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Abstract

In 2007 Guruswami, Umans and Vadhan gave an explicit construction of a lossless
condenser based on Parvaresh-Vardy codes. This lossless condenser is a basic building
block in many constructions, and, in particular, is behind the state of the art extractor
constructions.

We give an alternative construction that is based on Multiplicity codes. While
the bottom-line result is similar to the GUV result, the analysis is very different.
In GUV (and Parvaresh-Vardy codes) the polynomial ring is closed to a finite field,
and every polynomial is associated with related elements in the finite field. In our
construction a polynomial from the polynomial ring is associated with its iterated
derivatives. Our analysis boils down to solving a differential equation over a finite
field, and uses previous techniques, introduced by Kopparty (in [Kopl5]) for the
list-decoding setting. We also observe that these (and more general) questions were
studied in differential algebra, and we use the terminology and result developed there.

We believe these techniques have the potential of getting better constructions and

solving the current bottlenecks in the area.
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1 Introduction

A condenser is a probabilistic mapping from a large universe {0,1}" to a smaller
universe {0,1}" that preserves the entropy of not too large sets. More formally,
C :{0,1}" x [D] — {0,1}" is a (kq, ko, €) condenser, if for every distribution X on
{0,1}" with k; min-entropy, the output distribution C'(X, Up) is e-close to having ko
min-entropy (see definition [2.3| for a formal definition).

Ideally, we would like to explicitly build a condenser for any n, k; < n, and
e = €(n) > 0 and have D as small as possible, ko as close as possible to k; + log(D),
and have ks as close as possible to m. Let us call d = log(D) the seed length of C, it
measures the amount of randomness the probabilistic construction uses, and clearly
the smaller the better. Similarly, let us call k; + d — ko the entropy loss of C. The
entropy loss measures the difference between the amount of entropy in the system
(k1 + d) and the amount of entropy we preserve (kz), and we want it small. Finally,
let us call m — kg the entropy gap of C. The entropy gap measures how dense the
output distribution C(X,Up) is in its ambient space {0,1}"™, and the smaller the
better. Thus, in this terminology, given n, k; and € we would like to find an explicit
construction simultaneously minimizing the seed length, entropy loss and entropy gap
of the condenser.

An important special case is when the entropy gap m — ko is 0, and then C' is
called a (kq, €) extractor. Non-explicitly, there are extractors (and so the entropy gap
zero) with entropy loss 2log(%) + O(1) and seed length log(n — k1) 4 2log($) + O(1),
and each one of these bounds is tight (even individually) [RT00].

Dodis et al. [DPW14] observe that if we allow some entropy gap (and in particular
even if it is only a constant) then non-explicitly the entropy loss dramatically drops
to O(loglog(+)) and the seed length to log(n — k) 4+ 1 -log(%) + O(1). With larger
entropy gaps, the entropy loss continues to drop until it basically turns into zero,
and then we get a lossless condenser. For the dependence of the entropy loss on the
entropy gap see [DPW14] (and also [AT19]).

The GUV lossless condenser |[GUV09] has logarithmic seed length and constant
fraction entropy gap. Specifically,

Theorem 1.1. (The GUV condenser)[GUV0Y, Theorem 1.7] For everyn € N, kpar <
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n,e >0, and 0 < a < 1, there exists an m < 2d+ (1+a)kyae and an explicit function
C:{0,1}" x {0,1}* = {0,1}™

with d = (1 + 1/a) - (logn + log kyas + log 1/€) + O(1) such that for all k < ks, C
is an (n, k) — (m,k +d) (lossless) condenser.

The GUV condenser has found numerous applications (as can be easily seen by
looking at the hundreds of papers that cite it). In particular, GUV present an extrac-
tor construction by first applying the GUV lossless condenser, and then an extractor
construction specifically designed for high min-entropy sources (see [GUV09, Section
4]). Roughly speaking, this extractor construction inherits its entropy loss from the
entropy gap of the lossless condenser. As a result, the extractor construction presented
in [GUV09| has linear entropy loss.

The problem of constructing explicit extractors with short seed length and small
entropy loss is widely open and there has been only modest improvement over the
extractor of [GUV09] that has linear entropy loss. Specifically, [DKSS13] construct
k R Their construc-

polylog
tion uses improved mergers that are obtained using the polynomial method with

explicit extractors with the slightly sub-linear entropy loss

multiplicities. In another work, [TUI2] modify the GUV condenser construction and
using again the multiplicity method of [DKSS13| together with other ideas, give a
condenser with small entropy loss and the slightly sub-linear entropy gap ;#o,xn)'
This condenser implies an explicit extractor with a short seed and the same slightly
sub-linear entropy loss. Constructing an extractor with a short seed and a better
entropy loss is still a major open problem.

In this paper we give another explicit construction of a GUV like lossless con-
denser. While we do not improve the parameters, our construction uses a different
analysis that we believe has the potential to substantially improve current state of

the art results. Specifically, we prove:

16log

Theorem 1.2. (Our condenser) For every n € N, ke < n,e > 0, and <

kma.’l}

a <1, there is an m < d + (1 + @)kpae and an ezxplicit function
C:{0,1}" x {0,1}* = {0,1}"
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with d = (1 + 1/a) - (logn + log kyas + log 1/€) + O(1) such that for all k < ks, C
is an (n, k) — (m,k +d) (lossless) condenser.

In a similar fashion to [GUV(9], our condenser follows from a new construction

of an unbalanced bipartite expander graph.

Theorem 1.3. For every field F,,n,s € N such that 15 < s +2 < n < char(F,),
there exists an explicit graph T' : Fy x Fy — IFfIH, which is a (K, A) expander for
every K > 0 with

n(s+2)
2

A=q- (qh) 7. (1)
In [GUV0Y| there is a similar expression with A =¢g — (n — 1)(s + 1)(Ks+i1 —1).
While the bound on m in theorem [I.2]is slightly better than the one in theorem [L.1],

the former has more restrictions on « then the latter. In any case, those two differences

are minor, and as stated before, the main contribution of theorem is the method
used to prove it, which is very different then the one used in [GUV09], as we next

explain.

1.1 Our construction and the GUV construction

Both our construction and the GUV construction have the following structure. The
input that we want to condense is interpreted as a degree n— 1 uni-variate polynomial
over Iy, i.e., as an element f from F;"[X]. Given the output length s +2 € N (with
s + 2 < n) both constructions associate f with s+ 1 different polynomials fy, ..., fs
where f; € Fs"[X]. In GUV the association is done as follows:

1. First, put a field structure on F;"[X] and fix h € N, that way " (where
multiplication and powering is in the field) can also be interpreted as a degree

less than n polynomial.

2. Define f; = f.

For example, one may choose a degree n irreducible polynomial £ € F,[X] and
define the field F = F,[X] mod E. Then, the condenser construction is as follows:
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The condenser C'

Parameters: Fix a field F;, n,s € N, n,s > 1. Identify the elements of F}

with univariate polynomials of degree less than n.

Construction: Define C': F! x F, — Ft2) py:

C(f,y) =y, foy), i(y),- -, fs(y)) (2)

Our construction has the same structure, but our choice of the associated functions

fo, ..., fs is different. Instead of choosing fy, ..., fs as in GUV, we choose

i.e., f@ is the i'th iterated derivative of f in F,[X].

To see why our construction is natural, let us look at it from a coding theory
perspective. We can associate a function C' : V' x [D] — ¥ with a linear code of

length D and alphabet Y, where for every v € V' we have the codeword
(e, e(v)p) € BP

where ¢(v); = C(v,4). Using this translation, the GUV construction exactly corre-
sponds to the PV code [PV05] and our construction exactly corresponds to Multi-
plicity codes [KSY14, [GW13].

PV codes and Multiplicity codes are among the few explicit constructions of ECC
with close to optimal list-decoding capacity. In the list-decoding problem our goal is
to find a construction such that for every given word (wy, ..., wp) € XL there are few
v € V such that ¢(v) is close to w. In the condenser construction problem we wish to
solve a problem similar to the [ist-recoverability problem, our input is a large subset
W C ¥, and the output should be the (hopefully few) v € V' such that ¢(v); € W
for every i € [D] (or the variant where c¢(v); € W for most i € [D]). Indeed, GUV
write that the known connection between codes and extractors (pointed out, e.g., in
[TZ04]) and the fact that PV codes have list-decoding close to capacity motivated

them to explore whether PV codes give condensers with good list-recoverability.

Looking at it from this perspective, in this paper we ask whether Multiplicity
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codes, which are known to have list-decoding close to capacity, also have good list-
recoverability and hence give good condensers. In theorems and we show that
this is indeed the case.

Another code which has close to optimal list-decoding capacity is the Folded Reed-
Solomon code defined in [GRO8|. Consequently, the condenser it produces has been
analyzed in [GUV09, Section 6], and achieved worse parameters than the PV based
condenser. Interestingly, the parameters are also worse than the ones achieved by our
Multiplicity condenser, making this the first time, to the best of our knowledge, that
a construction based on Multiplicity codes achieves better results than one based on
FRS codes.

While our construction and the GUV construction are similar in structure, they
are very different in implementation. In GUV the ring of polynomials Fs"[X] is
“lifted” to a finite field, and the associated functions f; are chosen so that they lie on
a curve, specifically, over the extension field I, all the functions f; are just polynomials
in one common variable. The challenge is proving that if Q(y, fo, ..., fim) is a non-zero
polynomial in the polynomial ring, then ) composed with the curve is a non-zero,
univariate polynomial over the extension field F. In general, proving that a non-zero
polynomial composed with a given curve remains non-zero is a non-trivial challenge,
and GUV solve it with a specific trick, that works, but gives constant entropy gap.

In contrast, our construction does not lift to an extension field. Instead the
associated functions are just the derivatives of the given input. Thus, we completely
avoid the question of proving that a non-zero polynomial composed with a curve
remains non-zero, and, instead, we are left with a question similar to interpolation
from derivatives. This leads to a widely different analysis as we explain next. We
hope that further extensions of it might lead to constructions better than the current
state of the art.

1.2 The proof technique

We give a proof sketch of theorem (the expanding graph). It is enough to prove
that for every W C Fi*? of size at most AK — 1 we have |[LIST(W)| < K. Fix a
set W C IF';+2 of size AK — 1. Our goal is to bound the number of degree n — 1
polynomials f such that I'(f) C W.



Our starting point is to find a non-zero, low-degree, multi-variate polynomial
Q(X,Yy,...,Y;) such that Q(w) = 0 for every w € W. This step is identical to
the first step in the proof of GUV. The total degree of @Q is O(|W|/+2)s). It is a
standard observation that for every f with I'(f) C W it must be that

Qodf = Q(z, f(x), f'(x),.... fO(x))

is the zero polynomial, i.e., f solves the differential equation ). The challenge now
is to bound that number of functions f such that I'(f) C .

To bound the number of degree n — 1 polynomials such that I'(f) C W we adapt
the list-decoding algorithm of [Kopl5| to the list-recovery setting (much the same
as GUV adapt the [PV05] list-decoding algorithm to the list-recovery setting). The
main lemma Kopparty uses is that given (y, wy, ..., ws) € F, X IFZ“, there is usually

at most one degree n — 1 polynomial f such that:

e The first s derivatives of f at y agree with wy,...,ws, i.e., f¥(y) = w;, for

i1=1,...,s, and,

e Qo df is the zero polynomial.

Formally, this is true whenever the Separant of the equation, g—g, is non-singular at
w, i.e.,
9Q
a-y(y,wo, Ce ,U}S) 7£ 0.
S

Kopparty proves this lemma using Hensel lifting. We rephrase the proof using dif-
ferential algebra terminology and intuition from [Rit50]. We believe our proof is
simpler, and also more amenable to generalizations. Furthermore, this theory was
generalized in |[Lim15l [FZV22], where generalized Separants were introduced, and we
believe these generalization might be useful for future improvements of the analysis.

Going back to the list-recovery problem, and following the list-decoding algorithm
from [Kopl15|, let us denote by W; the set of all w € W such that g—g(w) # 0. We
see that for every f such that T'(f) C W and T'(f) N Wy # (0, we can recover f by
going over all w € Wy, and for each such w output the unique suitable degree n — 1
polynomial, given by the above main lemma.

We are then left with the task of outputting all the degree n — 1 polynomials such
that I'(f) € Wy = W \ W;. We notice that each of these polynomials solve the lower
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degree differential equation g—gs(x, f(z),..., f®)) = 0. Reiterating the process we get
a new list of solution. As each time we get a lower degree differential equation, we
can iterate the process at most deg(Q) times. Doing the calculation more carefully

(as is done in [Kop15]) saves even this loss, and, furthermore, shows expansion by a
factor of about ¢ — sn *R/|W/|. We explain the thin details in section

2 Preliminaries

We use the following notation:

(n)t:n-(n—1)~...~(n—t+1):(n_t)!,

where for t =0, (n)o = 1. Thus, (n), = t!(7}).

Also, for J = (j1,...,Jm) and I = (i1,...,4,,) we define

Thus, (J)r = I({). Finally, J —I= (ji —i1,. ., jm — im)-

2.1 Multi-variate derivatives

Let R = F[X3,...,X,,] be the ring of polynomials in m variables over F. For I =
(11, 0m) With 41,..., 4, € N we define the partial derivative in direction I as the
linear operator on R defined by %LIJ = (J); - X?~1. We denote

_9Q

QU (X) =22 (X).
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The order of I'is w(I) =4y + ...+ i,. Notice that for uni-variate polynomials Q(X),
Q" (X) coincides with the i’th iterated derivative.

Let w = (wy,...,wy,) where w; € N. The w-weighted degree of a monomial
X7 =X Xim is 3" w; - j;. The w-weighted degree of @, denoted deg,, (Q),
is the largest w-weighted degree of a monomial in Q). We let |w| denote » w;,
[I(w) = Tw;, and My, the number of monomials X7 with w-weighted degree at

most ¢. Beged-Dov gave upper and lower bounds on My, 4:
Lemma 2.1. [Beg72]

2 (£ + [w)™

< My, <
m!-II(w) — L= ! T(w)

2.2 Condensers
In this subsection let C : {0,1}" x {0,1}¢ — {0,1}™.

Definition 2.2. We say C is a (K, A) expander if for every S C {0,1}" of cardinality
K the set

r)= J Clw

seSye{0,1}¢

has cardinality at least K - A.
We next define a condenser:

Definition 2.3. We say C is an (n, k) —. (m, k") condenser if for all distributions
X with min-entropy at least k, the distribution C(X,Uy) is e-close to a distribution

with min-entropy at least k'. The condenser is explicit if C' can be computed in time

poly(n, 1).

To prove that a function is a condenser or an expander, we use the “list-decoding”
approach described in [GUV09]. For C : {0,1}" x {0,1}¢ — {0,1}™ and T C {0,1}"
define:

LIST(T) = {z : [(2) C T}

LIST(T, ) = {x Pr[Cla,y) €T] > e}

12



Lemma 2.4. [GUV09, Lemma 3.2/ C is a (K, A) expander iff for every set T C
{0,1}™ of cardinality at most AK — 1, LIST(T) has cardinality at most K — 1.

And for condensers:

Lemma 2.5. [TUZ07, Theorem 8.1], [GUV0Y, Lemma 5.4] Let C : {0,1}"x{0,1}¢ —
{0,1}™ be a function.

o IfCisa (K, (1—¢)2%) expander, then C is a (n,k) —¢ (m,k + d) condenser,

1.e., 1t 1s a lossless condenser with error e,

o [f for all T C {0,1}™ of size at most L the set LIST(T,€) has cardinality at
most H, then C is a (n,log(Z)) —vac (m,log(£) — 1) condenser.

3 The Separant

Let @Q € F,[X, Y0, ..., Y;]. When we think of () as a differential equation, we look for
all (low-degree) polynomials f € F,[X] such that

Q(X, f(X), fI(X),..., fP(X)) =0 € F,[X].
Let us define

df =(X, f(X), fOX), o fOX), e (X))

Notice that if f € Fy"[X], then f@(X) is identically zero for all i > n. Let us also
think of @ as a polynomial Q € F,[X,Yp,...,Y,,...,Y, ...] that depends only on X
and Yp, ...,Y,. In this notation f solves the differential equation Q iff Qo df =0 €
F,[X].

A differential equation ) can be itself derived. While formally @) depends on X
and Yp,...,Y,, ..., we think of Yj as a function depending on X, Yy = f(X) and of

Yi 1 as %. This motivates the following definition:

Definition 3.1. Let Q € F,[X, Yy, ..., Y]], define the infinite sequence of polynomials

13



QY. QW ... where QW € F[X,Y, ..., Yoy is defined by:

(k) ks 50k
— + Q_ . Y;—&-l‘
0X &= oy,

The motivation behind this definition is apparent given:

Lemma 3.2. For every f € Fy[X]| and £ >0

(Qodf)? =Y o df.

Proof. By induction. The case ¢ = 0 is immediate. Assume for ¢ and let us prove for
¢+ 1. Using the chain rule:

(Qodf)™V =((Q o df) ) = (QY o df)

oS- FLow . af®
=55 odf+; v ° Y %
00w . Hoow
— odf + Z odf - 0+D)
0X £ 9y,
00W L oW —
= + ) oY) odf
0X = oy,
—QU o f,

where the first equality is because we use iterated derivations, the second is induction,
the third is the chain rule (and notice that Q@ depends on X,Y), ..., Ysyy). O]

We call Q¥ the (-th derivative of Q. This operation comes from differential
algebra [Rit50]. As its name suggests, this operator has some properties similar to

regular derivative
Claim 3.3. [Rit50]
1. (linearity) For every Q,P € F, [ X, Yo, ..., \,u € F,, >0
(AQ + 1uP)® = 2Q® + P
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2. (Leibniz product rule) For every Q, P € F,[X,Yy,...]

(p.@)(l) —pPY.Q+pP- QW

3. (repeated derivation) For every Q@ € F,[X,Yy,...], 1,0, >0

(Q(fl))(fz) — Q(51+f2)

Claim 3.4. Let Q € F,[X, Y, ..., Y] and ¢ € N.

b deg(o,1,1,...) Q(@ = deg(o,1,1,...) Q, and,

o degeiz103, ) QY < (. Le., if we give X,Y, ..., Y, weight 0, and Ys,; weight
J, then the €’th derivative degree is at most £.

Proof. For the first item notice that %)(;) is either zero or does not change the degree
in Yy, .... Also, the effect of % -Y;11 is to reduce the degree in Y; by one and increase
the degree in Y;,; by one.

For the second item, we prove by induction. The case £ = 0 is immediate. For the

induction step, %ﬁ) and 88%(,_@) - Yy, for ¢ < s, are either zero or do not change the
weighted degree, while aaQ—;f) - Y, for i > s increase the weighted degree by one. [

One consequence of claim is that Y,,, appears with degree at most 1 in Q)
and that the coefficient of Y,,, in Q) is a function of X, Y, ...,Y, alone. Indeed, we
next prove the coefficient of Y, in QWY is g—gs.

Definition 3.5. (Separant) Let QQ € F[X,Yy,...,Ys]. The Separant of @), denoted

SQ, 18
_9Q
= 8}/;,

A classical lemma from differential algebra (see |RitH0, Page 30]) states that:

Sq

Lemma 3.6. For every ¢ > 1,
QY =Sg - Yoy + Ry

where Ry € F[X, Yy, ..., Ys0-1] does not depend on Yyiy.
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Proof. By induction. For ¢ = 1, the only way to get Yy,; in Q) is in the term
g—}@s -Y,;1. Assume for £ and let us prove for £+ 1. The only way to get Yy o1 in QHD
is by taking %. By induction, Y, only appears in Q) in the linear term Sq Yt

(SQ-Ysye)

Thus, the only term involving Yi.esq in QD is 2 a

Y1 =50 Yooy O

Lemma 3.7. Fiz Q € F [X,Y,,..., Y], (a,b) = (o, by, ..., bs) € Fi*t? and Sp(a, b) #
0. Suppose f € F,[X]| such that:

o fO(a)=0b;, fori=0,...,s, and

e o W =0.
Then there are unique values bgy 1, ..., b, such that f(i)(oc) = ;.

Proof. We prove by induction on n. The base case n = s is clear. Assume for n and
let us prove for n + 1. By assumption we know there are unique values bsy1,...,b,
such that b; = f®(a) fori = s+1,...,n. Our goal is to show there is a unique value
possible for " (q).

We will use Q»~**1) and the fact that Y,,,, appears linearly in it with coefficient
So, and that at (a,b), So(a,b) # 0. First we notice that

QU= (a, by, ..., bn, fPV () =Q" (v, f(a), ..., f"D(a))
=Q" " o df ()

=(Qodf)" >V (a) =0,

where the first equality is by induction, the second by definition, the third using
lemma , and the last equality because we know @ o df is the zero polynomial in
F,[X].

Next we recall that by lemma |3.6

QU (X Yy, ...\, Y1) =So(X, Yo, ..., Ye) - Your + R(X, Yy, ..., V),

and therefore



Thus, f™)(a) = —% is uniquely determined. ]

In words, this means the following. f solves the differential equation if Q o df = 0.
We can think of the conditions f(a) = b;, for i =0,...,s, as s+ 1 initial conditions
on the Taylor expansion of f at a. In this terminology, lemma [3.7] says that that if
the separant Sg is non-zero at the point (o, b) then there can be at most one solution
to the differential equation () with degree smaller than the characteristic, satisfying

the initial conditions (a, b).

4 Reconstruction with the Polynomial Method

In this section we present a “de-condensing” procedure that given I' : Fi x F; — IFZ+2
and a set W C F&*? outputs LIST(W). Throughout this section we assume that
n < char(F,). The de-condensing algorithm works as follows. Given W we first find

a low-degree polynomial () that vanishes over W, namely,

Claim 4.1. There ezists a non-zero polynomial Q € Fy[X, Y, ..., Y] with

deg(l,n,...,nfs) Q < D= lrn : |:|W| . (S + 2)':| S+2—‘

that vanishes on W.

Proof. By lemma, the number of monomials in F,[X,Yp, ..., Y] with (1,n,n —

1,...,n — s)-weighted degree at most D is some value F' such that

e Ds+2
(s 2 [jp(n =)

> |[W].

To find a polynomial ) that vanishes on W, we write a homogeneous linear system
over I, where the variables are the coefficients of the above monomials, and for every
w € W we have a linear equation forcing that the polynomial vanishes on w. As
the number of variables is larger than the number of constraints, there is a non-zero

solution. O

It then follows that every f € Fs"[T] with I'(f) € W satisfies the differential
equation Q(z, f(z),..., f®(x)) = 0. Formally,
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Claim 4.2. If f € LIST(W), and q > D, than

Ry(T) = Q(T, f(T),..., f*)T)) € F,[T]
1s the zero polynomial.

Proof. As deg(;,,  , (Q) < D and deg(f@) < n — i, Ry has degree at most D.
Also, for every o € Fy,

Ry(0) = Q(a, f(a)...., [P (a)) = 0.

As ¢ > D we must have Ry = 0 in F[T]. O

18



The main challenge is proving the number of low-degree solutions to the differential
equation ) with starting conditions W is small, and designing an algorithm finding
all such solutions. For that we define algorithm Solve. The input to the algorithm is a
polynomial Q € F,[X, Y, ..., Y and W C F;*Q. The output contains all polynomials
f € Fsm[X] such that T'(f) C W and Q o df = 0. The algorithm works as follows:

Algorithm 1: Solve(Q, W)

1 If Q does not depend on Yy, ....Y, return 0.

2 Let s* be the largest j € {0,..., s} for which () depends on Y;.
Set £, + () and

w

W1<—{w€W| 081?*(10)#0}.

a for w = (o, wo, ..., w;) € W do
5 Assuming there exits some polynomial g € F,[X] such that
Qodg=0¢€TF,[X] and g?(a) = w; for all 0 < i < s, find the unique
values Wy, ..., w,_1 such that ¢ (a) = w; for all 0 < i < n. Such a
unique solution exits by lemma
6 Define
n—1
w; i
fa) =Y Y —a)
=0
7 | IET(f) CW add f to L.

8 Set

Woe{wEW\ ;3*(w)20}.

Lo+ Solve(ﬂ W)

Y,x !
10 return Ly U L,

©

With that the de-condensing algorithm is:
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Algorithm 2: Decondensing

Input: Parameters g, s,n, the condenser I' : Fj x F;, — F((ISH), and a set
W g ]F‘Z+2
Output: All f € F5"[X] such that T'(f) C W

1 Set D « [n [|W|-(s+2)!]5ﬂ

2 Construct a non-zero polynomial @) € F,[X, Yy, ..., Y] with

-----

that vanishes on W.
3 return Solve(Q, W)

4.1 Analysis of Solve

Lemma 4.3. (Correctness of Solve) Fiz a non-zero polynomial Q € Fy[X, Yy, ..., Y]
such that degq, . (Q) < ¢, and W C F:*2. Every f € Fs"[T] for which
Q(z, f(x),..., f(x)) =0 and T(f) C W appears in the output of Solve(Q,W).

Proof. The proof is by induction on the degree of () as a polynomial in Yy, ..., Y, i.e.,
deg(p1,..1y(Q). In the base case @ depends only on X, thus @ = Q(X). As Q # 0,
there are no solutions to Q(T, f(T),..., f*)(T)) = Q(T) = 0 and L = ( is the correct
output.

Now let f(T') € F:"[T] such that T'(f) € W and Q(T, f(T),..., f*)(T)) = 0. We

have two cases:

0
deg (aﬁ (T, f(T),... ,f(s)(T))) < deg(ip,.ns) (m“%? . ,ys))

Therefore there must be some « € [, for which

Q)
8}/’8*

(, f(a), ..., f(a)) # 0.
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As (a, f(a),..., f®(a)) € T(f) € W, in the for loop we iterate over this vector
and therefore in line [5| we find the unique solution of the ODE with these initial
conditions, and because of the uniqueness this solution must be f. AsI'(f) C W
we add it to the list £ in line [T

2. aay%(T,f(T), .., f®(T)) = 0. We notice that in this case I'(f) C Wy, as for
every o € F, we have aT(O‘ fla),..., f®a)) = 0. Also degg .. 1)(881/—@*) <

1)(Q), hence by induction f € L.

,,,,,,

]

Lemma 4.4. (List size of Solve) For every non-zero Q) € F,[X,Yy,..., Y] with
77777 n-5(@) < D < q and every W C IFZ”, the size of the output of
Solve(Q, W) is at most q'_%.

Proof. We prove by induction on the (0,1,...,1)-degree of Q. If degq; _ 1)(Q) is

zero, the list is empty, the list size is zero and the claim holds. We next prove the

induction step.

For every w = (o, wy,...,ws) € Wi, there exists a unique f that may be joined

to the list. Furthermore, since w € W; we have that:

9Q
OY s

0Q
OY s

(o, f(@), ..., fP(a)) = (a,wo, ..., ws) # 0,

thus (T f(T),.... f&(T)) # 0, and its degree is at most D, meaning that it
equals O for at most D values of T', hence it is non-zero for at least ¢ — D values of
T € F,. Also, if f appears in the list then I'(f) € W. Hence, each of those ¢ — D
values lies in W (and therefore in W;) and reconstructs f. We conclude that f is

reconstructed from at least ¢ — D different points in Wy, thus |£;| < w

We remain with the list size of £, which is obtained from Solve(-2%- s , Who). Since
dego1,... 1)<6Y_*) < deg;, 1)(Q), and the (1,n,...,n — s)-weighted degree of 99 g
at most D, we know by induction that |£y] < (‘IW0| Altogether, |£| < |W1| + |W°|

wl
.y 0
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4.2 Putting it together

Proof. (of theorem [1.3]) By lemma it is enough to prove that for every W C IF;JFQ
of size at most AK — 1 we have |LIST(W)| < K. Fix a set W C Fi* of size
AK —1 < ¢K. Let @ be as in claim with
1 1 1
D= [n [qK~ (s + 2)!} s+2-‘ <n-(¢K)s+2 - (((s+2))s2 +1)

n(s+2)

5 (@K)7= =g -4

<

Where the second to last inequality is due to the fact that (k!)l/ Fr1< % for every
k > 15. Let L be the output list of Solve(Q), W). Then,

Wl _AK-1_

LIST(W) < |£] <
W)l Ep< <k,

where the first inequality is by lemma [4.3] the second by lemma and the last
inequality by using the fact that A < q — D. m

By choosing the parameters in the same way as done in [GUV09, Theorem 3.5]

we get the following expander

€

Viog Kmagx S
a < 1, there is an M < D - K} and an explicit (< Kpaz, (1 — €)D) expander

max

[ : [N] x [D] — [M] with degree D = O(((log N(log K az))/€) ).

og (leaN
Theorem 4.5. For every positive integers N, K .. < N, alle >0, and 1610z (57)

For completeness we repeat the proof from [GUV09].

Proof. Let n =log N and k = log Kynee. Let hg = (2nk/e)'/* h = [he], and let ¢ be
a prime in the interval (h'*® /2, h1Te].

Set s +2 = [k/logh], so that h¥*™t < K, < A2 As15 < s+2<n<gqg=
char(F,), by theorem the graph I' : F} x F, — 5™ is a (< h**?, A) expander for
A=q-— @ (qK)5+2, because Kpqe < h¥2) it is also a (< Kyae, A) expander.

Note that the number of left-vertices in I' is ¢ > N, and the number of right-
vertices is

M = qs+2 <gq- h(1+a)(s+1) <gq- Klta

max
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The degree is

D — q S hl+a S (hO T 1)1+a
= O(hy**) = O((nk/e)"*/)

Lastly, we consider the expansion factor, A = q — @ (gK)s2 > q—
of the graph, first notice

14+
nkh <e h

<eq

where the first equality is due to the fact that nk/e < h*/2. Secondly, we can convert

our lower bound on « to a lower bound on &

2
> Lo (2

€
and by using it we get

356 1002 (1) 64 1oo2 (nk) 16 102 (onk
k log (e)>a210g(6)>a210g (26)

2 > > o
stez logh — log h - log h - log h
161loghy _ 4log*h
= > =4logh > (1 logh > 1
logh — logh ogh > (1+a)logh = logq

by combining the two inequalities

nkhql/(s—‘rQ) ql/(s+2)

5 = nkh -

< g.

By substituting back to A we get A > (1 — €)g = (1 — €)D, which concludes the
proof. O

Finally, theorem [1.2] is an immediate consequence of lemma [2.5( applied to theo-
rem 4.9l
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ST A

YTIP DY NOOANNN YTIN-NIY \NON S¥ nwNnoan 2 NN Vadhany Umans ,Guruswami 2007 mwa
YNNNN TOIY 1IN, ONPNIPR-ITIDI DYVPMIIN HY MIT NN N2 YN NN DT NN . Parvaresh-Vardy
.DXYNN HY NP2 MV NN

N NI HY INNNNN NNVYNY MDD .NIMS9D YTIP DY NDDIANN TYNX MDVLITVIN )2 DRI DX T NTIAYA
L0 DTV NOI M1 NN ,( PV 7mipa) GUV S moaa . mixvn nnv nvdrn ,GUV Hw nnan Svd nmyt
NVDIND DY MDY IWPI DIMPDIAN NN DI NHY 712121 DN NTYA DIDN 190N TWP) DY 9)
9Y NHNY ,MNTIP MPAOV HY MODDINNDI N0 NTY DYN MONININT INNWNI DY NN >TIH NNONDN 1OV
PN (MY NPHYD MORY D) 199) R MIRY 5 DIRIN NNIN .Y NIV SW MIpnn Nay Kopparty »1

DY HINMIOY NINIIN NPNDINIVI DOWHNYN NN, TIHNINIINT-NION YW DINNA

DYPN PIAPAN-INNS NN NN TN NIV NIIAD XXAND HNONIVIN NN W 1IN MDDV 7D DIPNNND NNIN
.DINN2 OO
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