(
1 + 2(

E

M
+
`rq

bM
)

)
optimizing for smallest error terms gives a choice of M ≈

√
`rq and error

term O(
√
`rq).

Remark C.5. It appears that the dependence in ` is different between the up
proof and the down proof. This calls for a deeper dive into the exact choice
of the parameters.

Remark C.6. Notice that while we did not to pay for rN in g′ (through
the application of theorem 3.3), we did need to pay for it in the degree of R,
since we had to multiply Q by fM to maintain the nice form for our equations
(having f appear with power that is an integer multiple of q−1

`
). It seems that

we cannot dodge the combined payment of O(g) and O(rN), which leads us
to try to look for methods that avoid these payments even if only for a special
case of a specific curve. This leads us to appendix C.3
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C.3 Custom independence for Hermitian curve - proof
without valuations

We would like to get results of the form of theorem 4.5 for functions that are
not necessarily close to a multiple of the pole order of X0, but rather any
function f that is not an `-th power in F or a constant field extension of
F . The independence claim which is the basis for our use of the polynomial
method is highly reliant upon these ”modular” properties of the pole order
of f because the argument hinges on corollary 2.1. Instead of that argument
we would like to use a modified version of [Sch06, Chapter I, section 5]. This
will be challenging because we are working over some function field F/K
while Schmidt works over the rational function field K(X)/K. There are a
few key properties of the rational function field that come in useful during
the proof but are not trivial for us when trying to adapt the argument to a
different setting:

1. The derivative of a polynomial is polynomial with fewer poles.

2. There is a single element X which is ”useful” for all degree one places
of K(X)/K except one.

3. This X has small pole order and only a simple zero.

We will now explain how we prove an independence claim (more similar to
that of the down proof than the up proof) for the Hermitian curve F/Fq
for bounding the number of `-th powers a function f ∈ L(rNP∞) takes at
the non-infinite degree one places of the curve, under the assumption that
Z`−f(X, Y ) is absolutely irreducible mod ϕ(X, Y ), meaning it is irreducible
in
(
Fp(X, Y )/ϕ(X, Y )

)
[Z]. If ` > 2 we also need the assumption that f is

not of the form f = xh for h that is a regular function. This additional
assumption may be removed with further research.

C.3.1 Monomial form

Following the idea of the down proof, we will work in F rather than F ′

and use powers of f
q−1
` . However, unlike the proofs above we will not

take a whole basis for L(AP∞), but rather use a very particular linear
space of regular functions which will enable us to have more information
about the derivatives of R = fMQ. We will select Q from the span of
U =

{
xi1yi2yi3pyi4qf i5(q−1)/` | i1 + i2 < A; i3 < C; i4 < D; i5 < `

}
. We call
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these select function monomials, and the main goal of this section is to show
a proof of their independence. If you want some intuition for the sizes, A,C
should be thought of as p

10
and D should be though of like B from the up

proof. Indeed if A ≈ p and C ≈ p − 1 the xi1yi2yi3p would be a basis for
LNP∞ much like {bi|i < A} were. It turns out that these ”holes” won’t harm
the analysis too much, though a deep dive into the parameters is in order
for further research. The form of the monomials we use has several bene-
ficial properties when considered alongside the properties of the Hermitian
function field:

1. The derivative with respect to x of regular functions is regular, and the
derivative with respect to y of a regular function is 1

xp
times a regular

function

2. Any regular function in F (and in particular f, xpH1
y (f)) has a repre-

sentation as a polynomial in x and y

3. x is ”useful” for all degree one places except P∞. We will be deriving
with respect to x. The derivative of x is 1 and the derivative of y is xp.

4. Since this is the Hermitian curve and xp+1 = yp + y.

5. y has a zero only at the point P0,0 and that zero is with valuation p+1.
x has a simple zero at P0,0.

The algebraic relation between x and y is particularly useful since when
we get an ”unwanted” xp from deriving a y, we can ”steal” an existing x and
write the derivative as a combination of other monomials, though we will
perhaps need larger bounds on the degrees. This means it is more convenient
to work with i1 ≥ M so we always have an x to steal. The increase in the
bounds after each consecutive derivation is that A needs to increase by one
less than the total degree of f (viewed as a polynomial in x and y), and C
needs to increase by one. By ”accommodating” the additional terms that
appear in the derivative into the xi1yi2yi3p-part of the monomials we manage
to easily identify a linear space of functions to which the m-th derivative of
R belongs, thus getting a clear bound on the number of linear constraints
needed to make it vanish without applying theorem 3.3.

Remark C.7. Since we avoid using theorem 3.3 the analogues for the var-
ious lemmas of section 6 stay correct even for values of M which are above

52



the characteristic and even further. In particular this form of proof for the
Hermitian curve the only result we demonstrate over Fq for q = p2 where p
is some prime power that is not itself prime. This is an important benefit
which demands further research into more delicate choices of monomials /
linear spaces.

There is a small technical detail that is important to note when working
with M larger than the characteristic - the Hasse derivative is no longer
the iterated derivative up to a constant, so one should carefully analyze the
form of the Hasse derivatives of R. In the case of the Hermitian curve it is
possible to analyze the form of the hasse derivative of fM times a monomial
for specific choices of monomial families, though we warn this needs to be
handled with care.

We shall prove the monomials of U are independent by way of the follow-
ing theorem:

Theorem C.8. Let f be a regular function in the Hermitian function field
such that Z` − f is absolutely irreducible14. Assume f |P0,0 6= 0 (or, when
viewing f as a polynomial in x and y and assume f(0, 0) 6= 0). The mono-
mials xi1yi2yjpfk(q−1)/` are independent whenever 0 ≤ k < ` and (p+ 1)A <
q
`
− (`−1)|vP∞ (f)|

`
. Note we did not restrict the value of j.

Note the additional assumption that f |P0,0 6= 0. We partially address this
assumption in appendix C.3.4

C.3.2 The special case ` = 2

We begin by proving theorem C.8 for the case ` = 2. the proof for this case
is somewhat simpler and aids in understanding the proof of the general case.

Proof. Let

0 =
∑

ci1,i2,j,kx
i1yi2yjpfk(q−1)/2 (7)

be a vanishing combination of the monomials. We may assume the minimal
value of j is non negative since we can multiply the equation by yp·|jmin|

where jmin is the most negative value of j that appears. Now, we will prove

14In particular this means f is not an `-th power over any constant field extension of
F/Fq.
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all ci1,i2,0,k are zero, and then we can divide the equation by yj and proceed
by induction to prove all ci1,i2,j,k are zero.

Separating by the values of k, denoting hk(X, Y ) =
∑
ci1,i2,j,kX

i1Y i2Y jp

and rearranging eq. (7), and squaring, we get:

h0(x, y) + h1(x, y)f (q−1)/2

h2
0(x, y) = h2

1(x, y)f q−1

h2
0(x, y)f = h2

1(x, y)f q

Recalling f must have a form as a polynomial in x and y (as all regular
functions in the Hermitian curve have), we abuse the notation and write
f = f(x, y), and now:

h2
0(x, y)f = h2

1(x, y)f q(x, y) = h2
1(x, y)f(xq, yq) (8)

since q is a power of the characteristic of F .
Denote as m0 the maximal ideal associated with the place P0,0. A function

in F that is zero mod mt
0 has a zero of multiplicity at least t at P0,0. Note

that xq and yp are both in mq
0

Denote hk =
∑
ci1,i2,0,kx

i1yi2 , note that hk ≡ hk( mod mq
0) and take eq. (8)

mod mq
0 to get:

h
2

0f ≡ h
2

1f |P0,0 (modmq
0)

h
2

0f − h
2

1f |P0,0 ≡ 0 (modmq
0)

consider the regular function h
2

0f − h
2

1f |P0,0 , it has q zeroes but from the
bound in A it has less then q poles, meaning (by claim 2.2) it is identically
zero in F . From this we get:

f = f(0, 0)

(
h1

h0

)2

giving us that f is a square over any extension of F where f(0, 0) has a
square root. This would be a contradiction, meaning the division by h0 was
not allowed, i.e. h0 is zero. Since f |P0,0 6= 0 we also get h1 is zero. h0, h1

are combinations of xi1yi2 , which are independent since they have different
valuations at P∞, so we get that ci1,i2,0,k = 0 for all i1, i2, k, which finishes
the proof.
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C.3.3 The case of general `

In order to prove the case ` > 2 we will use the following property of sym-
metric polynomials:

Theorem C.9. (see [Sch06] or [BSC13]) let Q(X1, ..., X`) be a symmetric
polynomial in ` variables over a field. it can be (uniquely) written as
Q(X1, ..., X`) = P (S1(X1, ..., X`), ...Sr(X1, ..., X`)
where P is a polynomial over the same field and Si(X1, ..., X`) is the i-th
elementary symmetric polynomial (which up-to sign is the sum of all products
of i distinct variables Xj1 ∗ ... ∗ Xji). The total degree of P is equal to the
degree of Q in X1 (or in any of the other variables due to symmetry).

We will now introduce some notation following [Sch06, Chapter I section
5].

Given H0, ...H`−1 in some field we define:

a(Z;H0, ...H`−1) = H0 +H1Z + ...+H`−1Z
`−1

Let ζ1, ...ζ` be the distinct `-th roots of unity in Fp, now define

b(Z;H0, ...H`−1) =
∏̀
i=1

a(ζiZ;H0, ...H`−1)

b is symmetric in ζ1Z, ...ζ`Z and so from theorem C.9 we know it has a
representation as a polynomial in the elementary symmetric polynomials on
ζ1Z, ...ζ`Z. However, the elemental symmetric polynomials on ζ1Z, ...ζ`Z are
all identically equal to 0 except the last one which is (up-to sign) equal to
Z`. so we get some c s.t.

c(Z`;H0, ...H`−1) = b(Z;H0, ...H`−1)

Finally we will consider the homogenization of c with respect to W , i.e.

d(U, V ;H0...H`−1) = V `−1c(U/V ;H0...H`−1)

Clearly d is a rational function, but closer inspection reveals it is in fact a
polynomial. We now calculate the degrees of a, b, c, d:

Claim C.10. with the above notations:

55



1. a(Z;H0, ...H`−1) has degree `− 1 in Z and total degree 1 in all the Hi.

2. b(Z;H0, ...H`−1) has degree `(`− 1) in Z and total degree ` each all the
Hi.

3. c(W ;H0...H`−1) has degree `− 1 in W and total degree ` in all the Hi.

4. d(U, V ;H0...H`−1) has degree ` − 1 in U and V , and total degree ` in
all the Hi.

Proof. The degrees of a are clear from its definition, and the rest are simple
observations.

We are now ready to prove theorem C.8 for the case of general `:

Proof. (of theorem C.8) Let

0 =
∑

ci1,i2,j,kx
i1yi2yjpfk(q−1)/` (9)

be a vanishing combination of the monomials. Like the case ` = 2 we may
assume the minimal value of j is non negative and need only to prove all
ci1,i2,0,k are zero.

Denote g = f
q−1
` , and hk(X, Y ) =

∑
ci1,i2,j,kX

i1Y i2Y jp, now we rewrite
eq. (9) and get:

h0(x, y) + h1(x, y)g(x, y) + ...+ h`−1g(x, y)`−1 = 0

a(g;h0, ..., h`−1) = 0

Now, recalling ζ1 = 1:

0 =
∏̀
i=1

a(ζig;h0, ...h`−1)

= b(g;h0, ..., h`−1)

= c(g`;h0, ..., h`−1)

= c(f q/f ;h0, ..., h`−1)

= d(f q, f ;h0, ..., h`−1)
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Denote hk =
∑
ci1,i2,0,kx

i1yi2 , note that hk ≡ hk(modmq
0) and the pole

orders of hk are less than q
`
− (`−1)|v∞(f)|

`
. Also note that f q ≡ f |P0,0( modmq

0)
and now we get mod mq

0 the equivalence:

d(f |P0,0 , f ;h0, ..., h`−1) ≡ 0(modmq
0)

Now since f |P0,0 is non-zero, and from bound on the degree of d in each vari-

able attained in claim C.10, we get that the degree of d(f |P0,0 , f ;h0, ..., h`−1)

is less then (`− 1)|vP∞(f)|+ `( q
`
− (`−1)|v∞(f)|

`
) = q. So d(f |P0,0 , f ;h0, ..., h`−1)

has more zeroes then poles and by claim 2.2 it is the zero function.
Let Y be some `-th root of f

f |P0,0
in the algebraic closure of F = Fq[x, y]/ϕ(x, y).

Since Z` − f is absolutely irreducible Y must be of degree exactly ` over F .
now:

0 = d(f |P0,0 , f ;h0, ..., h`−1)

= c(
f |P0,0

f
;h0, ..., h`−1)

= c(
1

Y

`

;h0, ..., h`−1)

= b(
1

Y
;h0, ..., h`−1)

=
∏̀
i=1

a(
ζi
Y

;h0, ..., h`−1)

So for some ζi it must hold that a( ζi
Y

;h0, ..., h`−1) = 0. However, a(Z;H0, ...H`−1)

is of degree ` − 1 in Z, so if a(Z;h0, ..., h`−1) is not the zero polynomial it
would mean there is a polynomial in Y of degree less than ` which vanishes,
which is a contradiction to Y being of degree ` over F . So a(Z;h0, ..., h`−1)
is the zero polynomial, which by the structure of a means each hk is the zero
polynomial, which by corollary 2.1 means all ci1,i2,0,k are zero, finishing the
proof.

C.3.4 The case f |P0,0 = 0

In the proof of theorem theorem C.8 we used both P∞ and P0,0 heavily.
The use of P∞ makes a lot of sense since this whole work deals with regular
functions. The use of P0,0 however seems less natural and should not be
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mandatory. Though it is very convenient to use P0,0 during the proof, f
could vanish there, which would invalidate our argument. Ideally we would
like to use a change of variables - send x, y to x− a, y− b, get the monomial
independence from the monomials after the shift and then proceed with the
argument for bounding the size of S`. We must be mindful however, since not
all changes of variables in x and y preserve equality in F , and therefore also do
not preserve independence. The variable changes we are allowed to preform
are those that are isomorphisms of the function field F/Fq. In [Xin95], there is
a description of these automorphisms. The only automorphisms that preserve
our monomials (i.e., send a linear combination of monomials to another linear
combination of monomials) are those of the form x, y → x, y + β where
Tr(β) = βp + β = 0. We now use these automorphisms to extend the
function for which our argument works to those that are not divisible by x:

Claim C.11. Suppose f is not of the form f = xh where h is regular, then
theorem C.8 holds for f even without the assumption that f |P0,0 6= 0.

Proof. If f vanishes at 0, β for all β with Tr(β) = 0 then f vanishes at every
place where x vanishes. Since all the zeroes of x are simple zeroes, this means
that f

x
is regular, contradicting the assumption.

Let β be such that f does not vanish at 0, β, and denote g(x, y) =
f(x, y + β). Let

∑
ci1,i2,j,kx

i1yi2+jpfk(q−1)/` be a vanishing combination of
xi1yi2yjpfk(q−1)/`. Since x, y → x, y + β is an isomorphism of F , we also
know

∑
ci1,i2,j,kx

i1(y + β)i2+jpgk(q−1)/` vanishes. Simplifying, we would get∑
di1,i2,j,kx

i1(y)i2+jpgk(q−1)/` vanishes, where the values of di1,i2,j,k can be com-
puted by a linear transformation on the values of ci1,i2,j,k (the transformation
is invertible since ci1,i2,j,k can be obtained from di1,i2,j,k by applying the in-
verse automorphism x, y → x, y − β to the vanishing combination with the
di1,i2,j,k). Since g|P0,0 = f |P0,β

6= 0 and it is of the same pole order as f , the
conditions of theorem C.8 hold for g, and there for all values of di1,i2,j,k are
zero, and therefore the values of ci1,i2,j,k, which are a linear transformation
on the values of di1,i2,j,k, are also all zero, proving the independence.

It now remains to handle the case where f = xsg where 0 < s < ` and g
is regular and not divisible by x (if we wish, we may assume specifically that
g|P0,0 6= 0). The case where s < ` is enough since dividing by x` does not
change S`. There can be two strategies for handling the case where f = xsg:

• adapt the proof of theorem C.8
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• prove directly that S` is small since f = xsg.

The latter option might be feasible since character sums on functions with
good structure tend to be good (xs is a function whose characters are very
close to uniform, so it is reasonable to believe multiplying by it is good).

We give here an adaptation of the proof of theorem C.8 for the special
case ` = 2 and f = xg.

Proof. Continuing from eq. (8), and substituting f = xg we get:

h2
0(x, y)f = h2

1(x, y)f q(x, y) = h2
1(x, y)xqg(xq, yq)

Denote hk =
∑
ci1,i2,0,kx

i1yi2 and take mod mq
0 to get

h
2

0f ≡ 0 (modmq
0)

By by claim 2.2 h0 = 0 since it has q zeroes but fewer than q poles. Now

taking mod m2q
0 instead we get that xqh

2

1g(0, 0) has 2q zeroes at P0,0. Since

g(0, 0) 6= 0 and xq has exactly q zeroes at P0,0, we get that h
2

1 has q zeroes
at P0,0, but it does not have enough poles, so again by claim 2.2 we get it is
also equal to zero, finishing the proof.

The proof for the case where ` > 2 has not been adapted, and this calls
for further research.

59



 יינים תוכן ענ 
 1 .................................................................. הקדמה   .1

 2 ............................................. הרחבה על הטכניקה  2.1
 4 ......................... שדות פונקציות ונגזרות רקע בסיסי ב. 2

 8 .......................................................נגזרות האסה  2.1

 p .............................. 12נגזרות האסה של חזקות  2.1.1

 13 ..................................................... דיפרנציאלים  2.2
 14 ................................. פונקציות הרחבות של שדות   2.3

 20 ................................................... הרחבות קומר  2.4
 23 .......................................... . חסם הגובה של הנגזרת 3

 27 .............................................. נגזרות מסדר גבוה  3.1

 28 ................................................................. דיון  3.2

 29 .......................................... צאה והתו , עולם הבעיה.  4

 29 ............................... שדות הפונקציות איתם נעבוד  4.1

 31 ............................................................. הבעיה  4.2

 32 ........................................................... התוצאה  4.3

 33 .................... . אי תלות, הוכחה עילית עם ואליואציות 5
 34 ........................................................ הוכחת החסם.  6

 36 ................................... נאים מספיקים הוכחה שהת 6.1

 37 ................................................ תיאור האילוצים   6.2

 37 ...................... אנליזה של הפרמטרים והשגת החסם  6.3

 41 .................................................................. רפרנסים

 43 ...........................דוגמאות לשדות פונקציות   –נספח א'  
 46 ........................................... כחות שונות הו   –'  בנספח 
 47 ..... תיעוד מחקר נוסף מחוץ למסגרת עבודה זו – ' גנספח 



 תקציר העבודה

, הם  C(D,G)המסומנים  Goppa Codesקודים אלגבריים גיאומטריים, או 

. הקודים האלה  Reed-Solomonקודים לתיקון שגיאות המכלילים את קודי 

. מילת קוד מוגדרת עבור כל פונקציה  𝔽𝑞הם קודים ליניאריים מעל השדה  

, מילת קוד  f. בהינתן כזו Gשמתאים לדיוויזור  Riemann-Rochבמרחב ה 

  f, את הערך של Dוללת, עבור כל נקודה על העקום שכלולה בדיוויזור כ

 בנקודה הזו.

קודים אלגבריים גיאומטריים הם בניה חשובה עבור התיאוריה של מדעי  

המחשב שכן הם היוו צעד משמעותי בהבנה של הקהילה המדעית לגבי שקלול  

ות מעל  ( בין המרחק והממד של קודים לתיקון שגיאTrade-offהתמורות )

 . 49שדות החל מגודל 

עבודה זו עוסקת בבעיה של הוכחת חסמים על ההתפלגות של הסימבולים מתוך  

שמופיעים במילת קוד על ידי חסימה של ההסתברות של מאורעות   𝔽𝑞השדה 

'.  𝔽𝑞ספציפיים מהסוג 'סימבול אקראי מהמילה שייך לתת קבוצה מסוימת של  

רעות אנחנו בוחרים כך שתהיה להן  את תתי הקבוצות שמגדירות את המאו 

משמעות אלגברית, ובכך נוכח להוכיח חסמים באמצעות ספירת נקודות על  

 עקומים אלגבריים מסוימים. 

בגלל הצורך בספירת נקודות על עקומים טבעי לנסות להשתמש בכלים חזקים  

, אך העקומים הרלוונטיים לקודים  Weilמגיאומטריה אלגברית כמו חסם 

( גדול, מה שגורם לחסמים  genusיאומטריים הם בעלי גזע )אלגבריים ג

 הקלאסיים להיות לא אינפורמטיביים. 

בעבודה זו אנחנו משתמשים בכלים אלמנטריים כדי לחסום את כמות 

 . 𝔽𝑞ית בחבורה הכפלית של -ℓהסימבולים במילת קוד יכולים להיות חזקה  

לחסימת   1969-שהוצגה ב Stepanovטכניקת ההוכחה מכלילה את השיטה של 

כמות הנקודות על עקום אלגברי בכלים אלמנטריים. ההכללה של הטכניקה  

לעקומים יותר כלליים מאשר הישר הפרויקטיבי דורשת כלים בסיסיים  

מהתורה של שדות פונקציות וכן ניסוח נכון של המבנה הנחוץ לנו בעקומים  

 ם אנחנו עובדים. עליה
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