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Abstract

In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless

condenser based on Parvaresh-Vardy codes. This lossless condenser is a basic building

block in many constructions, and, in particular, is behind the state of the art extractor

constructions.

We give an alternative construction that is based on Multiplicity codes. While

the bottom-line result is similar to the GUV result, the analysis is very different.

In GUV (and Parvaresh-Vardy codes) the polynomial ring is closed to a finite field,

and every polynomial is associated with related elements in the finite field. In our

construction a polynomial from the polynomial ring is associated with its iterated

derivatives. Our analysis boils down to solving a differential equation over a finite

field, and uses previous techniques, introduced by Kopparty (in [Kop15]) for the

list-decoding setting. We also observe that these (and more general) questions were

studied in differential algebra, and we use the terminology and result developed there.

We believe these techniques have the potential of getting better constructions and

solving the current bottlenecks in the area.
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1 Introduction

A condenser is a probabilistic mapping from a large universe {0, 1}n to a smaller

universe {0, 1}m that preserves the entropy of not too large sets. More formally,

C : {0, 1}n × [D] → {0, 1}m is a (k1, k2, ϵ) condenser, if for every distribution X on

{0, 1}n with k1 min-entropy, the output distribution C(X,UD) is ϵ-close to having k2

min-entropy (see definition 2.3 for a formal definition).

Ideally, we would like to explicitly build a condenser for any n, k1 < n, and

ϵ = ϵ(n) > 0 and have D as small as possible, k2 as close as possible to k1 + log(D),

and have k2 as close as possible to m. Let us call d = log(D) the seed length of C, it

measures the amount of randomness the probabilistic construction uses, and clearly

the smaller the better. Similarly, let us call k1 + d − k2 the entropy loss of C. The

entropy loss measures the difference between the amount of entropy in the system

(k1 + d) and the amount of entropy we preserve (k2), and we want it small. Finally,

let us call m − k2 the entropy gap of C. The entropy gap measures how dense the

output distribution C(X,UD) is in its ambient space {0, 1}m, and the smaller the

better. Thus, in this terminology, given n, k1 and ϵ we would like to find an explicit

construction simultaneously minimizing the seed length, entropy loss and entropy gap

of the condenser.

An important special case is when the entropy gap m − k2 is 0, and then C is

called a (k1, ϵ) extractor. Non-explicitly, there are extractors (and so the entropy gap

zero) with entropy loss 2 log(1
ϵ
) +O(1) and seed length log(n− k1) + 2 log(1

ϵ
) +O(1),

and each one of these bounds is tight (even individually) [RT00].

Dodis et al. [DPW14] observe that if we allow some entropy gap (and in particular

even if it is only a constant) then non-explicitly the entropy loss dramatically drops

to O(log log(1
ϵ
)) and the seed length to log(n − k) + 1 · log(1

ϵ
) + O(1). With larger

entropy gaps, the entropy loss continues to drop until it basically turns into zero,

and then we get a lossless condenser. For the dependence of the entropy loss on the

entropy gap see [DPW14] (and also [AT19]).

The GUV lossless condenser [GUV09] has logarithmic seed length and constant

fraction entropy gap. Specifically,

Theorem 1.1. (The GUV condenser)[GUV09, Theorem 1.7] For every n ∈ N, kmax ≤
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n, ϵ > 0, and 0 < α ≤ 1, there exists an m ≤ 2d+(1+α)kmax and an explicit function

C : {0, 1}n × {0, 1}d → {0, 1}m

with d = (1 + 1/α) · (log n+ log kmax + log 1/ϵ) +O(1) such that for all k ≤ kmax, C

is an (n, k)→ϵ (m, k + d) (lossless) condenser.

The GUV condenser has found numerous applications (as can be easily seen by

looking at the hundreds of papers that cite it). In particular, GUV present an extrac-

tor construction by first applying the GUV lossless condenser, and then an extractor

construction specifically designed for high min-entropy sources (see [GUV09, Section

4]). Roughly speaking, this extractor construction inherits its entropy loss from the

entropy gap of the lossless condenser. As a result, the extractor construction presented

in [GUV09] has linear entropy loss.

The problem of constructing explicit extractors with short seed length and small

entropy loss is widely open and there has been only modest improvement over the

extractor of [GUV09] that has linear entropy loss. Specifically, [DKSS13] construct

explicit extractors with the slightly sub-linear entropy loss k
polylog(k)

. Their construc-

tion uses improved mergers that are obtained using the polynomial method with

multiplicities. In another work, [TU12] modify the GUV condenser construction and

using again the multiplicity method of [DKSS13] together with other ideas, give a

condenser with small entropy loss and the slightly sub-linear entropy gap m
polylog(n)

.

This condenser implies an explicit extractor with a short seed and the same slightly

sub-linear entropy loss. Constructing an extractor with a short seed and a better

entropy loss is still a major open problem.

In this paper we give another explicit construction of a GUV like lossless con-

denser. While we do not improve the parameters, our construction uses a different

analysis that we believe has the potential to substantially improve current state of

the art results. Specifically, we prove:

Theorem 1.2. (Our condenser) For every n ∈ N, kmax ≤ n, ϵ > 0, and
16 log n

ϵ√
kmax

≤
α ≤ 1, there is an m ≤ d+ (1 + α)kmax and an explicit function

C : {0, 1}n × {0, 1}d → {0, 1}m
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with d = (1 + 1/α) · (log n+ log kmax + log 1/ϵ) +O(1) such that for all k ≤ kmax, C

is an (n, k)→ϵ (m, k + d) (lossless) condenser.

In a similar fashion to [GUV09], our condenser follows from a new construction

of an unbalanced bipartite expander graph.

Theorem 1.3. For every field Fq, n, s ∈ N such that 15 ≤ s + 2 ≤ n ≤ char(Fq),

there exists an explicit graph Γ : Fn
q × Fq → Fs+2

q , which is a (K,A) expander for

every K > 0 with

A = q − n(s+ 2)

2
· (qK)

1
s+2 . (1)

In [GUV09] there is a similar expression with A = q − (n− 1)(s+ 1)(K
1

s+1 − 1).

While the bound onm in theorem 1.2 is slightly better than the one in theorem 1.1,

the former has more restrictions on α then the latter. In any case, those two differences

are minor, and as stated before, the main contribution of theorem 1.2 is the method

used to prove it, which is very different then the one used in [GUV09], as we next

explain.

1.1 Our construction and the GUV construction

Both our construction and the GUV construction have the following structure. The

input that we want to condense is interpreted as a degree n−1 uni-variate polynomial

over Fq, i.e., as an element f from F<n
q [X]. Given the output length s+ 2 ∈ N (with

s+ 2 < n) both constructions associate f with s+ 1 different polynomials f0, . . . , fs

where fi ∈ F<n
q [X]. In GUV the association is done as follows:

1. First, put a field structure on F<n
q [X] and fix h ∈ N, that way fhi

(where

multiplication and powering is in the field) can also be interpreted as a degree

less than n polynomial.

2. Define fi = fhi
.

For example, one may choose a degree n irreducible polynomial E ∈ Fq[X] and

define the field F = Fq[X] mod E. Then, the condenser construction is as follows:
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The condenser C

Parameters: Fix a field Fq, n, s ∈ N, n, s ≥ 1. Identify the elements of Fn
q

with univariate polynomials of degree less than n.

Construction: Define C : Fn
q × Fq → F(s+2)

q by:

C(f, y) = (y, f0(y), f1(y), . . . , fs(y)) (2)

Our construction has the same structure, but our choice of the associated functions

f0, . . . , fs is different. Instead of choosing f0, . . . , fs as in GUV, we choose

fi =f (i),

i.e., f (i) is the i’th iterated derivative of f in Fq[X].

To see why our construction is natural, let us look at it from a coding theory

perspective. We can associate a function C : V × [D] → Σ with a linear code of

length D and alphabet Σ, where for every v ∈ V we have the codeword

(c(v)1, . . . , c(v)D) ∈ ΣD

where c(v)i = C(v, i). Using this translation, the GUV construction exactly corre-

sponds to the PV code [PV05] and our construction exactly corresponds to Multi-

plicity codes [KSY14, GW13].

PV codes and Multiplicity codes are among the few explicit constructions of ECC

with close to optimal list-decoding capacity. In the list-decoding problem our goal is

to find a construction such that for every given word (w1, . . . , wD) ∈ ΣD there are few

v ∈ V such that c(v) is close to w. In the condenser construction problem we wish to

solve a problem similar to the list-recoverability problem, our input is a large subset

W ⊆ Σ, and the output should be the (hopefully few) v ∈ V such that c(v)i ∈ W

for every i ∈ [D] (or the variant where c(v)i ∈ W for most i ∈ [D]). Indeed, GUV

write that the known connection between codes and extractors (pointed out, e.g., in

[TZ04]) and the fact that PV codes have list-decoding close to capacity motivated

them to explore whether PV codes give condensers with good list-recoverability.

Looking at it from this perspective, in this paper we ask whether Multiplicity
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codes, which are known to have list-decoding close to capacity, also have good list-

recoverability and hence give good condensers. In theorems 1.2 and 1.3 we show that

this is indeed the case.

Another code which has close to optimal list-decoding capacity is the Folded Reed-

Solomon code defined in [GR08]. Consequently, the condenser it produces has been

analyzed in [GUV09, Section 6], and achieved worse parameters than the PV based

condenser. Interestingly, the parameters are also worse than the ones achieved by our

Multiplicity condenser, making this the first time, to the best of our knowledge, that

a construction based on Multiplicity codes achieves better results than one based on

FRS codes.

While our construction and the GUV construction are similar in structure, they

are very different in implementation. In GUV the ring of polynomials F<n
q [X] is

“lifted” to a finite field, and the associated functions fi are chosen so that they lie on

a curve, specifically, over the extension field F, all the functions fi are just polynomials

in one common variable. The challenge is proving that if Q(y, f0, . . . , fm) is a non-zero

polynomial in the polynomial ring, then Q composed with the curve is a non-zero,

univariate polynomial over the extension field F. In general, proving that a non-zero

polynomial composed with a given curve remains non-zero is a non-trivial challenge,

and GUV solve it with a specific trick, that works, but gives constant entropy gap.

In contrast, our construction does not lift to an extension field. Instead the

associated functions are just the derivatives of the given input. Thus, we completely

avoid the question of proving that a non-zero polynomial composed with a curve

remains non-zero, and, instead, we are left with a question similar to interpolation

from derivatives. This leads to a widely different analysis as we explain next. We

hope that further extensions of it might lead to constructions better than the current

state of the art.

1.2 The proof technique

We give a proof sketch of theorem 1.3 (the expanding graph). It is enough to prove

that for every W ⊆ Fs+2
q of size at most AK − 1 we have |LIST(W )| < K. Fix a

set W ⊆ Fs+2
q of size AK − 1. Our goal is to bound the number of degree n − 1

polynomials f such that Γ(f) ⊆ W .
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Our starting point is to find a non-zero, low-degree, multi-variate polynomial

Q(X, Y0, . . . , Ys) such that Q(w) = 0 for every w ∈ W . This step is identical to

the first step in the proof of GUV. The total degree of Q is O(|W |1/(s+2)s). It is a

standard observation that for every f with Γ(f) ⊆ W it must be that

Q ◦ df = Q(x, f(x), f ′(x), . . . , f (s)(x))

is the zero polynomial, i.e., f solves the differential equation Q. The challenge now

is to bound that number of functions f such that Γ(f) ⊆ W .

To bound the number of degree n− 1 polynomials such that Γ(f) ⊆ W we adapt

the list-decoding algorithm of [Kop15] to the list-recovery setting (much the same

as GUV adapt the [PV05] list-decoding algorithm to the list-recovery setting). The

main lemma Kopparty uses is that given (y, w0, . . . , ws) ∈ Fq × Fs+1
q , there is usually

at most one degree n− 1 polynomial f such that:

� The first s derivatives of f at y agree with w0, . . . , ws, i.e., f
(i)(y) = wi, for

i = 1, . . . , s, and,

� Q ◦ df is the zero polynomial.

Formally, this is true whenever the Separant of the equation, ∂Q
∂Ys

, is non-singular at

w, i.e.,
∂Q

∂Ys

(y, w0, . . . , ws) ̸= 0.

Kopparty proves this lemma using Hensel lifting. We rephrase the proof using dif-

ferential algebra terminology and intuition from [Rit50]. We believe our proof is

simpler, and also more amenable to generalizations. Furthermore, this theory was

generalized in [Lim15, FZV22], where generalized Separants were introduced, and we

believe these generalization might be useful for future improvements of the analysis.

Going back to the list-recovery problem, and following the list-decoding algorithm

from [Kop15], let us denote by W1 the set of all w ∈ W such that ∂Q
∂Ys

(w) ̸= 0. We

see that for every f such that Γ(f) ⊆ W and Γ(f) ∩W1 ̸= ∅, we can recover f by

going over all w ∈ W1, and for each such w output the unique suitable degree n− 1

polynomial, given by the above main lemma.

We are then left with the task of outputting all the degree n− 1 polynomials such

that Γ(f) ⊆ W0 = W \W1. We notice that each of these polynomials solve the lower
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degree differential equation ∂Q
∂Ys

(x, f(x), . . . , f (s)) = 0. Reiterating the process we get

a new list of solution. As each time we get a lower degree differential equation, we

can iterate the process at most deg(Q) times. Doing the calculation more carefully

(as is done in [Kop15]) saves even this loss, and, furthermore, shows expansion by a

factor of about q − sn s+2
√
|W |. We explain the thin details in section 4.

2 Preliminaries

We use the following notation:

(n)t =n · (n− 1) · . . . · (n− t+ 1) =
n!

(n− t)!
,

where for t = 0, (n)0 = 1. Thus, (n)t = t!
(
n
t

)
.

Also, for J = (j1, . . . , jm) and I = (i1, . . . , im) we define

(J)I =
m∏
ℓ=1

(jℓ)iℓ ,(
J

I

)
=

m∏
ℓ=1

(
jℓ
iℓ

)
, and,

I! =
m∏
ℓ=1

iℓ!.

Thus, (J)I = I!
(
J
I

)
. Finally, J− I = (j1 − i1, . . . , jm − im).

2.1 Multi-variate derivatives

Let R = F[X1, . . . , Xm] be the ring of polynomials in m variables over F. For I =

(i1, . . . , im) with i1, . . . , im ∈ N we define the partial derivative in direction I as the

linear operator on R defined by ∂XJ

∂I
= (J)I ·XJ−I. We denote

Q(I)(X) =
∂Q

∂I
(X).
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The order of I is w(I) = i1 + . . .+ im. Notice that for uni-variate polynomials Q(X),

Q(i)(X) coincides with the i’th iterated derivative.

Let w = (w1, . . . , wm) where wi ∈ N. The w-weighted degree of a monomial

XJ = Xj1
1 · . . . ·Xjm

m is
∑m

i=1wi · ji. The w-weighted degree of Q, denoted degw(Q),

is the largest w-weighted degree of a monomial in Q. We let |w| denote
∑

wi,

Π(w) = Πwi, and Mw,t the number of monomials XJ with w-weighted degree at

most t. Beged-Dov gave upper and lower bounds on Mw,t:

Lemma 2.1. [Beg72]

tm

m! · Π(w)
≤ Mw,t ≤

(t+ |w|)m

m! · Π(w)

2.2 Condensers

In this subsection let C : {0, 1}n × {0, 1}d → {0, 1}m.

Definition 2.2. We say C is a (K,A) expander if for every S ⊆ {0, 1}n of cardinality

K the set

Γ(S) =
⋃

s∈S,y∈{0,1}d
C(s, y)

has cardinality at least K · A.

We next define a condenser:

Definition 2.3. We say C is an (n, k) →ϵ (m, k′) condenser if for all distributions

X with min-entropy at least k, the distribution C(X,Ud) is ϵ-close to a distribution

with min-entropy at least k′. The condenser is explicit if C can be computed in time

poly(n, 1
ϵ
).

To prove that a function is a condenser or an expander, we use the “list-decoding”

approach described in [GUV09]. For C : {0, 1}n×{0, 1}d → {0, 1}m and T ⊆ {0, 1}m

define:

LIST(T ) = {x : Γ(x) ⊆ T}

LIST(T, ϵ) =

{
x : Pr

y
[C(x, y) ∈ T ] ≥ ϵ

}
12



Lemma 2.4. [GUV09, Lemma 3.2] C is a (K,A) expander iff for every set T ⊆
{0, 1}m of cardinality at most AK − 1, LIST(T ) has cardinality at most K − 1.

And for condensers:

Lemma 2.5. [TUZ07, Theorem 8.1],[GUV09, Lemma 5.4] Let C : {0, 1}n×{0, 1}d →
{0, 1}m be a function.

� If C is a (K, (1 − ϵ)2d) expander, then C is a (n, k) →ϵ (m, k + d) condenser,

i.e., it is a lossless condenser with error ϵ,

� If for all T ⊆ {0, 1}m of size at most L the set LIST(T, ϵ) has cardinality at

most H, then C is a (n, log(H
ϵ
))→2ϵ (m, log(L

ϵ
)− 1) condenser.

3 The Separant

Let Q ∈ Fq[X, Y0, . . . , Ys]. When we think of Q as a differential equation, we look for

all (low-degree) polynomials f ∈ Fq[X] such that

Q(X, f(X), f (1)(X), . . . , f (s)(X)) =0 ∈ Fq[X].

Let us define

df =(X, f(X), f (1)(X), . . . , f (s)(X), . . . , f (n)(X), . . .)

Notice that if f ∈ F<n
q [X], then f (i)(X) is identically zero for all i ≥ n. Let us also

think of Q as a polynomial Q ∈ Fq[X, Y0, . . . , Ys, . . . , Yn . . .] that depends only on X

and Y0, . . . , Ys. In this notation f solves the differential equation Q iff Q ◦ df = 0 ∈
Fq[X].

A differential equation Q can be itself derived. While formally Q depends on X

and Y0, . . . , Yn, . . ., we think of Y0 as a function depending on X, Y0 = f(X) and of

Yi+1 as ∂Yi

∂X
. This motivates the following definition:

Definition 3.1. Let Q ∈ Fq[X, Y0, . . . , Ys], define the infinite sequence of polynomials

13



Q(0), Q(1), . . . where Q(k) ∈ F[X, Y0, . . . , Yk+s] is defined by:

Q(0) = Q

Q(k+1) =
∂Q(k)

∂X
+

k+s∑
i=0

∂Q(k)

∂Yi

· Yi+1.

The motivation behind this definition is apparent given:

Lemma 3.2. For every f ∈ Fq[X] and ℓ ≥ 0

(Q ◦ df)(ℓ) =Q(ℓ) ◦ df.

Proof. By induction. The case ℓ = 0 is immediate. Assume for ℓ and let us prove for

ℓ+ 1. Using the chain rule:

(Q ◦ df)(ℓ+1) =((Q ◦ df)(ℓ))′ = (Q(ℓ) ◦ df)′

=
∂Q(ℓ)

∂X
◦ df +

s+ℓ∑
i=0

∂Q(ℓ)

∂Yi

◦ df · ∂f
(i)

∂X

=
∂Q(ℓ)

∂X
◦ df +

s+ℓ∑
i=0

∂Q(ℓ)

∂Yi

◦ df · f (i+1)

=(
∂Q(ℓ)

∂X
+

s+ℓ∑
i=0

∂Q(ℓ)

∂Yi

· Yi+1) ◦ df

=Q(ℓ+1) ◦ df,

where the first equality is because we use iterated derivations, the second is induction,

the third is the chain rule (and notice that Q(ℓ) depends on X, Y0, . . . , Ys+ℓ).

We call Q(ℓ) the ℓ-th derivative of Q. This operation comes from differential

algebra [Rit50]. As its name suggests, this operator has some properties similar to

regular derivative

Claim 3.3. [Rit50]

1. (linearity) For every Q,P ∈ Fq[X, Y0, . . . ], λ, µ ∈ Fq, ℓ ≥ 0

(λQ+ µP )(ℓ) = λQ(ℓ) + µP (ℓ)
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2. (Leibniz product rule) For every Q,P ∈ Fq[X, Y0, . . . ]

(P ·Q)(1) = P (1) ·Q+ P ·Q(1)

3. (repeated derivation) For every Q ∈ Fq[X, Y0, . . . ], ℓ1, ℓ2 ≥ 0

(Q(ℓ1))(ℓ2) = Q(ℓ1+ℓ2)

Claim 3.4. Let Q ∈ Fq[X, Y0, . . . , Ys] and ℓ ∈ N.

� deg(0,1,1,...) Q(ℓ) = deg(0,1,1,...) Q, and,

� deg(0s+2,1,2,3,...) Q(ℓ) ≤ ℓ. I.e., if we give X, Y0, . . . , Ys weight 0, and Ys+j weight

j, then the ℓ’th derivative degree is at most ℓ.

Proof. For the first item notice that ∂Q(ℓ)

∂X
is either zero or does not change the degree

in Y0, . . .. Also, the effect of
∂Q
∂Yi
·Yi+1 is to reduce the degree in Yi by one and increase

the degree in Yi+1 by one.

For the second item, we prove by induction. The case ℓ = 0 is immediate. For the

induction step, ∂Q(ℓ)

∂X
and ∂Q(ℓ)

∂Yi
· Yi+1 for i < s, are either zero or do not change the

weighted degree, while ∂Q(ℓ)

∂Yi
· Yi+1 for i ≥ s increase the weighted degree by one.

One consequence of claim 3.4 is that Ys+ℓ appears with degree at most 1 in Q(ℓ)

and that the coefficient of Ys+ℓ in Q(ℓ) is a function of X, Y0, . . . , Ys alone. Indeed, we

next prove the coefficient of Ys+ℓ in Q(ℓ) is ∂Q
∂Ys

.

Definition 3.5. (Separant) Let Q ∈ F[X, Y0, . . . , Ys]. The Separant of Q, denoted

SQ, is

SQ =
∂Q

∂Ys

.

A classical lemma from differential algebra (see [Rit50, Page 30]) states that:

Lemma 3.6. For every ℓ ≥ 1,

Q(ℓ) =SQ · Ys+ℓ +Rℓ

where Rℓ ∈ F[X, Y0, . . . , Ys+ℓ−1] does not depend on Ys+ℓ.
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Proof. By induction. For ℓ = 1, the only way to get Ys+1 in Q(1) is in the term
∂Q
∂Ys
·Ys+1. Assume for ℓ and let us prove for ℓ+1. The only way to get Ys+ℓ+1 in Q(ℓ+1)

is by taking ∂Q(ℓ)

∂Ys+ℓ
. By induction, Ys+ℓ only appears in Q(ℓ) in the linear term SQ ·Ys+ℓ.

Thus, the only term involving Ys+ℓ+1 in Q(ℓ+1) is
∂(SQ·Ys+ℓ)

∂Ys+ℓ
· Ys+ℓ+1 = SQ · Ys+ℓ+1.

Lemma 3.7. Fix Q ∈ Fq[X, Y0, . . . , Ys], (α,b) = (α, b0, . . . , bs) ∈ Fs+2
q and SQ(α,b) ̸=

0. Suppose f ∈ Fq[X] such that:

� f (i)(α) = bi, for i = 0, . . . , s, and

� Q ◦ df = 0.

Then there are unique values bs+1, . . . , bn such that f (i)(α) = bi.

Proof. We prove by induction on n. The base case n = s is clear. Assume for n and

let us prove for n + 1. By assumption we know there are unique values bs+1, . . . , bn

such that bi = f (i)(α) for i = s+1, . . . , n. Our goal is to show there is a unique value

possible for f (n+1)(α).

We will use Q(n−s+1) and the fact that Yn+1 appears linearly in it with coefficient

SQ, and that at (α,b), SQ(α,b) ̸= 0. First we notice that

Q(n−s+1)(α, b0, . . . , bn, f
(n+1)(α)) =Q(n−s+1)(α, f(α), . . . , f (n+1)(α))

=Q(n−s+1) ◦ df(α)

=(Q ◦ df)(n−s+1)(α) = 0,

where the first equality is by induction, the second by definition, the third using

lemma 3.2, and the last equality because we know Q ◦ df is the zero polynomial in

Fq[X].

Next we recall that by lemma 3.6

Q(n−s+1)(X, Y0, . . . , . . . , Yn+1) =SQ(X, Y0, . . . , Ys) · Yn+1 +R(X, Y0, . . . , Yn),

and therefore

0 =Q(n−s+1)(α, b0, . . . , bn, f
(n+1)(α))

=SQ(α,b) · f (n+1)(α) +R(α, b0, . . . , bn).
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Thus, f (n+1)(α) = −R(α,b0,...,bn)
SQ(α,b)

is uniquely determined.

In words, this means the following. f solves the differential equation if Q◦df = 0.

We can think of the conditions f (i)(α) = bi, for i = 0, . . . , s, as s+1 initial conditions

on the Taylor expansion of f at α. In this terminology, lemma 3.7 says that that if

the separant SQ is non-zero at the point (α,b) then there can be at most one solution

to the differential equation Q with degree smaller than the characteristic, satisfying

the initial conditions (α,b).

4 Reconstruction with the Polynomial Method

In this section we present a “de-condensing” procedure that given Γ : Fn
q ×Fq → Fs+2

q

and a set W ⊆ Fs+2
q outputs LIST(W ). Throughout this section we assume that

n ≤ char(Fq). The de-condensing algorithm works as follows. Given W we first find

a low-degree polynomial Q that vanishes over W , namely,

Claim 4.1. There exists a non-zero polynomial Q ∈ Fq[X, Y0, . . . , Ys] with

deg(1,n,...,n−s) Q ≤ D =

⌈
n ·

[
|W | · (s+ 2)!

] 1
s+2

⌉
that vanishes on W .

Proof. By lemma 2.1 the number of monomials in Fq[X, Y0, . . . , Ys] with (1, n, n −
1, . . . , n− s)-weighted degree at most D is some value F such that

F ≥ Ds+2

(s+ 2)! ·
∏s

j=0(n− j)
> |W |.

To find a polynomial Q that vanishes on W , we write a homogeneous linear system

over Fq where the variables are the coefficients of the above monomials, and for every

w ∈ W we have a linear equation forcing that the polynomial vanishes on w. As

the number of variables is larger than the number of constraints, there is a non-zero

solution.

It then follows that every f ∈ F<n
q [T ] with Γ(f) ⊆ W satisfies the differential

equation Q(x, f(x), . . . , f (s)(x)) = 0. Formally,

17



Claim 4.2. If f ∈ LIST(W ), and q > D, than

Rf (T ) = Q(T, f(T ), . . . , f (s)(T )) ∈ Fq[T ]

is the zero polynomial.

Proof. As deg(1,n,...,n−s)(Q) ≤ D and deg(f (i)) < n − i, Rf has degree at most D.

Also, for every α ∈ Fq,

Rf (α) = Q(α, f(α), . . . , f (s)(α)) = 0.

As q > D we must have Rf = 0 in Fq[T ].

18



The main challenge is proving the number of low-degree solutions to the differential

equation Q with starting conditions W is small, and designing an algorithm finding

all such solutions. For that we define algorithm Solve. The input to the algorithm is a

polynomial Q̇ ∈ Fq[X, Y0, . . . , Ys] and Ẇ ⊆ Fs+2
q . The output contains all polynomials

f ∈ F<n
q [X] such that Γ(f) ⊆ Ẇ and Q̇ ◦ df = 0. The algorithm works as follows:

Algorithm 1: Solve(Q̇, Ẇ )

1 If Q̇ does not depend on Y0, . . . , Ys return ∅.
2 Let s∗ be the largest j ∈ {0, . . . , s} for which Q̇ depends on Yj.

3 Set L1 ← ∅ and

Ẇ1 ←

{
w ∈ Ẇ | ∂Q̇

∂Ys∗
(w) ̸= 0

}
.

4 for w = (α,w0, . . . , ws) ∈ Ẇ1 do

5 Assuming there exits some polynomial g ∈ Fq[X] such that

Q̇ ◦ dg = 0 ∈ Fq[X] and g(i)(α) = wi for all 0 ≤ i ≤ s, find the unique

values ws+1, . . . , wn−1 such that g(i)(α) = wi for all 0 ≤ i < n. Such a

unique solution exits by lemma 3.7.

6 Define

f(x) =
n−1∑
i=0

wi

i!
(x− α)i.

7 If Γ(f) ⊆ Ẇ add f to L1.

8 Set

Ẇ0 ←

{
w ∈ Ẇ | ∂Q̇

∂Ys∗
(w) = 0

}
.

9 L0 ← Solve( ∂Q̇
∂Ys∗

,W0)

10 return L0 ∪ L1

With that the de-condensing algorithm is:
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Algorithm 2: Decondensing

Input: Parameters q, s, n, the condenser Γ : Fn
q × Fq → F(s+2)

q , and a set

W ⊆ Fs+2
q

Output: All f ∈ F<n
q [X] such that Γ(f) ⊆ W

1 Set D ←
⌈
n ·

[
|W | · (s+ 2)!

] 1
s+2

⌉
2 Construct a non-zero polynomial Q ∈ Fq[X, Y0, . . . , Ys] with

deg(1,n,...,n−s) Q ≤ D

that vanishes on W .

3 return Solve(Q,W )

4.1 Analysis of Solve

Lemma 4.3. (Correctness of Solve) Fix a non-zero polynomial Q ∈ Fq[X, Y0, . . . , Ys]

such that deg(1,n,...,n−s)(Q) < q, and W ⊆ Fs+2
q . Every f ∈ F<n

q [T ] for which

Q(x, f(x), . . . , f (s)(x)) = 0 and Γ(f) ⊆ W appears in the output of Solve(Q,W ).

Proof. The proof is by induction on the degree of Q as a polynomial in Y0, . . . , Ys, i.e.,

deg(0,1,...,1)(Q). In the base case Q depends only on X, thus Q = Q(X). As Q ̸= 0,

there are no solutions to Q(T, f(T ), . . . , f (s)(T )) = Q(T ) = 0 and L = ∅ is the correct
output.

Now let f(T ) ∈ F<n
q [T ] such that Γ(f) ⊆ W and Q(T, f(T ), . . . , f (s)(T )) = 0. We

have two cases:

1. ∂Q
∂Ys∗

(T, f(T ), . . . , f (s)(T )) ̸= 0. Note that

deg

(
∂Q

∂Ys∗
(T, f(T ), . . . , f (s)(T ))

)
≤ deg(1,n,...,n−s)

(
∂Q

∂Ys∗
(X, Y0, . . . , Ys)

)
≤ deg(1,n,...,n−s) (Q(X, Y0, . . . , Ys)) < q.

Therefore there must be some α ∈ Fq for which

∂Q

∂Ys∗
(α, f(α), . . . , f (s)(α)) ̸= 0.

20



As (α, f(α), . . . , f (s)(α)) ∈ Γ(f) ⊆ W , in the for loop we iterate over this vector

and therefore in line 5 we find the unique solution of the ODE with these initial

conditions, and because of the uniqueness this solution must be f . As Γ(f) ⊆ W

we add it to the list L in line 7.

2. ∂Q
∂Ys∗

(T, f(T ), . . . , f (s)(T )) = 0. We notice that in this case Γ(f) ⊆ W0, as for

every α ∈ Fq we have ∂Q
∂Ys∗

(α, f(α), . . . , f (s)(α)) = 0. Also deg(0,1,...,1)(
∂Q
∂Ys∗

) <

deg(0,1,...,1)(Q), hence by induction f ∈ L0.

Lemma 4.4. (List size of Solve) For every non-zero Q ∈ Fq[X, Y0, . . . , Ys] with

deg(1,n,n−1,...,n−s)(Q) ≤ D < q and every W ⊆ Fs+2
q , the size of the output of

Solve(Q,W ) is at most |W |
q−D

.

Proof. We prove by induction on the (0, 1, . . . , 1)-degree of Q. If deg(0,1,...,1)(Q) is

zero, the list is empty, the list size is zero and the claim holds. We next prove the

induction step.

For every w = (α,w0, . . . , ws) ∈ W1, there exists a unique f that may be joined

to the list. Furthermore, since w ∈ W1 we have that:

∂Q

∂Ys∗
(α, f(α), . . . , f (s)(α)) =

∂Q

∂Ys∗
(α,w0, . . . , ws) ̸= 0,

thus ∂Q
∂Ys∗

(T, f(T ), . . . , f (s)(T )) ̸= 0, and its degree is at most D, meaning that it

equals 0 for at most D values of T , hence it is non-zero for at least q −D values of

T ∈ Fq. Also, if f appears in the list then Γ(f) ⊆ W . Hence, each of those q − D

values lies in W (and therefore in W1) and reconstructs f . We conclude that f is

reconstructed from at least q −D different points in W1, thus |L1| ≤ |W1|
q−D

.

We remain with the list size of L0 which is obtained from Solve( ∂Q
∂Ys∗

,W0). Since

deg(0,1,...,1)(
∂Q
∂Ys∗

) < deg(0,1,...,1)(Q), and the (1, n, . . . , n− s)-weighted degree of ∂Q
∂Ys∗

is

at most D, we know by induction that |L0| ≤ |W0|
q−D

. Altogether, |L| ≤ |W1|
q−D

+ |W0|
q−D

=
|W |
q−D

.
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4.2 Putting it together

Proof. (of theorem 1.3) By lemma 2.4 it is enough to prove that for every W ⊆ Fs+2
q

of size at most AK − 1 we have |LIST(W )| < K. Fix a set W ⊆ Fs+2
q of size

AK − 1 < qK. Let Q be as in claim 4.1, with

D =

⌈
n ·

[
qK · (s+ 2)!

] 1
s+2

⌉
≤ n · (qK)

1
s+2 · (((s+ 2)!)

1
s+2 + 1)

≤ n(s+ 2)

2
· (qK)

1
s+2 = q − A

Where the second to last inequality is due to the fact that (k!)1/k + 1 ≤ k
2
for every

k ≥ 15. Let L be the output list of Solve(Q,W ). Then,

LIST(W ) ≤ |L| ≤ |W |
q −D

≤ AK − 1

q −D
< K,

where the first inequality is by lemma 4.3, the second by lemma 4.4 and the last

inequality by using the fact that A ≤ q −D.

By choosing the parameters in the same way as done in [GUV09, Theorem 3.5]

we get the following expander

Theorem 4.5. For every positive integers N , Kmax ≤ N , all ϵ > 0, and
16 log ( logN

ϵ )√
logKmax

≤
α ≤ 1, there is an M ≤ D · K1+α

max and an explicit (≤ Kmax, (1 − ϵ)D) expander

Γ : [N ]× [D]→ [M ] with degree D = O(((logN(logKmax))/ϵ)
1+1/α).

For completeness we repeat the proof from [GUV09].

Proof. Let n = logN and k = logKmax. Let h0 = (2nk/ϵ)1/α, h = ⌈h0⌉, and let q be

a prime in the interval (h1+α/2, h1+α].

Set s + 2 = ⌈k/ log h⌉, so that hs+1 ≤ Kmax ≤ hs+2. As 15 ≤ s + 2 ≤ n ≤ q =

char(Fq), by theorem 1.3, the graph Γ : Fn
q ×Fq → Fs+2

q is a (≤ hs+2, A) expander for

A = q − n(s+2)
2
· (qK)

1
s+2 , because Kmax ≤ hs+2, it is also a (≤ Kmax, A) expander.

Note that the number of left-vertices in Γ is qn ≥ N , and the number of right-

vertices is

M = qs+2 ≤ q · h(1+α)(s+1) ≤ q ·K1+α
max
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The degree is

D = q ≤ h1+α ≤ (h0 + 1)1+α

= O(h1+α
0 ) = O((nk/ϵ)1+1/α)

Lastly, we consider the expansion factor, A = q − n(s+2)
2
· (qK)

1
s+2 ≥ q − nkhq

1
s+2

2
,

of the graph, first notice

nkh ≤ ϵ
h1+α

2
≤ ϵq

where the first equality is due to the fact that nk/ϵ ≤ hα/2. Secondly, we can convert

our lower bound on α to a lower bound on k

k ≥ 256

α2
log

(n
ϵ

)
and by using it we get

s+ 2 ≥ k

log h
≥

256
α2 log2

(
n
ϵ

)
log h

≥
64
α2 log

2
(
nk
ϵ

)
log h

≥
16
α2 log

2
(
2nk

ϵ

)
log h

=
16 log2 h0

log h
≥ 4 log2 h

log h
= 4 log h ≥ (1 + α) log h ≥ log q

by combining the two inequalities

nkhq1/(s+2)

2
= nkh · q

1/(s+2)

2
≤ ϵq.

By substituting back to A we get A ≥ (1 − ϵ)q = (1 − ϵ)D, which concludes the

proof.

Finally, theorem 1.2 is an immediate consequence of lemma 2.5 applied to theo-

rem 4.5.
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 תקציר 

ללא  Vadhanו  Guruswami  ,Umans  2007בשנת   מכווץ  של  מפורשת  בניה  קודי-הראו  על  המתבססת   אובדן 
Parvaresh-Vardy  ובפרט עומד מאחורי  אקראיים,  -פסידו. מכווץ זה מהווה אבן בניה בבניות רבות של אובייקטים

 . מחלציםהבניות הטובות ביותר של 

 של עבודה זו  שהשורה התחתונהמראים בניה אלטרנטיבית אשר מתבססת על קודי כפילויות. למרות  ואנ, בעבודה זו
(, חוג הפולינומים נסגר לשדה סופי,  PV )ובקודי    GUV, האנליזה שונה מאוד. בבניה של GUVבניה של  לשל הדומה  

האנליזה   ר איברים בשדה הסופי. בבניה שלנו פולינום מחוג הפולינומים נקשר לנגזרות שלו.וכל פולינום נקשר למספ
על טכניקות קודמות, שהוצגו על    ומתבססותמסתכמת לכדי פתירה של משוואה דיפרנציאלית מעל שדה סופי,  שלנו  

כלליות יותר( נחקרו    אנחנו מראים כי שאלות אלו )כמו גם שאלות  עבור המקרה של פענוח רשימה.  Koppartyידי  
 ואנו משתמשים בטרמינולוגיות ותוצאות שפותחו שם. דיפרנציאלית, -בתחום של אלגברה 

הבקבוק הקיימים -אנחנו מאמינים כי לטכניקות אלו יש את הפוטנציאל להביא לבניות טובות יותר ולפתור את צווארי
 כיום בתחום.
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